
SS 2024 lecture 2

Constraint Solving

René Thiemann and Fabian Mitterwallner

based on a previous course by Aart Middeldorp

http://cl-informatik.uibk.ac.at/teaching/ss24/cs
http://cl-informatik.uibk.ac.at/~thiemann
http://cl-informatik.uibk.ac.at/members/fmitterwallner/

Outline

1. Summary of Previous Lecture

2. Conflict Graphs

3. NP-Completeness of SAT

4. SAT Reductions

5. Further Reading

SS 2024 Constraint Solving lecture 2 2/27

Theorem

propositional formula φ is valid ⇐⇒ ¬φ is unsatisfiable

Definitions

• literal is atom p or negation ¬p of atom

• clause is disjunction of literals

• conjunctive normal form (CNF) is conjunction of clauses

• disjunctive normal form (DNF) is disjunction of conjunctions of literals

Theorem

∀ formula φ ∃ CNF ψ ∃ DNF χ such that φ ≡ ψ ≡ χ

SS 2024 Constraint Solving lecture 2 1. Summary of Previous Lecture 3/27

Remark

Tseitin’s transformation is linear-time translation to equisatisfiable CNF

Definition (Abstract DPLL)

• states M ∥ F consist of list M of (possibly annotated) non-complementary literals and CNF F

• transition rules

• unit propagate M ∥ F,C ∨ l =⇒ M l ∥ F,C ∨ l

if M ⊨ ¬C and l is undefined in M

• pure literal M ∥ F =⇒ M l ∥ F
if l occurs in F and lc does not occur in F and l is undefined in M

• decide M ∥ F =⇒ M
d
l ∥ F

if l or lc occurs in F and l is undefined in M

SS 2024 Constraint Solving lecture 2 1. Summary of Previous Lecture 4/27

Definition (Abstract DPLL, cont’d)

• fail M ∥ F,C =⇒ fail-state

if M ⊨ ¬C and M contains no decision literals

• backtrack M
d
l N ∥ F,C =⇒ M lc ∥ F,C

if M
d
l N ⊨ ¬C and N contains no decision literals

• backjump M
d
l N ∥ F,C =⇒ M l′ ∥ F,C

if M
d
l N ⊨ ¬C and ∃ clause C′ ∨ l′ such that

• F,C ⊨ C′ ∨ l′ backjump clause

• M ⊨ ¬C′

• l′ is undefined in M

• l′ or l′c occurs in F or in M
d
l N

SS 2024 Constraint Solving lecture 2 1. Summary of Previous Lecture 5/27

Definition

basic DPLL B consists of transition rules unit propagate, decide, fail, backjump

Theorem

• there are no infinite derivations ∥ F =⇒B S1 =⇒B S2 =⇒B · · ·
• if ∥ F =⇒B S1 =⇒B · · · =⇒B Sn ≠⇒B then

1 Sn = fail-state if and only if F is unsatisfiable

2 Sn = M ∥ F′ only if F is satisfiable and M ⊨ F

SS 2024 Constraint Solving lecture 2 1. Summary of Previous Lecture 6/27

Outline

1. Summary of Previous Lecture

2. Conflict Graphs

3. NP-Completeness of SAT

4. SAT Reductions

5. Further Reading

SS 2024 Constraint Solving lecture 2 2. Conflict Graphs 7/27

Problem: How to obtain backjump clauses

• backjump M
d
l N ∥ F,C =⇒ M l′ ∥ F,C

if M
d
l N ⊨ ¬C and . . . (some more conditions; involves finding a backjump clause)

• situation: complicated looking rule; unclear how to obtain backjump clause
• solution

• store information of applied rules (unit propagate, decide, . . .) in conflict graph
• cuts in conflict graphs separate conflict node from current decision literal and literals at

earlier decision levels
• cuts that correspond to unique implication points (UIPs) generate backjump clauses

SS 2024 Constraint Solving lecture 2 2. Conflict Graphs 8/27

click to access overlay version of slides for example and explanation of conflict graph, unique
implication point, etc.

SS 2024 Constraint Solving lecture 2 2. Conflict Graphs 9/27

http://cl-informatik.uibk.ac.at/teaching/ss24/cs/slides/02.pdf#page=13

Remarks

• computed clauses are clauses that correspond to cut in conflict graph, a set of edges that
separate conflict node from current decision literal and literals at earlier decision levels

• clause is computed by negating all literals that are a source of an edge in the cut

• clauses corresponding to UIPs are backjump clauses

• UIPs always exist (last decision literal)

• backjumping with respect to last UIP amounts to backtracking

• when applying backjump rule, backjump clause is used to update conflict graph

• most SAT solvers use backjump clause corresponding to 1st UIP

Observation

adding backjump clauses to clause database (learning) helps to prune search space

• learn M ∥ F =⇒ M ∥ F,C
if F ⊨ C and each atom of C occurs in F or in M

SS 2024 Constraint Solving lecture 2 2. Conflict Graphs 10/27

Observation

restarts are useful to avoid wasting too much time in parts of search space without satisfying
assignments

• restart M ∥ F =⇒ ∥ F

Final Remarks

• restarts do not compromise completeness if number of steps between consecutive restarts
strictly increases

• modern SAT solvers additionally incorporate

• heuristics for selecting next decision literal

• special data structures that allow for efficient unit propagation

SS 2024 Constraint Solving lecture 2 2. Conflict Graphs 11/27

Outline

1. Summary of Previous Lecture

2. Conflict Graphs

3. NP-Completeness of SAT

4. SAT Reductions

5. Further Reading

SS 2024 Constraint Solving lecture 2 3. NP-Completeness of SAT 12/27

Definitions

• P is class of decision problems that can be solved in polynomial time by deterministic Turing
machine

• NP is class of decision problems that can be solved in polynomial time by non-deterministic
Turing machine

• decision problem A is NP-hard if every NP problem B is polynomial-time reducible to A

• decision problem A in NP-complete if it is NP-hard and in NP

Famous Open Problem

P = NP ?

SS 2024 Constraint Solving lecture 2 3. NP-Completeness of SAT 13/27

Definition

non-deterministic TM (NTM) is 8-tuple M = (Q,Σ, Γ,⊢, ,∆, s, F) with

1 Q: finite set of states

2 Σ: input alphabet

3 Γ ⊇ Σ: tape alphabet
⊢ a b c a b a

q

4 ⊢ ∈ Γ− Σ: left endmarker

5 ∈ Γ− Σ: blank symbol

6 ∆: Q× Γ → 2Q×Γ×{L,R}: transition function

7 s ∈ Q: start state

8 F ⊆ Q: final states

such that
∀p ∈ F ∀ a ∈ Γ: ∆(p, a) = ∅
∀p ∈ Q ∀ (q,b,d) ∈ ∆(p,⊢) : b = ⊢ and d = R

SS 2024 Constraint Solving lecture 2 3. NP-Completeness of SAT 14/27

Definitions

• configuration: element of Q× {y ω | y ∈ Γ∗} × N

• start configuration on input x ∈ Σ∗: (s, ⊢x ω,0)

• next configuration relation is binary relation 1−→
M

defined as:

(p, z,n) 1−→
M

{
(q, z′,n− 1) if (q,b, L) ∈ ∆(p, zn)

(q, z′,n+ 1) if (q,b,R) ∈ ∆(p, zn)

with

• zn: n-th symbol of z

• z′: string obtained from z by substituting b for zn (at position n)

• n−→
M

= (1−→
M

)n ∀n ⩾ 0 ∗−→
M

=
⋃
n⩾0

n−→
M

• x ∈ Σ∗ is accepted by M if (s, ⊢x ω, 0) ∗−→
M

(q, y,n) for some q ∈ F, y, n

SS 2024 Constraint Solving lecture 2 3. NP-Completeness of SAT 15/27

Theorem (Cook-Levin)

SAT is NP-complete

Lemma

SAT is in NP

Proof Sketch

• use non-deterministic ability of NTM to guess truth assignment

• verify in polynomial time whether it is satisfying assignment

SS 2024 Constraint Solving lecture 2 3. NP-Completeness of SAT 16/27

Theorem

SAT is NP-hard

Proof

• let A be arbitrary decision problem in NP

• task: define polynomial-time reduction from A to SAT

• (language encoding of) A is accepted by NTM M = (Q,Σ, Γ,⊢, ,∆, s, F) that runs in
polynomial time

• ∃ polynomial p(n) such that M halts in at most p(n) steps for any input x of length n

• given input x, we construct CNF formula φM(x) of polynomial size such that

M accepts x ⇐⇒ φM(x) is satisfiable

• assumption (WLOG): α 1−→
M

α for every halting configuration α

SS 2024 Constraint Solving lecture 2 3. NP-Completeness of SAT 17/27

Proof (cont’d)

• every computation of M on x can be recorded in (p(n) + 1)× (p(n) + 1) sized table
containing successive configurations

0 1 2 p(n)

s ⊢ a1 · · · an · · · start configuration

⊢ q b second configuration

p(n) + 1 - th configuration

window

• properties of accepting table can be encoded in formula φM(x)

SS 2024 Constraint Solving lecture 2 3. NP-Completeness of SAT 18/27

Proof (cont’d)

• variables ⟨ i, j, a⟩ for all 0 ⩽ i, j ⩽ p(n) and a ∈ Γ ∪ Q

⟨ i, j, a⟩ is true if cell at position (i, j) contains symbol a

• φM(x) = φcell ∧ φstart ∧ φmove ∧ φaccept

• φcell ∧
i, j

∨
a

⟨ i, j, a⟩ ∧
∧
a ̸= b

(
¬⟨ i, j, a⟩ ∨ ¬⟨ i, j,b⟩

)
• φstart for input x = a1 · · · an

⟨0,0, s⟩ ∧ ⟨0,1,⊢⟩ ∧ ⟨0,2, a1⟩ ∧ · · · ∧ ⟨0,n+ 1, an⟩ ∧ ⟨0,n+ 2, ⟩ ∧ · · · ∧ ⟨0,p(n), ⟩

• φaccept ∨
i, j

∨
q∈ F

⟨ i, j,q⟩

SS 2024 Constraint Solving lecture 2 3. NP-Completeness of SAT 19/27

Proof (cont’d)

• φmove
∧

0⩽ i< p(n)

∧
0⩽ j< p(n)−1

φi, j
window

• φi, j
window ∨

a1 a2 a3

b1 b2 b3

is legal window

⟨ i, j, a1⟩ ∧ ⟨ i, j+ 1, a2⟩ ∧ ⟨ i, j+ 2, a3⟩ ∧
⟨ i+ 1, j,b1⟩ ∧ ⟨ i+ 1, j+ 1,b2⟩ ∧ ⟨ i+ 1, j+ 2,b3⟩

Example

suppose ∆(p, a) = {(q,b,R)} and ∆(p,b) = {(p, c, L), (q, a,R)}

a p b

p a c

b a b

b c b

a a p

a a b

a b a

a b a

p b a

c b a

b a b

c a b

b q b

q b q

SS 2024 Constraint Solving lecture 2 3. NP-Completeness of SAT 20/27

Outline

1. Summary of Previous Lecture

2. Conflict Graphs

3. NP-Completeness of SAT

4. SAT Reductions

5. Further Reading

SS 2024 Constraint Solving lecture 2 4. SAT Reductions 21/27

SAT Variations

• 3SAT: every clause has (at most) 3 literals

• 2SAT: every clause has (at most) 2 literals

Theorem

• 3SAT is NP-complete

• 2SAT is solvable in polynomial time

Planar 3SAT

instance is 3SAT formula φ whose incidence graph is planar

• φ with clauses C = {C1, . . . , Cm} over variables V = {x1, . . . , xn}
• bipartite graph (C ∪ V, E) with E containing edge Ci − xj if and only if Ci contains xj or ¬xj

SS 2024 Constraint Solving lecture 2 4. SAT Reductions 22/27

Example

CNF φ = {{x1, x2, x3}︸ ︷︷ ︸
C1

, {x2,¬x3, x4}︸ ︷︷ ︸
C2

, {¬x1,¬x3,¬x4}︸ ︷︷ ︸
C3

}

x1 x2 x3 x4

C1

C2

C3

planar 3SAT instance

Theorem (Lichtenstein 1982)

planar 3SAT is NP-complete

Remark

planar 3SAT is often used in reductions to show NP-hardness of particular problems

SS 2024 Constraint Solving lecture 2 4. SAT Reductions 23/27

Main Idea (Crossover Gadget)

a

b

=⇒ a

b

α

γ

d

β

δ

c

6 new variables

17 new clauses

a ∨ γ ∨ ¬d

claim: c = a and d = b

a b α β γ δ c d β ∨ δ
0 0 1 0 0 0 0

0 1

1 0 0 1 0 0 1 0 1

1 1

SS 2024 Constraint Solving lecture 2 4. SAT Reductions 24/27

Outline

1. Summary of Previous Lecture

2. Conflict Graphs

3. NP-Completeness of SAT

4. SAT Reductions

5. Further Reading

SS 2024 Constraint Solving lecture 2 5. Further Reading 25/27

Kröning and Strichmann

• Section 2.2

Further Reading

• Stephen A. Cook
The Complexity of Theorem-Proving Procedures
Proc. 3rd ACM SToC, pp. 151 – 158, 1971

Further Viewing

• Erik Demaine
Algorithmic Lower Bounds: Fun with Hardness Proofs
MIT OpenCourseWare, 2014

SS 2024 Constraint Solving lecture 2 5. Further Reading 26/27

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://www.youtube.com/watch?v=KU8I8LjnQgE
https://www.youtube.com/watch?v=KU8I8LjnQgE
https://www.youtube.com/watch?v=KU8I8LjnQgE

Important Concepts

• 2SAT

• 3SAT

• conflict graph

• crossover gadget

• cut

• incidence graph

• learning

• NP

• NP-hard

• NP-complete

• P

• planar 3SAT

• reduction

• restart

• unique implication point

SS 2024 Constraint Solving lecture 2 5. Further Reading 27/27

	lecture 2
	Summary of Previous Lecture
	Overview

	Conflict Graphs
	NP-Completeness of SAT
	SAT Reductions
	Further Reading

