
SS 2024 lecture 4

Constraint Solving

René Thiemann and Fabian Mitterwallner

based on a previous course by Aart Middeldorp

Motivation for extending SAT to first-order theories

predicates instead of propositional variables

Examples

• equalities and disequalities over the reals

(x1 = x2 ∨ x1 = x3) ∧ (x1 = x2 ∨ x1 = x4) ∧ x1 ̸= x2 ∧ x1 ̸= x3 ∧ x1 ̸= x4

• boolean combination of linear-arithmethic predicates

(x1 + 2x3 < 5) ∨ ¬(x3 ⩽ 1) ∧ (x1 ⩾ x3)

• formula over arrays
(i = j ∧ a[j] = 1) ∧ ¬(a[i] = 1)

SS 2024 Constraint Solving lecture 4 Motivation 2/32

Outline

1. First-Order Logic – Review

2. First-Order Theories

3. SMT

4. SMT Solving

5. DPLL(T)

6. Further Reading

SS 2024 Constraint Solving lecture 4 1. First-Order Logic – Review 3/32

Definitions (Syntax)

• terms are built from function symbols and variables according to following BNF grammar:

t ::= x | f(t, . . . , t)

• formulas are built from predicate symbols, terms, connectives, and quantifiers according to
following BNF grammar:

φ ::= P | P(t, . . . , t) | ⊥ | ⊤ | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | (∀x. φ) | (∃x. φ)

• notational conventions:

• binding precedence ¬ > ∧ > ∨ > → > ∀,∃
• omit outer parentheses, compress quantifiers: ∀x y. φ instead of ∀x.∀y.φ
• →, ∧, ∨ are right-associative

• constants c are written without parentheses: c instead of c()

• sentence is formula without free variables

SS 2024 Constraint Solving lecture 4 1. First-Order Logic – Review 4/32

http://cl-informatik.uibk.ac.at/teaching/ss24/cs
http://cl-informatik.uibk.ac.at/~thiemann
http://cl-informatik.uibk.ac.at/members/fmitterwallner/

Definitions (Semantics)

• model M for pair (F ,P) with function (predicate) symbols F (P) consists of

1 non-empty set A

2 function fM : An → A for every n-ary function symbol f ∈ F
3 subset PM ⊆ An for every n-ary predicate symbol P ∈ P

• environment for model M = (A, {fM}f ∈F , {PM}P∈P) is mapping l from variables to A

• value tM, l of term t in model M relative to environment l is defined inductively:

tM, l =

{
l(t) if t is variable

fM(tM, l
1 , . . . , tM, l

n) if t = f(t1, . . . , tn)

• given environment l, variable x and element a ∈ A, environment l[x 7→ a] is defined as

(l[x 7→ a])(y) =

{
a if y = x

l(y) if y ̸= x

SS 2024 Constraint Solving lecture 4 1. First-Order Logic – Review 5/32

Definition (Semantics)

satisfaction relation M ⊨l φ is defined by induction on structure of φ:

M ⊨l ⊤

M ⊭l ⊥

M ⊨l φ ⇐⇒

(tM, l
1 , . . . , tM, l

n) ∈ PM if φ = P(t1, . . . , tn)

M ⊭l ψ if φ = ¬ψ
M ⊨l ψ1 and M ⊨l ψ2 if φ = (ψ1 ∧ ψ2)

M ⊨l ψ1 or M ⊨l ψ2 if φ = (ψ1 ∨ ψ2)

M ⊭l ψ1 or M ⊨l ψ2 if φ = (ψ1 → ψ2)

M ⊨l [x 7→a] ψ for all a ∈ A if φ = ∀x. ψ
M ⊨l [x 7→a] ψ for some a ∈ A if φ = ∃x. ψ

Notation

M ⊭l ψ denotes "not M ⊨l ψ"

SS 2024 Constraint Solving lecture 4 1. First-Order Logic – Review 6/32

Definitions

formula ψ and (possibly infinite) set of formulas Γ

• ψ is satisfiable if M ⊨l ψ for some model M and environment l

• Γ is satisfiable (consistent) if M ⊨l φ for all φ ∈ Γ, for some model M and environment l

• ψ is valid if M ⊨l ψ for all (appropriate) models M and environments l

• Γ ⊨ ψ (semantic entailment) if M ⊨l ψ whenever M ⊨l φ for all φ ∈ Γ,

for all (appropriate) models M and environments l

SS 2024 Constraint Solving lecture 4 1. First-Order Logic – Review 7/32

Outline

1. First-Order Logic – Review

2. First-Order Theories

3. SMT

4. SMT Solving

5. DPLL(T)

6. Further Reading

SS 2024 Constraint Solving lecture 4 2. First-Order Theories 8/32

First-Order Theories

formalize particular structures to enable reasoning about them

Definition

first-order theory T = (Σ,A) consists of

• signature Σ specifying function and predicate symbols

• axioms A: sentences involving only function and predicate symbols from Σ

Remark

axioms A provide meaning to symbols of Σ

SS 2024 Constraint Solving lecture 4 2. First-Order Theories 9/32

Example (Addition on Natural Numbers: Presburger Arithmetic)

• signature: constant 0 unary function symbol s binary symbols = +

• axioms (in addition to axioms for equality)

• ∀x. s(x) ̸= 0

• ∀x y. s(x) = s(y) → x = y

• ∀x. x+ 0 = x

• ∀x y. x+ s(y) = s(x+ y)

• induction

ψ(0) ∧ (∀x. ψ(x) → ψ(s(x))) → ∀y. ψ(y)

for every formula ψ(x) with single free variable x

Remark

> can be encoded: x > y ⇐⇒ ∃z. z ̸= 0 ∧ x = y+ z

SS 2024 Constraint Solving lecture 4 2. First-Order Theories 10/32

Example (Addition and Multiplication: Peano Arithmetic)

• signature: constant 0 unary function symbol s binary symbols = + ×
• axioms (PA)

• ∀x. s(x) ̸= 0

• ∀x y. s(x) = s(y) → x = y

• ∀x. x+ 0 = x

• ∀x y. x+ s(y) = s(x+ y)

• induction

ψ(0) ∧ (∀x. ψ(x) → ψ(s(x))) → ∀y. ψ(y)

for every formula ψ(x) with single free variable x

• ∀x. x× 0 = 0

• ∀x y. x× s(y) = (x× y) + x

SS 2024 Constraint Solving lecture 4 2. First-Order Theories 11/32

Definition

sentence ψ over Σ is valid in first-order theory T = (Σ,A) if M ⊨ ψ for every model M such
that M ⊨ A (notation: T ⊨ ψ)

Definitions

first-order theory T = (Σ,A) is

• consistent (satisfiable) if M ⊨ A for some model M
• complete if T ⊨ ψ or T ⊨ ¬ψ for every sentence ψ over Σ

• decidable if validity problem

instance: sentence ψ over Σ

question: T ⊨ ψ ?

is decidable

SS 2024 Constraint Solving lecture 4 2. First-Order Theories 12/32

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Theorem (Church 1936)

Peano arithmetic is undecidable

Theorem

Presburger and Peano arithmetic are not finitely axiomatizable

Definition

N denotes standard model of arithmetic:

• universe: N
• 0N = 0 sN (x) = x+ 1 +N (x, y) = x+ y ×N (x, y) = x× y (=N= {(x, x) | x ∈ N})

SS 2024 Constraint Solving lecture 4 2. First-Order Theories 13/32

Theorem

N |= PA (so Peano arithmetic is consistent)

Gödel’s Incompleteness Theorem

∃ sentence ψ such that N |= ψ and PA ⊬ ψ

Kurt Gödel

Proof Idea

sentence ψ encodes that ψ itself is unprovable in PA

SS 2024 Constraint Solving lecture 4 2. First-Order Theories 14/32

Outline

1. First-Order Logic – Review

2. First-Order Theories

3. SMT

4. SMT Solving

5. DPLL(T)

6. Further Reading

SS 2024 Constraint Solving lecture 4 3. SMT 15/32

Definition

fragment of theory T = (Σ,A) is syntactically restricted subset of formulas over Σ

• quantifier-free fragment: no quantifiers

• conjunctive fragment: conjunction as only logical connective

Satisfiability Modulo Theories (SMT)

theories are identified with their standard model:

• domain is given explicitly

• interpretation of symbols is in accordance with their common use

• formulas are often restricted to quantifier-free fragment

SS 2024 Constraint Solving lecture 4 3. SMT 16/32

http://plato.stanford.edu/entries/goedel-incompleteness
https://en.wikipedia.org/wiki/Kurt_G%C3%B6del

Example (Binairo)

The objective of the number placement puzzle binairo is to fill a grid with 0’s and 1’s, where
there is an equal number of 0’s and 1’s and no more than two consecutive 0’s or 1’s in each
row and column. Additionally, identical rows and identical columns are forbidden. For instance,
the binairo puzzle on the left has the solution on the right:

0 0 0

1 0

0 1

1

1 0

0

1

0

1

0

1 1 1

2,6 3,6 4,6 5,6 6,6

1,5 2,5 3,5 5,5 6,5

1,4 2,4 3,4 4,4 5,4

1,3 2,3 3,3 4,3 5,3 6,3

1,2 3,2 4,2 5,2 6,2

2,1 4,1 5,1

1 0 1 0 1 0

1 1 0 1 0 0

0 0 1 0 1 1

0 1 0 0 1 1

1 0 1 1 0 0

0 1 0 1 0 1

SS 2024 Constraint Solving lecture 4 3. SMT 17/32

Remark

• SAT CNF encoding is tedious

SMT Encoding (Linear Integer Arithmetic)

6∧
i= 1

6∧
j= 1

(
xi, j = 0 ∨ xi, j = 1

)
∧

6∧
i= 1

(6∑
j= 1

xi, j = 3

)
∧

6∧
j= 1

(6∑
i= 1

xi, j = 3

)
∧

4∧
i= 1

6∧
j= 1

(2∑
k= 0

xi+k, j = 1 ∨
2∑

k= 0

xi+k, j = 2

)
∧

6∧
i= 1

4∧
j= 1

(2∑
k= 0

xi, j+k = 1 ∨
2∑

k= 0

xi, j+k = 2

)
∧

5∧
i= 1

6∧
k= i+1

(6∨
j= 1

xi, j ̸= xk, j

)
∧

5∧
j= 1

6∧
k= j+1

(6∨
i= 1

xi, j ̸= xi, k

)
∧

x2,2 = 0 ∧ x4,5 = 0 ∧ x1,1 = 1 ∧ x3,1 = 1 ∧ x6,1 = 1 ∧ x6,4 = 1 ∧ x1,6 = 1

SS 2024 Constraint Solving lecture 4 3. SMT 18/32

SMT-LIB 2 Format Z3

(declare-const x11 Int) ... (declare-const x66 Int)

(assert (or (= x11 0) (= x11 1))) ... (assert (or (= x66 0) (= x66 1)))

(assert (= (+ x11 x12 x13 x14 x15 x16) 3))

...

(assert (= (+ x16 x26 x36 x46 x56 x66) 3))

(assert (or (= (+ x11 x21 x31) 1) (= (+ x11 x21 x31) 2)))

...

(assert (or (= (+ x64 x65 x66) 1) (= (+ x64 x65 x66) 2)))

(assert (or (not (= x11 x21)) (not (= x12 x22)) (not (= x13 x23))

(not (= x14 x24)) (not (= x15 x25)) (not (= x16 x26))))

...

(assert (or (not (= x15 x16)) (not (= x25 x26)) (not (= x35 x36))

(not (= x45 x46)) (not (= x55 x56)) (not (= x65 x66))))

(assert (= x22 0)) (assert (= x45 0)) ... (assert (= x16 0))

(check-sat)

(get-model)

SS 2024 Constraint Solving lecture 4 3. SMT 19/32

Propositional Logic in SMT-LIB 2

• declare-const x Bool creates propositional variable named x

• and or not implies are used in prefix notation

• assert declares that formula must be satisfied

• check-sat issues satisfiability test of conjunction of assertations

• get-model returns satisfying assignment (after satisfiability test)

Links

• Z3

• Z3 bindings for various programming languages

• Z3 bindings for Haskell

• SBV: SMT Based Verification in Haskell

SS 2024 Constraint Solving lecture 4 3. SMT 20/32

https://rise4fun.com/Z3
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3#z3-bindings
https://hackage.haskell.org/package/z3
https://hackage.haskell.org/package/sbv

Outline

1. First-Order Logic – Review

2. First-Order Theories

3. SMT

4. SMT Solving

5. DPLL(T)

6. Further Reading

SS 2024 Constraint Solving lecture 4 4. SMT Solving 21/32

SMT Problem

decide satisfiability of formulas in

propositional logic + domain-specific background theories

Two Approaches

1 eager approach:

translate formula into equisatisfiable propositional formula

2 lazy approach:

combine SAT solver with specialized solvers for background theories

Terminology

theory solver for T (T-solver) is procedure for deciding T-satisfiability of conjunction of
quantifier-free literals

SS 2024 Constraint Solving lecture 4 4. SMT Solving 22/32

SMT Solving: Lazy Approach

φ SAT solver
propositional

skeleton

unsatisfiable

model M
satisfiable

T-solver

satisfiable

explanation C
unsatisfiable

∧

SS 2024 Constraint Solving lecture 4 4. SMT Solving 23/32

Example

formula x = 1

a

∧ (¬(y = 1

b

) ∨ ¬(x+ 2y = 3
c

)) ∧ x+ y = 2
d

is unsatisfiable

• input to SAT solver (propositional skeleton)

a ∧ (¬b ∨ ¬c) ∧ d ∧ (¬a ∨ b ∨ ¬d)
blocking clause

∧ (¬a ∨ ¬b ∨ c)

• SAT solver reports unsatisfiable
a ∧ b ∧ ¬c ∧ d

• input to LIA solver
x = 1 ∧ y = 1 ∧ x+ 2y ̸= 3 ∧ x+ y = 2

• LIA solver reports unsatisfiable

SS 2024 Constraint Solving lecture 4 4. SMT Solving 24/32

Outline

1. First-Order Logic – Review

2. First-Order Theories

3. SMT

4. SMT Solving

5. DPLL(T)

6. Further Reading

SS 2024 Constraint Solving lecture 4 5. DPLL(T) 25/32

most state-of-the-art SMT solvers use DPLL(T)

general framework for lazy SMT solving with theory propagation

Definitions

first-order theory T, formulas F and G, list of literals M

• F is T-satisfiable if F ∧ T is satisfiable

• F ⊨T G if F ∧ ¬G is not T-satisfiable

• F ≡T G if F ⊨T G and G ⊨T F

• M = l1, . . . , lk is T-consistent if l1 ∧ · · · ∧ lk is T-satisfiable

SS 2024 Constraint Solving lecture 4 5. DPLL(T) 26/32

Definition

DPLL(T) consists of DPLL rules unit propagate, decide, fail, restart and

• T-backjump M
d
l N ∥ F,C =⇒ M l′ ∥ F,C

if M
d
l N ⊨ ¬C and ∃ clause C′ ∨ l′ such that

• F,C ⊨T C′ ∨ l′ and M ⊨ ¬C′

• l′ is undefined in M and l′ or l′c occurs in F or in M
d
l N

• T-learn M ∥ F =⇒ M ∥ F,C
if F ⊨T C and all atoms of C occur in M or F

• T-forget M ∥ F,C =⇒ M ∥ F
if F ⊨T C

• T-propagate M ∥ F =⇒ M l ∥ F
if M ⊨T l, l is undefined in M, and l or lc occurs in F

SS 2024 Constraint Solving lecture 4 5. DPLL(T) 27/32

Example

(EUF) formula g(a) = c

1

∧ (¬(f(g(a)) = f(c)

2

) ∨ g(a) = d

3

) ∧ ¬(c = d

4

)

∥ 1, ¬2 ∨ 3, ¬4

=⇒ 1 ∥ 1, ¬2 ∨ 3, ¬4 unit propagate

=⇒ 1 ¬4 ∥ 1, ¬2 ∨ 3, ¬4 unit propagate

=⇒ 1 ¬4 ¬
d
2 ∥ 1, ¬2 ∨ 3, ¬4 decide

=⇒ 1 ¬4 ¬
d
2 ∥ 1, ¬2 ∨ 3, ¬4, ¬1 ∨ 2 ∨ 4 T-learn

=⇒ 1 ¬4 2 ∥ 1, ¬2 ∨ 3, ¬4, ¬1 ∨ 2 ∨ 4 T-backjump

=⇒ 1 ¬4 2 3 ∥ 1, ¬2 ∨ 3, ¬4, ¬1 ∨ 2 ∨ 4 unit propagate

=⇒ 1 ¬4 2 3 ∥ 1, ¬2 ∨ 3, ¬4, ¬1 ∨ 2 ∨ 4, ¬1 ∨ ¬2 ∨ ¬3 ∨ 4 T-learn

=⇒ fail-state fail

SS 2024 Constraint Solving lecture 4 5. DPLL(T) 28/32

Remark

lazy SMT approach is modeled in DPLL(T) as follows:

if state M ∥ F is reached such that unit propagate, decide, fail, T-backjump are not applicable

check T-consistency of M with T-solver

1 if M is T-consistent then F is T-satisfiable

2 if M is not T-consistent then F ⊨T ¬(l1 ∧ · · · ∧ lk) for some literals l1, . . . , lk in M

add blocking clause ¬l1 ∨ · · · ∨ ¬lk by T-learn and apply restart

Improvements

1 apply fail or T-backjump after T-learn (instead of restart)

2 check T-consistency of M or apply T-propagate before decide

3 find small unsatisfiable cores to minimize k in blocking clauses

SS 2024 Constraint Solving lecture 4 5. DPLL(T) 29/32

Outline

1. First-Order Logic – Review

2. First-Order Theories

3. SMT

4. SMT Solving

5. DPLL(T)

6. Further Reading

SS 2024 Constraint Solving lecture 4 6. Further Reading 30/32

Kröning and Strichmann

• Section 1.4

• Chapter 3

Further Reading

• Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli
Solving SAT and SAT Modulo Theories: From an Abstract Davis–Putnam–Logemann–Loveland
Procedure to DPLL(T)
Journal of the ACM 53(6), pp. 937 – 977, 2006

SS 2024 Constraint Solving lecture 4 6. Further Reading 31/32

Important Concepts

• ≡T

• ⊨T

• blocking clause

• complete theory

• conjunctive fragment

• consistent theory

• decidable theory

• DPLL(T)

• first-order formula

• fragment

• model

• Peano arithmetic

• propositional skeleton

• quantifier-free fragment

• sentence

• standard model

• T-backjump

• T-consistency

• T-learn

• T-propagate

• T-satisfiability

• T-solver

SS 2024 Constraint Solving lecture 4 6. Further Reading 32/32

https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859

	lecture 4
	Motivation
	First-Order Logic – Review
	First-Order Theories
	SMT
	SMT Solving
	DPLL(T)
	Further Reading

