

Constraint Solving

René Thiemann and Fabian Mitterwallner
based on a previous course by Aart Middeldorp

Outline

1. Summary of Previous Lecture
2. Conflict Graphs
3. NP-Completeness of SAT
4. SAT Reductions
5. Further Reading

Theorem

propositional formula φ is valid $\Longleftrightarrow \neg \varphi$ is unsatisfiable

Definitions

- literal is atom p or negation $\neg p$ of atom
- clause is disjunction of literals
- conjunctive normal form (CNF) is conjunction of clauses
- disjunctive normal form (DNF) is disjunction of conjunctions of literals

Theorem

\forall formula $\varphi \exists$ CNF $\psi \exists$ DNF χ such that $\varphi \equiv \psi \equiv \chi$

Remark

Tseitin's transformation is linear-time translation to equisatisfiable CNF

Definition (Abstract DPLL)

- states $M \| F$ consist of list M of (possibly annotated) non-complementary literals and CNF F
- transition rules
- unit propagate

$$
M\|F, C \vee I \quad \Longrightarrow \quad M I\| F, C \vee I
$$ if $M \vDash \neg C$ and I is undefined in M

- pure literal $M\|F \Longrightarrow M I\| F$
if I occurs in F and I^{C} does not occur in F and I is undefined in M
- decide

$$
M\|F \quad \Longrightarrow \quad M \stackrel{d}{I}\| F
$$

if I or I^{C} occurs in F and I is undefined in M

Definition (Abstract DPLL, cont'd)

- fail

$$
M \| F, C \quad \Longrightarrow \quad \text { fail-state }
$$

if $M \vDash \neg C$ and M contains no decision literals

- backtrack

$$
M \stackrel{d}{I} N\left\|F, C \quad \Longrightarrow \quad M I^{c}\right\| F, C
$$

if $M \stackrel{d}{\|} N \vDash \neg C$ and N contains no decision literals

- backjump

$$
M \stackrel{d}{I} N\left\|F, C \quad \Longrightarrow \quad M I^{\prime}\right\| F, C
$$

if $M I N \vDash \neg C$ and \exists clause $C^{\prime} \vee I^{\prime}$ such that

- $F, C \vDash C^{\prime} \vee I^{\prime} \quad$ backjump clause
- $M \vDash \neg C^{\prime}$
- I^{\prime} is undefined in M
- I^{\prime} or $I^{\prime C}$ occurs in F or in $M \stackrel{d}{I} N$

Definition

basic DPLL \mathcal{B} consists of transition rules unit propagate, decide, fail, backjump

Theorem

- there are no infinite derivations $\| F \Longrightarrow_{\mathcal{B}} S_{1} \Longrightarrow_{\mathcal{B}} S_{2} \Longrightarrow_{\mathcal{B}} \cdots$
- if $\| F \Longrightarrow_{\mathcal{B}} S_{1} \Longrightarrow_{\mathcal{B}} \cdots \Longrightarrow_{\mathcal{B}} S_{n} \not \Longrightarrow_{\mathcal{B}}$ then
(1) $S_{n}=$ fail-state if and only if F is unsatisfiable
(2) $S_{n}=M \| F^{\prime} \quad$ only if F is satisfiable and $M \vDash F$

Outline

1. Summary of Previous Lecture
2. Conflict Graphs
3. NP-Completeness of SAT
4. SAT Reductions
5. Further Reading

Problem: How to obtain backjump clauses

- backjump $M I N\left\|F, C \quad \Longrightarrow \quad M I^{\prime}\right\| F, C$
if $M \stackrel{d}{I} N \vDash \neg C$ and... (some more conditions; involves finding a backjump clause)
- situation: complicated looking rule; unclear how to obtain backjump clause
- solution
- store information of applied rules (unit propagate, decide, ...) in conflict graph
- cuts in conflict graphs separate conflict node from current decision literal and literals at earlier decision levels
- cuts that correspond to unique implication points (UIPs) generate backjump clauses
click to access overlay version of slides for example and explanation of conflict graph, unique implication point, etc.

Remarks

- computed clauses are clauses that correspond to cut in conflict graph, a set of edges that separate conflict node from current decision literal and literals at earlier decision levels
- clause is computed by negating all literals that are a source of an edge in the cut
- clauses corresponding to UIPs are backjump clauses
- UIPs always exist (last decision literal)
- backjumping with respect to last UIP amounts to backtracking
- when applying backjump rule, backjump clause is used to update conflict graph
- most SAT solvers use backjump clause corresponding to 1st UIP

Observation

adding backjump clauses to clause database (learning) helps to prune search space

- learn $M\|F \quad \Longrightarrow M\| F, C$
if $F \vDash C$ and each atom of C occurs in F or in M

SS 2024
Constraint Solving

Observation

restarts are useful to avoid wasting too much time in parts of search space without satisfying assignments

- restart

$$
M\|F \quad \Longrightarrow \quad\| F
$$

Final Remarks

- restarts do not compromise completeness if number of steps between consecutive restarts strictly increases
- modern SAT solvers additionally incorporate
- heuristics for selecting next decision literal
- special data structures that allow for efficient unit propagation

Outline

1. Summary of Previous Lecture
2. Conflict Graphs
3. NP-Completeness of SAT
4. SAT Reductions
5. Further Reading

Definitions

- P is class of decision problems that can be solved in polynomial time by deterministic Turing machine
- NP is class of decision problems that can be solved in polynomial time by non-deterministic Turing machine
- decision problem A is NP-hard if every NP problem B is polynomial-time reducible to A
- decision problem A in NP-complete if it is NP-hard and in NP

Famous Open Problem

$P=N P$?

Definition

non-deterministic TM (NTM) is 8-tuple $M=(Q, \Sigma, \Gamma, \vdash, \sqcup, \Delta, s, F)$ with
(1) $Q: \quad$ finite set of states
(2) input alphabet
(3) $\Gamma \supseteq \Sigma: \quad$ tape alphabet
(4) $\vdash \in \Gamma-\Sigma: \quad$ left endmarker
(5) $-\in \Gamma-\Sigma: \quad$ blank symbol

(6) $\Delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times\{L, R\}}$: transition function
(7) $s \in Q: \quad$ start state
(8) $F \subseteq Q: \quad$ final states
such that

$$
\begin{array}{ll}
\forall p \in F \quad \forall a \in \Gamma: \quad \Delta(p, a)=\varnothing \\
\forall p \in Q \quad \forall(q, b, d) \in \Delta(p, \vdash): \quad b=\vdash \text { and } d=R
\end{array}
$$

Definitions

- configuration: element of $Q \times\left\{y \iota^{\omega} \mid y \in \Gamma^{*}\right\} \times \mathbb{N}$
- start configuration on input $x \in \Sigma^{*}:\left(s, \vdash x \iota^{\omega}, 0\right)$
- next configuration relation is binary relation $\xrightarrow[M]{ }$ defined as:

$$
(p, z, n) \xrightarrow[M]{\stackrel{1}{\rightarrow}} \begin{cases}\left(q, z^{\prime}, n-1\right) & \text { if }(q, b, L) \in \Delta\left(p, z_{n}\right) \\ \left(q, z^{\prime}, n+1\right) & \text { if }(q, b, R) \in \Delta\left(p, z_{n}\right)\end{cases}
$$

with

- z_{n} : n-th symbol of z
- z^{\prime} : string obtained from z by substituting b for z_{n} (at position n)
- $\xrightarrow[M]{n}=(\underset{M}{\stackrel{1}{M}})^{n} \quad \forall n \geqslant 0$

$$
\xrightarrow[M]{*}=\bigcup_{n \geqslant 0} \xrightarrow[M]{n}
$$

- $x \in \Sigma^{*}$ is accepted by M if $\left(s, \vdash x \iota^{\omega}, 0\right) \xrightarrow[M]{\stackrel{*}{\longrightarrow}}(q, y, n)$ for some $q \in F, y, n$

Theorem (Cook-Levin)

SAT is NP-complete

Lemma

SAT is in NP

Proof Sketch

- use non-deterministic ability of NTM to guess truth assignment
- verify in polynomial time whether it is satisfying assignment

Theorem

SAT is NP-hard

Proof

- let A be arbitrary decision problem in NP
- task: define polynomial-time reduction from A to SAT
- (language encoding of) A is accepted by NTM $M=(Q, \Sigma, \Gamma, \vdash\lrcorner,, \Delta, s, F)$ that runs in polynomial time
- \exists polynomial $p(n)$ such that M halts in at most $p(n)$ steps for any input x of length n
- given input x, we construct CNF formula $\varphi_{M}(x)$ of polynomial size such that

$$
M \text { accepts } x \quad \Longleftrightarrow \varphi_{M}(x) \text { is satisfiable }
$$

- assumption (WLOG): $\alpha \xrightarrow[M]{\frac{1}{M}} \alpha$ for every halting configuration α

Proof (cont'd)

- every computation of M on x can be recorded in $(p(n)+1) \times(p(n)+1)$ sized table containing successive configurations

start configuration second configuration
window
$p(n)+1$-th configuration
- properties of accepting table can be encoded in formula $\varphi_{M}(x)$

Proof (cont'd)

- variables $\langle i, j, a\rangle$ for all $0 \leqslant i, j \leqslant p(n)$ and $a \in \Gamma \cup Q$
$\langle i, j, a\rangle$ is true if cell at position (i, j) contains symbol a
- $\varphi_{M}(x)=\varphi_{\text {cell }} \wedge \varphi_{\text {start }} \wedge \varphi_{\text {move }} \wedge \varphi_{\text {accept }}$
- $\varphi_{\text {cell }}$

$$
\bigwedge_{i, j}\left[\bigvee_{a}\langle i, j, a\rangle \wedge \bigwedge_{a \neq b}(\neg\langle i, j, a\rangle \vee \neg\langle i, j, b\rangle)\right]
$$

- $\varphi_{\text {start }}$ for input $x=a_{1} \cdots a_{n}$

$$
\langle 0,0, s\rangle \wedge\langle 0,1, \vdash\rangle \wedge\left\langle 0,2, a_{1}\right\rangle \wedge \cdots \wedge\left\langle 0, n+1, a_{n}\right\rangle \wedge\langle 0, n+2, ь\rangle \wedge \cdots \wedge\langle 0, p(n), ь\rangle
$$

- φ accept

$$
\bigvee \bigvee\langle i, j, q\rangle
$$

$$
i, j q \in F
$$

Proof (cont'd)

$\varphi_{\text {move }}$

$$
\bigwedge_{0 \leqslant i<p(n)} \bigwedge_{0 \leqslant i<p(n)-1} \varphi_{\text {window }}^{i, j}
$$

- $\varphi_{\text {window }}^{i, j}$

$$
\begin{array}{cl}
\bigvee & \left\langle i, j, a_{1}\right\rangle \wedge\left\langle i, j+1, a_{2}\right\rangle \wedge\left\langle i, j+2, a_{3}\right\rangle \wedge \\
a_{1} a_{2} a_{3} & \left\langle i+1, j, b_{1}\right\rangle \wedge\left\langle i+1, j+1, b_{2}\right\rangle \wedge\left\langle i+1, j+2, b_{3}\right\rangle
\end{array}
$$

is legal window

Example

suppose $\Delta(p, a)=\{(q, b, R)\}$ and $\Delta(p, b)=\{(p, c, L),(q, a, R)\}$

a	p	b
p	a	c

b	a	b
b	c	b

a	a	p
a	a	b

a	b	a
a	b	a

a	b	a
c	b	a

b	a	b
c	a	b

b	a	b
a	b	a

Outline

1. Summary of Previous Lecture
2. Conflict Graphs
3. NP-Completeness of SAT
4. SAT Reductions
5. Further Reading

SAT Variations

- 3SAT: every clause has (at most) 3 literals
- 2SAT: every clause has (at most) 2 literals

Theorem

- 3SAT is NP-complete
- 2SAT is solvable in polynomial time

Planar 3SAT

instance is 3SAT formula φ whose incidence graph is planar

- φ with clauses $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ over variables $\mathcal{V}=\left\{x_{1}, \ldots, x_{n}\right\}$
- bipartite graph $(\mathcal{C} \cup \mathcal{V}, \mathcal{E})$ with \mathcal{E} containing edge $C_{i}-x_{j}$ if and only if C_{i} contains x_{j} or $\neg x_{j}$

Example

$\operatorname{CNF} \varphi=\{\underbrace{\left\{x_{1}, x_{2}, x_{3}\right\}}_{C_{1}}, \underbrace{\left\{x_{2}, \neg x_{3}, x_{4}\right\}}_{C_{2}}, \underbrace{\left\{\neg x_{1}, \neg x_{3}, \neg x_{4}\right\}}_{C_{3}}\}$
planar 3SAT instance

Theorem (Lichtenstein 1982)

planar 3SAT is NP-complete

Remark

planar 3SAT is often used in reductions to show NP-hardness of particular problems

Main Idea (Crossover Gadget)

Outline

1. Summary of Previous Lecture
2. Conflict Graphs
3. NP-Completeness of SAT
4. SAT Reductions

5. Further Reading

Kröning and Strichmann

- Section 2.2

Further Reading

- Stephen A. Cook

The Complexity of Theorem-Proving Procedures
Proc. 3rd ACM SToC, pp. 151-158, 1971

Further Viewing

- Erik Demaine

Algorithmic Lower Bounds: Fun with Hardness Proofs
MIT OpenCourseWare, 2014

Important Concepts

- 2SAT
- 3SAT
- conflict graph
- crossover gadget
- cut
- incidence graph
- learning
- NP
- NP-hard
- NP-complete
- P
- planar 3SAT
- reduction
- restart
- unique implication point

