innsbruck

Constraint Solving

René Thiemann and Fabian Mitterwallner
based on a previous course by Aart Middeldorp

Outline

1. First-Order Logic - Review

2. First-Order Theories
3. SMT
4. SMT Solving
5. $\operatorname{DPLL}(T)$
6. Further Reading
predicates instead of propositional variables

Examples

- equalities and disequalities over the reals

$$
\left(x_{1}=x_{2} \vee x_{1}=x_{3}\right) \wedge\left(x_{1}=x_{2} \vee x_{1}=x_{4}\right) \wedge x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge x_{1} \neq x_{4}
$$

- boolean combination of linear-arithmethic predicates

$$
\left(x_{1}+2 x_{3}<5\right) \vee \neg\left(x_{3} \leqslant 1\right) \wedge\left(x_{1} \geqslant x_{3}\right)
$$

- formula over arrays

$$
(i=j \wedge a[j]=1) \wedge \neg(a[i]=1)
$$

Heninevisitat
innsbruck SS 2024 Constraint Solving lecture 4 Motivation $\quad 2 / 32$

Definitions (Syntax)

- terms are built from function symbols and variables according to following BNF grammar:

$$
t::=x \mid f(t, \ldots, t)
$$

- formulas are built from predicate symbols, terms, connectives, and quantifiers according to following BNF grammar:

$$
\varphi::=P|P(t, \ldots, t)| \perp|\top|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi)|(\forall x . \varphi) \mid(\exists x . \varphi)
$$

- notational conventions:
- binding precedence
- $\rightarrow, \wedge, \vee$ are right-associative
- constants c are written without parentheses: c instead of $c()$
- sentence is formula without free variables

Definitions (Semantics)

- model \mathcal{M} for pair $(\mathcal{F}, \mathcal{P})$ with function (predicate) symbols $\mathcal{F}(\mathcal{P})$ consists of
(1) non-empty set A
(2) function $f^{\mathcal{M}}: A^{n} \rightarrow A$ for every n-ary function symbol $f \in \mathcal{F}$
(3) subset $P^{\mathcal{M}} \subseteq A^{n}$
for every n-ary predicate symbol $P \in \mathcal{P}$
- environment for model $\mathcal{M}=\left(A,\left\{f^{\mathcal{M}}\right\}_{f \in \mathcal{F}},\left\{P^{\mathcal{M}}\right\}_{P \in \mathcal{P}}\right)$ is mapping / from variables to A
- value $t^{\mathcal{M}, I}$ of term t in model \mathcal{M} relative to environment $/$ is defined inductively:

$$
t^{\mathcal{M}, I}= \begin{cases}I(t) & \text { if } t \text { is variable } \\ f^{\mathcal{M}}\left(t_{1}^{\mathcal{M}, I}, \ldots, t_{n}^{\mathcal{M}, I}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

- given environment I, variable x and element $a \in A$, environment $I[x \mapsto a]$ is defined as

$$
(I[x \mapsto a])(y)= \begin{cases}a & \text { if } y=x \\ I(y) & \text { if } y \neq x\end{cases}
$$

- universitat in ins 2024 Constraint Solving lecture 4 1. First-Order Logic - Review

Definitions

formula ψ and (possibly infinite) set of formulas Γ

- ψ is satisfiable if $\mathcal{M} \vDash$, ψ for some model \mathcal{M} and environment /
- 「 is satisfiable (consistent) if $\mathcal{M} \vDash^{\prime} \varphi$ for all $\varphi \in \Gamma$, for some model \mathcal{M} and environment /
- ψ is valid if $\mathcal{M} \vDash_{\text {}} \psi$ for all (appropriate) models \mathcal{M} and environments /
- $\Gamma \vDash \psi$ (semantic entailment) if $\mathcal{M} \vDash_{/} \psi$ whenever $\mathcal{M} \vDash_{/} \varphi$ for all $\varphi \in \Gamma$, for all (appropriate) models \mathcal{M} and environments I

Definition (Semantics)

satisfaction relation $\mathcal{M} \vDash, \varphi$ is defined by induction on structure of φ :

Notation

$\mathcal{M} \not \vDash$, ψ denotes "not $\mathcal{M} \not \vDash_{\text {I }} \psi "$

Euniversitat SS 2024 Constraint Solving lecture 4 1. First-Order Logic - Review

Outline

1. First-Order Logic - Review
2. First-Order Theories
3. SMT
4. SMT Solving
5. DPLL(T)
6. Further Reading

First-Order Theories

formalize particular structures to enable reasoning about them

Definition

first-order theory $T=(\Sigma, \mathcal{A})$ consists of

- signature Σ specifying function and predicate symbols
- axioms \mathcal{A} : sentences involving only function and predicate symbols from Σ

Remark

axioms \mathcal{A} provide meaning to symbols of Σ

- univerititit $\begin{aligned} & \text { innsbruck }\end{aligned}$ SS 2024 Constraint Solving lecture $4 \quad$ 2. First-Order Theories

9/32

Example (Addition and Multiplication: Peano Arithmetic)

- signature: constant 0 unary function symbol s binary symbols $=+\times$
- axioms (PA)
- $\forall x . s(x) \neq 0$
- $\forall x y . s(x)=s(y) \rightarrow x=y$
- $\forall x \cdot x+0=x$
- $\forall x y \cdot x+s(y)=s(x+y)$
- induction

$$
\psi(0) \wedge(\forall x \cdot \psi(x) \rightarrow \psi(s(x))) \rightarrow \forall y \cdot \psi(y)
$$

for every formula $\psi(x)$ with single free variable x

- $\forall x . x \times 0=0$
- $\forall x y . x \times s(y)=(x \times y)+x$

Example (Addition on Natural Numbers: Presburger Arithmetic)

- signature: constant 0 unary function symbol s binary symbols $=+$
- axioms (in addition to axioms for equality)
- $\forall x . s(x) \neq 0$
- $\forall x y \cdot s(x)=s(y) \rightarrow x=y$
- $\forall x \cdot x+0=x$
- $\forall x y \cdot x+s(y)=s(x+y)$
- induction

$$
\psi(0) \wedge(\forall x \cdot \psi(x) \rightarrow \psi(s(x))) \rightarrow \forall y \cdot \psi(y)
$$

for every formula $\psi(x)$ with single free variable x

Remark

$>$ can be encoded: $x>y \Longleftrightarrow \exists z \cdot z \neq 0 \wedge x=y+z$

Definition

sentence ψ over Σ is valid in first-order theory $T=(\Sigma, \mathcal{A})$ if $\mathcal{M} \vDash \psi$ for every model \mathcal{M} such that $\mathcal{M} \vDash \mathcal{A} \quad$ (notation: $T \vDash \psi$)

Definitions

first-order theory $T=(\Sigma, \mathcal{A})$ is

- consistent (satisfiable) if $\mathcal{M} \vDash \mathcal{A}$ for some model \mathcal{M}
- complete if $T \vDash \psi$ or $T \vDash \neg \psi$ for every sentence ψ over Σ
- decidable if validity problem

```
instance: sentence \psi over \Sigma
```

 question: \(\quad T \vDash \psi\) ?
 is decidable

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Theorem (Church 1936)

Peano arithmetic is undecidable

Theorem

Presburger and Peano arithmetic are not finitely axiomatizable

Definition

\mathcal{N} denotes standard model of arithmetic:
universe: \mathbb{N}

- $0^{\mathcal{N}}=0 \quad s^{\mathcal{N}}(x)=x+1 \quad+^{\mathcal{N}}(x, y)=x+y \quad \times^{\mathcal{N}}(x, y)=x \times y \quad\left(={ }^{\mathcal{N}}=\{(x, x) \mid x \in \mathbb{N}\}\right)$
- universitiat SS 2024 Constraint Solving lecture 4 2. First-Order Theories

Outline

1. First-Order Logic - Review
2. First-Order Theories
3. SMT
4. SMT Solving
5. DPLL(T)
6. Further Reading

Theorem

$\mathcal{N} \vDash$ PA (so Peano arithmetic is consistent)

Gödel's Incompleteness Theorem

\exists sentence ψ such that $\mathcal{N} \models \psi$ and PA $\nvdash \psi$

Proof Idea

sentence ψ encodes that ψ itself is unprovable in PA

\#. univevsitat	SS 2024	Constraint Solving	lecture 4	2. First-Order Theories

Definition

fragment of theory $T=(\Sigma, \mathcal{A})$ is syntactically restricted subset of formulas over Σ

- quantifier-free fragment: no quantifiers
conjunctive fragment: conjunction as only logical connective

Satisfiability Modulo Theories (SMT)

theories are identified with their standard model

- domain is given explicitly
- interpretation of symbols is in accordance with their common use
- formulas are often restricted to quantifier-free fragment

Euniversitat	SS 2024	Constraint Solving	lecture 4	3. SMT

\#universitat	SS 2024	Constraint Solving	lecture 4	3. SMT

Example (Binairo)

The objective of the number placement puzzle binairo is to fill a grid with 0 's and 1 's, where there is an equal number of 0's and 1's and no more than two consecutive 0's or 1's in each row and column. Additionally, identical rows and identical columns are forbidden. For instance, the binairo puzzle on the left has the solution on the right:

	0		0		0
	1			0	
0		1			
					1
		1		0	
				0	

1	2,6	3,6	4,6	5,6	6,6
1,5	2,5	3,5	0	5,5	6,5
1,4	2,4	3,4	4,4	5,4	1
1,3	2,3	3,3	4,3	5,3	6,3
1,2	0	3,2	4,2	5,2	6,2
1	2,1	1	4,1	5,1	1

1	0	1	0	1	0
1	1	0	1	0	0
0	0	1	0	1	1
0	1	0	0	1	1
1	0	1	1	0	0
0	1	0	1	0	1

Remark

- SAT CNF encoding is tedious

SMT Encoding (Linear Integer Arithmetic)

$$
\begin{aligned}
& \bigwedge_{i=1}^{6} \bigwedge_{j=1}^{6}\left(x_{i, j}=0 \vee x_{i, j}=1\right) \wedge \bigwedge_{i=1}^{6}\left(\sum_{j=1}^{6} x_{i, j}=3\right) \wedge \bigwedge_{j=1}^{6}\left(\sum_{i=1}^{6} x_{i, j}=3\right) \wedge \\
& \bigwedge_{i=1}^{4} \bigwedge_{j=1}^{6}\left(\sum_{k=0}^{2} x_{i+k, j}=1 \vee \sum_{k=0}^{2} x_{i+k, j}=2\right) \wedge \bigwedge_{i=1}^{6} \bigwedge_{j=1}^{4}\left(\sum_{k=0}^{2} x_{i, j+k}=1 \vee \sum_{k=0}^{2} x_{i, j+k}=2\right) \wedge \\
& \bigwedge_{i=1}^{5} \bigwedge_{k=i+1}^{6}\left(\bigvee_{j=1}^{6} x_{i, j} \neq x_{k, j}\right) \wedge \bigwedge_{j=1}^{5} \bigwedge_{k=j+1}^{6}\left(\bigvee_{i=1}^{6} x_{i, j} \neq x_{i, k}\right) \wedge \\
& x_{2,2}=0 \wedge x_{4,5}=0 \wedge x_{1,1}=1 \wedge x_{3,1}=1 \wedge x_{6,1}=1 \wedge x_{6,4}=1 \wedge x_{1,6}=1
\end{aligned}
$$

$\begin{array}{lllll}\text { Hin universitat } & \text { SS } 2024 \text { Constraint Solving } & \text { lecture } 4 & \text { 3. SMT } & 18 / 32\end{array}$

Propositional Logic in SMT-LIB 2

- declare-const x Bool
- and or not implies
- assert
- check-sat
- get-model
creates propositional variable named x are used in prefix notation
declares that formula must be satisfied issues satisfiability test of conjunction of assertations returns satisfying assignment (after satisfiability test)

Links

- Z3
- Z3 bindings for various programming languages
- Z3 bindings for Haskell
- SBV: SMT Based Verification in Haskell

Outline

1. First-Order Logic - Review
2. First-Order Theories
3. SMT
4. SMT Solving
5. DPLL(T)
6. Further Reading

SMT Problem

decide satisfiability of formulas in

```
propositional logic + domain-specific background theories
```


Two Approaches

(1) eager approach:
translate formula into equisatisfiable propositional formula
(2) lazy approach:
combine SAT solver with specialized solvers for background theories

Terminology

theory solver for T (T-solver) is procedure for deciding T-satisfiability of conjunction of quantifier-free literals
\#universitit SS 2024 Constraint Solving lecture 4 4. SMT Solving

Example

formula $\begin{array}{ccc}x=1 & \wedge(\neg(y=1) \vee \neg(x+2 y=3)) \wedge x+y=2 & \text { is unsatisfiable } \\ a & b & c\end{array}$

- input to SAT solver (propositional skeleton)

$$
\begin{gathered}
a \wedge(\neg b \vee \neg c) \wedge d \wedge(\neg a \vee b \vee \neg d) \wedge(\neg a \vee \neg b \vee c) \\
\text { blocking clause }
\end{gathered}
$$

- SAT solver reports unsatisfiable

$$
a \wedge b \wedge \neg c \wedge d
$$

- input to LIA solver

$$
x=1 \wedge y=1 \wedge x+2 y \neq 3 \wedge x+y=2
$$

- LIA solver reports unsatisfiable

Outline

1. First-Order Logic - Review
general framework for lazy SMT solving with theory propagation
2. First-Order Theories
3. SMT
4. SMT Solving
5. $\operatorname{DPLL}(T)$
6. Further Reading
\square

Definitions

first-order theory T, formulas F and G, list of literals M

- F is T-satisfiable if $F \wedge T$ is satisfiable
- $F \vDash_{T} G$ if $F \wedge \neg G$ is not T-satisfiable
- $F \equiv_{T} G$ if $F \vDash_{T} G$ and $G \vDash_{T} F$
- $M=I_{1}, \ldots, I_{k}$ is T-consistent if $I_{1} \wedge \cdots \wedge I_{k}$ is T-satisfiable

$\begin{array}{lllll}\text { Euniveritata } & \text { SS 2024 } & \text { Constraint Solving } & \text { lecture } 4 & \text { 5. DPLL(T) }\end{array}$

Definition

$\operatorname{DPLL}(T)$ consists of DPLL rules unit propagate, decide, fail, restart and

- T-backjump
$M \stackrel{d}{I} N \| F$, \qquad $M I^{\prime} \| F, C$
if $M \stackrel{d}{I} N \vDash \neg C$ and \exists clause $C^{\prime} \vee I^{\prime}$ such that
- $F, C \vDash_{T} C^{\prime} \vee I^{\prime}$ and $M \vDash \neg C^{\prime}$
- I^{\prime} is undefined in M and I^{\prime} or $I^{\prime c}$ occurs in F or in $M{ }^{d} N$
- T-learn

$$
M\|F \quad \Longrightarrow \quad M\| F, C
$$

if $F \vDash_{T} C$ and all atoms of C occur in M or F

- T-forget
$M\|F, C \quad \Longrightarrow \quad M\| F$
if $F \vDash_{T} C$
- T-propagate $\quad M\|F \Longrightarrow M I\| F$
if $M \vDash_{T} l, l$ is undefined in M, and l or I^{C} occurs in F

Remark

lazy SMT approach is modeled in $\operatorname{DPLL}(T)$ as follows:
if state $M \| F$ is reached such that unit propagate, decide, fail, T-backjump are not applicable check T-consistency of M with T-solver
(1) if M is T-consistent then F is T-satisfiable
(2) if M is not T-consistent then $F \vDash_{T} \neg\left(I_{1} \wedge \cdots \wedge I_{k}\right)$ for some literals I_{1}, \ldots, I_{k} in M add blocking clause $\neg I_{1} \vee \cdots \vee \neg /_{k}$ by T-learn and apply restart

Improvements

(1) apply fail or T-backjump after T-learn (instead of restart)
(2) check T-consistency of M or apply T-propagate before decide
(3) find small unsatisfiable cores to minimize k in blocking clauses

Outline

```
1. First-Order Logic - Review
```

2. First-Order Theories
3. SMT
4. SMT Solving
5. DPII(T)
6. Further Reading

Kröning and Strichmann

- Section 1.4
- Chapter 3

Further Reading

- Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli

Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T)
Journal of the ACM 53(6), pp. 937-977, 2006

Important Concepts

- \equiv_{T}	- first-order formula	- standard model
- \vDash_{T}	- fragment	- T-backjump
- blocking clause	- model	- T-consistency
- complete theory	- Peano arithmetic	- T-learn
- conjunctive fragment	- propositional skeleton	- T-propagate
- consistent theory	- quantifier-free fragment	- T-satisfiability
- decidable theory	- sentence	- T-solver

- DPLL(T)

\#universitat	SS 2024	constraint Solving	lecture 4	6. Further Reading

