

SS 2024 lecture 4

Constraint Solving

René Thiemann and Fabian Mitterwallner based on a previous course by Aart Middeldorp

Motivation for extending SAT to first-order theories

predicates instead of propositional variables

Examples

• equalities and disequalities over the reals

$$(x_1 = x_2 \lor x_1 = x_3) \land (x_1 = x_2 \lor x_1 = x_4) \land x_1 \neq x_2 \land x_1 \neq x_3 \land x_1 \neq x_4$$

• boolean combination of linear-arithmethic predicates

$$(x_1+2x_3<5) \lor \neg (x_3 \leqslant 1) \land (x_1 \geqslant x_3)$$

• formula over arrays

$$(i=j \wedge a[j]=1) \wedge \neg (a[i]=1)$$

universität SS 2024 Constraint Solving lecture 4 Motivation

Outline

1. First-Order Logic – Review

- 2. First-Order Theories
- 3. SMT
- 4. SMT Solving
- 5. DPLL(T)
- 6. Further Reading

Definitions (Syntax)

• terms are built from function symbols and variables according to following BNF grammar:

$$\mathbf{t} ::= \mathbf{x} \mid f(t, \dots, t)$$

• formulas are built from predicate symbols, terms, connectives, and quantifiers according to following BNF grammar:

 $\boldsymbol{\varphi} ::= \boldsymbol{P} \mid \boldsymbol{P}(t,\ldots,t) \mid \perp \mid \top \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi) \mid (\forall x.\varphi) \mid (\exists x.\varphi)$

- notational conventions:
- binding precedence $\neg > \land > \lor > \forall, \exists$
- omit outer parentheses, compress quantifiers: $\forall x y. \varphi$ instead of $\forall x. \forall y. \varphi$

1. First-Order Logic – Review

- \rightarrow , \wedge , \vee are right-associative
- constants *c* are written without parentheses: *c* instead of *c*()
- sentence is formula without free variables

Definitions (Semantics)

- model \mathcal{M} for pair $(\mathcal{F}, \mathcal{P})$ with function (predicate) symbols $\mathcal{F}(\mathcal{P})$ consists of
 - 1 non-empty set A
 - 2 function $f^{\mathcal{M}}: A^n \to A$ for every *n*-ary function symbol $f \in \mathcal{F}$
 - **3** subset $P^{\mathcal{M}} \subseteq A^n$ for every *n*-ary predicate symbol $P \in \mathcal{P}$
- environment for model $\mathcal{M} = (A, \{f^{\mathcal{M}}\}_{f \in \mathcal{F}}, \{P^{\mathcal{M}}\}_{P \in \mathcal{P}})$ is mapping *I* from variables to A
- value $t^{\mathcal{M},l}$ of term t in model \mathcal{M} relative to environment l is defined inductively:

$$t^{\mathcal{M},l} = \begin{cases} l(t) & \text{if } t \text{ is variable} \\ f^{\mathcal{M}}(t_1^{\mathcal{M},l},\ldots,t_n^{\mathcal{M},l}) & \text{if } t = f(t_1,\ldots,t_n) \end{cases}$$

• given environment *I*, variable x and element $a \in A$, environment $I[x \mapsto a]$ is defined as

$$(I[x \mapsto a])(y) = \begin{cases} a & \text{if } y = x \\ I(y) & \text{if } y \neq x \end{cases}$$

universität SS 2024 Constraint Solving lecture 4 1. First-Order Logic – Review

```
5/32
```

Definition (Semantics)

satisfaction relation $\mathcal{M} \models_{l} \varphi$ is defined by induction on structure of φ :

	$\left(\left(t_{1}^{\mathcal{M},l},\ldots,t_{n}^{\mathcal{M},l} ight)\in\mathcal{P}^{\mathcal{M}}$	if $\varphi = P(t_1, \ldots, t_n)$
$\mathcal{M} \vDash_{l} \top$	$\mathcal{M} \nvDash_{I} \psi$	$\text{if } \varphi = \neg \psi$
$\mathcal{M} \nvDash_I \perp$	$\mathcal{M} \vDash_{l} \psi_{1}$ and $\mathcal{M} \vDash_{l} \psi_{2}$	$if \ \varphi = (\psi_1 \wedge \psi_2)$
$\mathcal{M}\vDash_{l}\varphi \iff \langle$	$\mathcal{M} \vDash_{l} \psi_{1}$ or $\mathcal{M} \vDash_{l} \psi_{2}$	$if \ \varphi = (\psi_1 \lor \psi_2)$
	$\mathcal{M} \nvDash_{l} \psi_{1} \text{ or } \mathcal{M} \vDash_{l} \psi_{2}$	if $arphi=(\psi_1 ightarrow\psi_2)$
	$\mathcal{M} \vDash_{I[\mathbf{x} \mapsto \mathbf{a}]} \psi$ for all $\mathbf{a} \in A$	$\text{if } \varphi = \forall \mathbf{X}. \ \psi$
	$\mathcal{M} \vDash_{I[\mathbf{x} \mapsto \mathbf{a}]} \psi$ for some $\mathbf{a} \in \mathbf{A}$	$\text{if } \varphi = \exists x. \psi$

Notation

 $\mathcal{M} \nvDash_{l} \psi$ denotes "not $\mathcal{M} \vDash_{l} \psi$ "

universität
SS 2024 Constraint Solving lecture 4
1. First-Order Logic – Review
Inspruck

6/32

Definitions

formula ψ and (possibly infinite) set of formulas Γ

- ψ is satisfiable if $\mathcal{M} \vDash_{I} \psi$ for some model \mathcal{M} and environment I
- Γ is satisfiable (consistent) if $\mathcal{M} \vDash_{I} \varphi$ for all $\varphi \in \Gamma$, for some model \mathcal{M} and environment I
- ψ is valid if $\mathcal{M} \vDash_{I} \psi$ for all (appropriate) models \mathcal{M} and environments I
- $\Gamma \vDash \psi$ (semantic entailment) if $\mathcal{M} \vDash_{I} \psi$ whenever $\mathcal{M} \vDash_{I} \varphi$ for all $\varphi \in \Gamma$, for all (appropriate) models \mathcal{M} and environments *I*

Outline

- 1. First-Order Logic Review
- 2. First-Order Theories
- 3. SMT
- 4. SMT Solving
- 5. DPLL(T)
- 6. Further Reading

First-Order Theories

formalize particular structures to enable reasoning about them

Definition

Remark

universität innsbruck

first-order theory $T = (\Sigma, A)$ consists of

axioms \mathcal{A} provide meaning to symbols of Σ

SS 2024 Constraint Solving lecture 4

- signature $\boldsymbol{\Sigma}$ specifying function and predicate symbols
- axioms $\mathcal{A}:$ sentences involving only function and predicate symbols from Σ

Example (Addition on Natural Numbers: Presburger Arithmetic)

• signature: constant 0 unary function symbol *s* binary symbols = +

- axioms (in addition to axioms for equality)
 - $\forall x. s(x) \neq 0$
 - $\forall x y. s(x) = s(y) \rightarrow x = y$
 - $\forall x. x + 0 = x$
- $\forall x y. x + s(y) = s(x + y)$
- induction

$$\psi(\mathsf{0}) \land (\forall x. \psi(x) \rightarrow \psi(s(x))) \rightarrow \forall y. \psi(y)$$

for every formula $\psi(x)$ with single free variable x

Remark

> can be encoded: $x > y \iff \exists z. z \neq 0 \land x = y + z$

universität SS 2024 Constraint Solving lecture 4 2. First-Order Theories innsbruck

10/32

Example (Addition and Multiplication: Peano Arithmetic)

• signature: constant 0 unary function symbol s binary symbols = + imes

2. First-Order Theories

- axioms (PA)
- $\forall x. s(x) \neq 0$
- $\forall x y. s(x) = s(y) \rightarrow x = y$
- $\forall x. x + 0 = x$
- $\forall x y. x + s(y) = s(x + y)$
- induction

 $\psi(\mathsf{0}) \land (\forall x. \psi(x) \rightarrow \psi(s(x))) \rightarrow \forall y. \psi(y)$

for every formula $\psi(x)$ with single free variable x

- $\forall x. x \times 0 = 0$
- $\forall x y. x \times s(y) = (x \times y) + x$

9/32

Definition

sentence ψ over Σ is valid in first-order theory $T = (\Sigma, \mathcal{A})$ if $\mathcal{M} \vDash \psi$ for every model \mathcal{M} such that $\mathcal{M} \vDash \mathcal{A}$ (notation: $T \vDash \psi$)

Definitions

first-order theory $T = (\Sigma, A)$ is

- consistent (satisfiable) if $\mathcal{M} \vDash \mathcal{A}$ for some model \mathcal{M}
- complete if $T \vDash \psi$ or $T \vDash \neg \psi$ for every sentence ψ over Σ
- decidable if validity problem

instance: sentence ψ over Σ question: $T \vDash \psi$?

```
is decidable
```

Theorem (Presburger 1929)

Presburger arithmetic is decidable

Theorem (Church 1936)

Peano arithmetic is undecidable

Theorem

Presburger and Peano arithmetic are not finitely axiomatizable

Definition

 ${\cal N}$ denotes standard model of arithmetic:

• universe: \mathbb{N}

•
$$0^{\mathcal{N}} = 0$$
 $s^{\mathcal{N}}(x) = x + 1$ $+^{\mathcal{N}}(x, y) = x + y$ $\times^{\mathcal{N}}(x, y) = x \times y$ $(=^{\mathcal{N}} = \{(x, x) \mid x \in \mathbb{N}\})$

universität SS 2024 Constraint Solving lecture 4 2. First-Order Theories

13/32

Theorem

 $\mathcal{N} \models \mathsf{PA}$ (so Peano arithmetic is consistent)

Gödel's Incompleteness Theorem

 \exists sentence ψ such that $\mathcal{N}\models\psi$ and $\mathsf{PA}\nvDash\psi$

Kurt Gödel

Proof Idea

sentence ψ encodes that ψ itself is unprovable in PA

universität SS 2024 Constraint Solving lecture 4

Outline

- 1. First-Order Logic Review
- 2. First-Order Theories

3. SMT

- 4. SMT Solving
- 5. DPLL(T)
- 6. Further Reading

Definition

fragment of theory $\mathcal{T} = (\Sigma, \mathcal{A})$ is syntactically restricted subset of formulas over Σ

2. First-Order Theories

- quantifier-free fragment: no quantifiers
- conjunctive fragment: conjunction as only logical connective

Satisfiability Modulo Theories (SMT)

theories are identified with their standard model:

- domain is given explicitly
- interpretation of symbols is in accordance with their common use
- formulas are often restricted to quantifier-free fragment

Example (Binairo)

The objective of the number placement puzzle binairo is to fill a grid with 0's and 1's, where there is an equal number of 0's and 1's and no more than two consecutive 0's or 1's in each row and column. Additionally, identical rows and identical columns are forbidden. For instance, the binairo puzzle on the left has the solution on the right:

1	2,6	3,6	4,6	5,6	6,6
1,5	2,5	3,5	0	5,5	6,5
1,4	2,4	3,4	4,4	5,4	1
1,3	2,3	3,3	4,3	5,3	6,3
1,2	0	3,2	4,2	5,2	6,2
1	2,1	1	4,1	5,1	1

1	0	1	0	1	0	
1	1	0	1	0	0	
0	0	1	0	1	1	
0	1	0	0	1	1	
1	0	1	1	0	0	
0	1	0	1	0	1	

Remark

• SAT CNF encoding is tedious

SMT Encoding (Linear Integer Arithmetic)

$$\bigwedge_{i=1}^{6} \bigwedge_{j=1}^{6} (x_{i,j} = 0 \lor x_{i,j} = 1) \land \bigwedge_{i=1}^{6} \left(\sum_{j=1}^{6} x_{i,j} = 3 \right) \land \bigwedge_{j=1}^{6} \left(\sum_{i=1}^{6} x_{i,j} = 3 \right) \land \\ \bigwedge_{i=1}^{4} \bigwedge_{j=1}^{6} \left(\sum_{k=0}^{2} x_{i+k,j} = 1 \lor \sum_{k=0}^{2} x_{i+k,j} = 2 \right) \land \bigwedge_{i=1}^{6} \bigwedge_{j=1}^{4} \left(\sum_{k=0}^{2} x_{i,j+k} = 1 \lor \sum_{k=0}^{2} x_{i,j+k} = 2 \right) \land \\ \bigwedge_{i=1}^{5} \bigwedge_{k=i+1}^{6} \left(\bigvee_{j=1}^{6} x_{i,j} \neq x_{k,j} \right) \land \bigwedge_{j=1}^{5} \bigwedge_{k=j+1}^{6} \left(\bigvee_{i=1}^{6} x_{i,j} \neq x_{i,k} \right) \land \\ x_{2,2} = 0 \land x_{4,5} = 0 \land x_{1,1} = 1 \land x_{3,1} = 1 \land x_{6,1} = 1 \land x_{6,4} = 1 \land x_{1,6} = 1$$

universität SS 2024 Constraint Solving lecture 4 3. SMT

universität SS 2024 Constraint Solving lecture 4 3. SMT

SMT-LIB 2 Format

(assert (= x22 0)) (assert (= x45 0)) ... (assert (= x16 0)) (check-sat)

(get-model)

Z3

17/32

Propositional Logic in SMT-LIB 2

•	declare-const x Bool	creates propositional variable named ${f x}$
•	and or not implies	are used in prefix notation
•	assert	declares that formula must be satisfied
•	check-sat	issues satisfiability test of conjunction of assertations
•	get-model	returns satisfying assignment (after satisfiability test)

Links

• Z3

- Z3 bindings for various programming languages
- Z3 bindings for Haskell
- SBV: SMT Based Verification in Haskell

Outline

- 1. First-Order Logic Review
- 2. First-Order Theories
- 3. SMT
- 4. SMT Solving
- 5. DPLL(*T*)

universität innsbruck

6. Further Reading

SS 2024 Constraint Solving lecture 4

SMT Problem

decide satisfiability of formulas in

propositional logic + domain-specific background theories

Two Approaches

1 eager approach:

translate formula into equisatisfiable propositional formula

2 lazy approach:

combine SAT solver with specialized solvers for background theories

Terminology

theory solver for T (T-solver) is procedure for deciding T-satisfiability of conjunction of quantifier-free literals

universität SS 2024 Constraint Solving lecture 4 4. SMT Solving

SMT Solving: Lazy Approach unsatisfiable $\varphi \xrightarrow{\text{propositional}} \text{SAT solver} \xrightarrow{\text{satisfiable}} \text{model } M$ \uparrow $explanation C \xleftarrow{\text{unsatisfiable}} \xrightarrow{\text{T-solver}} \xleftarrow{\text{satisfiable}}$ satisfiable

4. SMT Solving

Example

formula	$x = 1 \land ($	$(\neg(y=1))$ \vee	$\neg(x+2y=3))$	$\land x + y = 2$	is unsatisfiable	
	а	b	С	d		
 input to 	SAT solver	(propositio	nal skeleton)			
$a \wedge (\neg b \lor \neg c) \land d \land (\neg a \lor b \lor \neg d) \land (\neg a \lor \neg b \lor c)$ blocking clause						
SAT solver reports unsatisfiable						
			$a \wedge b \wedge \neg$	$c \wedge d$		

• input to LIA solver

$$x = 1 \land y = 1 \land x + 2y \neq 3 \land x + y = 2$$

• LIA solver reports unsatisfiable

21/32

Outline

- 1. First-Order Logic Review
- 2. First-Order Theories
- 3. SMT
- 4. SMT Solving

5. DPLL(*T*)

6. Further Reading

general framework for lazy SMT solving with theory propagation

Definitions

first-order theory T, formulas F and G, list of literals M

- *F* is *T*-satisfiable if $F \wedge T$ is satisfiable
- $F \models_T G$ if $F \land \neg G$ is not *T*-satisfiable
- $F \equiv_T G$ if $F \vDash_T G$ and $G \vDash_T F$
- $M = I_1, \ldots, I_k$ is *T***-consistent** if $I_1 \land \cdots \land I_k$ is *T***-satisfiable**

universität SS 2024 Constraint Solving lecture 4 5. DPLL(7)

25/32

universität SS 2024 Constraint Solving lecture 4 5. DPLL(7)

26/32

Definition

DPLL(*T*) consists of DPLL rules unit propagate, decide, fail, restart and

 $M \stackrel{d}{I} N \parallel F, C \implies M I' \parallel F, C$

- if $M \stackrel{d}{i} N \vDash \neg C$ and \exists clause $C' \lor l'$ such that
- $F, C \vDash_{\mathsf{T}} C' \lor I'$ and $M \vDash \neg C'$
- I' is undefined in *M* and I' or I'^c occurs in *F* or in *M* I *N*
- T-learn $M \parallel F \implies M \parallel F, C$
- if $F \vDash_T C$ and all atoms of C occur in M or F

if $F \vDash_T C$ • *T*-propagate

 $M \parallel F \implies M I \parallel F$

 $M \parallel F, C \implies M \parallel F$

if $M \vDash_T I$, *I* is undefined in *M*, and *I* or I^c occurs in *F*

Example						
(EUF) formula $g(a) = c \land (\neg(f(g(a)) = f(c)) \lor g(a) = d) \land \neg(c = d)$						
	1	2	3	4		
	∥ 1, ·	¬2 ∨ 3, ¬4				
\Rightarrow	1 1,	¬2∨3, ¬4			unit propagate	
\implies	1 -4 1,	¬2∨3, ¬4			unit propagate	
\implies	$1 \neg 4 \neg 2 \parallel 1, +$	¬2∨3, ¬4			decide	
\implies	$1 \neg 4 \neg 2^{d} \parallel 1, +$	¬2 ∨ 3 , ¬4 , ¬1 ∨ 2	V 4		T-learn	
\Rightarrow	1 - 4 2 1,	¬2∨3, ¬4, ¬1∨2	∨ 4		T-backjump	
\Rightarrow	1 - 4 2 3 1,	¬2∨3, ¬4, ¬1∨2	∨ 4		unit propagate	
\Rightarrow	1 - 4 2 3 1,	¬2∨3, ¬4, ¬1∨2	∨4, ¬1∨¬2∨	3∨4	T-learn	
\rightarrow	fail-state				fail	

Remark

- lazy SMT approach is modeled in DPLL(T) as follows:
- if state $M \parallel F$ is reached such that unit propagate, decide, fail, T-backjump are not applicable
- check T-consistency of M with T-solver
- **1** if *M* is *T*-consistent then *F* is *T*-satisfiable
- **2** if *M* is not *T*-consistent then $F \vDash_T \neg (I_1 \land \cdots \land I_k)$ for some literals I_1, \ldots, I_k in *M* add blocking clause $\neg I_1 \lor \cdots \lor \neg I_k$ by *T*-learn and apply restart

Improvements

- **1** apply fail or *T*-backjump after *T*-learn (instead of restart)
- 2 check *T*-consistency of *M* or apply *T*-propagate before decide
- 3 find small unsatisfiable cores to minimize k in blocking clauses

universität SS 2024 Constraint Solving lecture 4 5. DPLL(7)

29/32

Outline

- 1. First-Order Logic Review
- 2. First-Order Theories
- 3. SMT
- 4. SMT Solving
- 5. DPLL(*T*)
- 6. Further Reading

universität SS 2024 Constraint Solving lecture 4 6. Further Reading

Kröning and Strichmann

- Section 1.4
- Chapter 3

Further Reading

 Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli Solving SAT and SAT Modulo Theories: From an Abstract Davis–Putnam–Logemann–Loveland Procedure to DPLL(T) Journal of the ACM 53(6), pp. 937–977, 2006

Important Concepts		
• \equiv_T • \models_T • blocking clause • complete theory	 first-order formula fragment model Peano arithmetic 	 standard model <i>T</i>-backjump <i>T</i>-consistency <i>T</i>-learn
 conjunctive fragment consistent theory decidable theory DPLL(T) 	 propositional skeleton quantifier-free fragment sentence 	 <i>T</i>-propagate <i>T</i>-satisfiability <i>T</i>-solver