Homework

1. Use Nelson-Oppen to determine satisfiability of the following formula over EUF and LIA. For LIA, no decision procedure is necessary, just specify consequences of formulas on paper.

$$
\begin{equation*}
1 \leq x \wedge x \leq 2 \wedge \mathrm{f}(1)=\mathrm{a} \wedge \mathrm{f}(x)=\mathrm{b} \wedge \mathrm{a}=\mathrm{b}+2 \wedge \mathrm{f}(2)=\mathrm{f}(1)+3 \tag{1P}
\end{equation*}
$$

2. Prove that the deterministic Nelson-Oppen method is sound assuming soundness of the non-deterministic Nelson-Oppen method. More specifically, let T_{1} and T_{2} be convex theories with signature Σ_{1} and Σ_{2} respectively where $\Sigma_{1} \cap \Sigma_{2}=\{=\}$, and $\varphi=\varphi_{1} \wedge \varphi_{2}$ a formula where $\varphi_{1}\left(\varphi_{2}\right)$ is a $\Sigma_{1}\left(\Sigma_{2}\right)$ formula. Prove that if the deterministic Nelson-Oppen returns satisfiable, then φ is satisfiable.
3. Model the existence of a winning strategy for Gomoky ${ }^{1}$ in QBF. For this you should encode the board as a set of propositional variables, and construct the following formulas:
(a) Define a formula $\varphi_{\text {move }}^{i}\left(b_{1}, b_{2}\right)$ which is true iff b_{2} is a valid board after a move of player i on the board b_{1}, and a formula $\varphi_{\text {win }}(b)$ which is true iff some player has won on the board b.
(b) Encode the following statements as QBF formulas

- Player one can always win, independent of the moves played by player two.
- Player two can always win, independent of the moves played by player one.

4. In this exercise we will prove that LRA is convex as defined on slide 11. Let $A \vec{x} \leqslant \vec{c}$ be an LRA problem where $\vec{x}=\left(x_{1} x_{2} \cdots x_{n}\right)^{T}$, and $E=\left\{x_{i_{1}}=x_{j_{1}}, \ldots, x_{i_{m}}=x_{j_{m}}\right\}$ is a set of equations over x_{1}, \ldots, x_{n} such that $A \vec{x} \leqslant \vec{c} \Longrightarrow \bigvee_{x_{i}=x_{j} \in E} x_{i}=x_{j}$.
(a) First show that the set of solutions of an LRA problem is convex in the geometric sence. In other words, prove that for all $\vec{a}, \vec{b} \in \mathbb{R}^{n}$ we have

$$
A \vec{a} \leqslant \vec{c} \wedge A \vec{b} \leqslant \vec{c} \quad \Longrightarrow \quad\{(1-\lambda) \cdot \vec{a}+\lambda \cdot \vec{b} \mid 0 \leqslant \lambda \leqslant 1\} \subseteq\{\vec{x} \mid A \vec{x} \leqslant \vec{c}\}
$$

(b) Use the statement from (a) to show that for any two points $\vec{a}, \vec{b} \in\{\vec{x} \mid A \vec{x} \leqslant \vec{c}\}$ there exists an equation $x_{i}=x_{j} \in E$ such that both $a_{i}=a_{j}$ and $b_{i}=b_{j}$ holds.
(c) Finally use the statement from (b) to show that $A \vec{x} \leqslant \vec{c} \Longrightarrow x_{i}=x_{j}$ for some equation $x_{i}=x_{j} \in E$.

[^0]
[^0]: ${ }^{1}$ https://en.wikipedia.org/w/index.php?title=Gomoku\&oldid=1223707331\#Rules

