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SMT Problem

decide satisfiability of (quantifier-free) formulas in

propositional logic + domain-specific background theories (axiomatic or concrete model)

Terminology

theory solver for T (T-solver) is procedure for deciding T-satisfiability of conjunction of
quantifier-free literals

Remark

• SMT solvers often use DPLL(T) framework

• DPLL(T): combine DPLL-based SAT-solver with T-solver; the latter is used for

• T-consistency checks – find model w.r.t. theory or generate blocking clause
• T-propagation – find implied literals
• basic implementation of T-propagation: M |=T l if M ∧ ¬l is unsatisfiable
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Theory of Equality

• signature: no function symbols, only one binary symbol =

• axioms

• reflexivity ∀x. x = x

• symmetry ∀x y. x = y → y = x

• transitivity ∀x y z. x = y ∧ y = z → x = z

Example

y = z ∧ x = z ∨ x ̸= z ∧ x = y

Remark

assumption: infinite domain; consequence:
∧

1≤i<j≤n xi ̸= xj is satisfiable for all n ∈ N
small model property: satisfiable formula φ with n variables has model with domain {1, . . . ,n}
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Remark

equality logic can be extended by uninterpreted constants

• extend signature by constants a,b, . . .

• uninterpreted: different constants can be interpreted as equal values or as different values

• no significant extension: constants can easily be removed

• replace each constant a by new variable xa
• obtain equisatisfiable formula without constants

• example: y = z ∧ b ̸= z ∨ a = b becomes y = z ∧ xb ̸= z ∨ xa = xb

SS 2024 Constraint Solving lecture 5 2. Equality Logic 6/28



Remark

equality logic can be extended by uninterpreted constants

• extend signature by constants a,b, . . .

• uninterpreted: different constants can be interpreted as equal values or as different values

• no significant extension: constants can easily be removed

• replace each constant a by new variable xa
• obtain equisatisfiable formula without constants

• example: y = z ∧ b ̸= z ∨ a = b becomes y = z ∧ xb ̸= z ∨ xa = xb

SS 2024 Constraint Solving lecture 5 2. Equality Logic 6/28



Remark

equality logic can be extended by uninterpreted constants

• extend signature by constants a,b, . . .

• uninterpreted: different constants can be interpreted as equal values or as different values

• no significant extension: constants can easily be removed

• replace each constant a by new variable xa

• obtain equisatisfiable formula without constants

• example: y = z ∧ b ̸= z ∨ a = b becomes y = z ∧ xb ̸= z ∨ xa = xb

SS 2024 Constraint Solving lecture 5 2. Equality Logic 6/28



Remark

equality logic can be extended by uninterpreted constants

• extend signature by constants a,b, . . .

• uninterpreted: different constants can be interpreted as equal values or as different values

• no significant extension: constants can easily be removed

• replace each constant a by new variable xa
• obtain equisatisfiable formula without constants

• example: y = z ∧ b ̸= z ∨ a = b becomes y = z ∧ xb ̸= z ∨ xa = xb

SS 2024 Constraint Solving lecture 5 2. Equality Logic 6/28



Remark

equality logic can be extended by uninterpreted constants

• extend signature by constants a,b, . . .

• uninterpreted: different constants can be interpreted as equal values or as different values

• no significant extension: constants can easily be removed

• replace each constant a by new variable xa
• obtain equisatisfiable formula without constants

• example: y = z ∧ b ̸= z ∨ a = b becomes y = z ∧ xb ̸= z ∨ xa = xb

SS 2024 Constraint Solving lecture 5 2. Equality Logic 6/28



Remark

equality logic can be extended by constants in concrete domain

• extend signature by constants, e.g., from domain in real numbers

• concrete domain: different constants represent different values

• no significant extension: constants can easily be removed

• replace each constant ci (1 ≤ i ≤ n) by new variable xi
• add constraint xi ̸= xj for all 1 ≤ i < j ≤ n
• obtain equisatisfiable formula without constants

• example: y = z ∧ 2 ̸= z ∨
√

2 = 2 becomes (y = z ∧ x2 ̸= z ∨ x1 = x2) ∧ x1 ̸= x2

Consequence

from now on consider equality logic without constants
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Theorem

satisfiability problem for equality logic is NP-complete

Proof

• membership in NP

guess assignment in {1, . . . , n}

(small model property)

where n is number of variables in formula and check correctness

• NP-hardness

reduction from SAT

• propositional formula φ with propositional atoms p1, . . . , pn
• introduce variables x1, . . . , xn, y1, . . . , yn
• equality logic formula ψ is obtained from φ by replacing every pi with xi = yi
• φ is satisfiable ⇐⇒ ψ is satisfiable
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Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ

1 define equivalence class for each variable in φ

2 for each equality x = y in φ

merge equivalence classes that contain x and y

3 for each disequality x ̸= y in φ

if x and y belong to same equivalence class, return unsatisfiable

4 return satisfiable

Examples

x1 = x2 ∧ x1 ̸= x3 ∧ x2 = x4 ∧ x3 = x5 ∧ x2 ̸= x5 ∧ x4 = x5

✓

x1 = x2 ∨ (x3 = x5 ∧ x2 ̸= x5 ∧ x1 = x5)

×

{x1} {x2} {x3} {x4} {x5}

unsatisfiable
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2 for each equality x = y in φ

merge equivalence classes that contain x and y

3 for each disequality x ̸= y in φ
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conjunction φ of equality logic literals over set of variables V

Definitions

• equality graph is undirected graph G=(φ) = (V, E=, E ̸=)

with

• E= edges corresponding to positive (equality) literals in φ

• E ̸= edges corresponding to negative (inequality) literals in φ

• contradictory cycle is cycle with exactly one E̸= edge

• contradictory cycle is simple if no node appears twice

Lemma

φ is satisfiable ⇐⇒ G=(φ) contains no simple contradictory cycles
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Example

formula φ
x1 = x2 ∧ x1 ̸= x3 ∧ x3 = x5 ∧ x4 ̸= x6 ∧ x6 ̸= x7 ∧ x5 = x9 ∧
x2 = x6 ∧ x5 = x7 ∧ x8 ̸= x9 ∧ x9 = x10 ∧ x7 = x9 ∧ x5 ̸= x10

• equality graph G=(φ)

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

• contradictory cycles

x9 x5 x10

simple

x7 x9 x10 x5

simple

x5 x3 x5 x10 x9

• φ is unsatisfiable
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Aim

• further increase expressivity of logic

• one solution: add uninterpreted functions

Theory of Equality with Uninterpreted Symbols

• signature: function and predicate symbols, including binary symbol =

• axioms of equality logic, and the following ones

• function congruence (for every n-ary function symbol f)

∀x1 . . . xn y1 . . . yn. x1 = y1 ∧ · · · ∧ xn = yn → f(x1, . . . , xn) = f(y1, . . . , yn)

• predicate congruence (for every n-ary predicate symbol P)

∀x1 . . . xn y1 . . . yn. x1 = y1 ∧ · · · ∧ xn = yn → (P(x1, . . . , xn) ↔ P(y1, . . . , yn))
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Quiz: Is the formula satisfiable?

• is formula
x = g(y, z) ∧ f(x) ̸= f(g(y, z))

satisfiable?

• model M with N as carrier:

fM(a) = a+ 1 ∀ a ∈ N

gM(a,b) = 1 ∀ a,b ∈ N
=M = {(a,b) | a = b or a,b ∈ {0,1}}

• environment l: l(x) = l(y) = l(z) = 0
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Congruence axioms are essential!

=M does not satisfy function congruence axiom ∀x y. x = y → f(x) = f(y)
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Remark

simplification: predicate symbols can be eliminated

• add fresh constant •
• add fresh n-ary function symbol fP for each predicate symbol P of arity n

• replace every atomic formula P(t1, . . . , tn) by fP(t1, . . . , tn) = •

Example

formula
P ∧ Q(x) ∧ ¬R(x, y) ∧ x = z → R(x, z)

is transformed into

fP = • ∧ fQ(x) = • ∧ fR(x, y) ̸= • ∧ x = z → fR(x, z) = •
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Theorem

satisfiability in theory of equality with uninterpreted functions is undecidable

Proof

reduction from PCP (Post correspondence problem) instance P ⊆ Γ+ × Γ+

• constant e, unary function symbol a for all a ∈ Γ, binary predicate symbol Q

• if α = a1a2 · · · an then α(t) denotes an( · · · (a2(a1(t))) · · ·)
• formula in theory of equality with uninterpreted functions∧

(α,β)∈ P

Q(α(e), β(e)) ∧
(
∀v w.Q(v,w) →

∧
(α,β)∈ P

Q(α(v), β(w))

)
→ ∃z.Q(z, z)

is valid ⇐⇒ P has solution
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Definition

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

• x1 ̸= x2 ∨ f(x1) = f(x2) ∨ f(x1) ̸= f(x3)

• x1 = x2 → f(f(g(x1, x2))) = f(g(x2, x1))

Examples

• a ̸= b ∧ f(a) = f(b) EUF-consistent

• a = f(b) ∧ b = f(a) ∧ f(b) ̸= f(f(f(b))) not EUF-consistent

• a = b ⊨EUF f(a) = f(b)

• a = b ̸≡EUF f(a) = f(b)
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Remark

• for satisfiability it does not matter whether one chooses variables or constants

• example: a = f(y) is equisatisfiable to a = f(cy) and to xa = f(y)

• consequence: we use EUF restricted to ground terms, i.e., terms without variables

Remark

• SMT solvers are often used to validate certain consequences

• example: eq1 ∧ eq2 → eq3 (for universally quantified variables)

• therefore prove unsatisfiability of eq1 ∧ eq2 ∧ ¬eq3 (for existentially quantified variables)

• consequence: ability of SMT solvers to prove unsat is essential
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Example

• two C functions computing x 7→ x3

int power3(int in) {

int i, out;

out = in;

for (i = 0; i < 2; i++)

out = out * in;

return out;

}

int power3_new(int in) {

int out;

out = (in * in) * in;

return out;

}

• are these functions equivalent?

φa : out0
a = in

∧ out1
a = out0

a * in ∧ out2
a = out1

a * in

φb : out0
b = (in * in) * in

φa ∧ φb → out2
a = out0

b

• simplify problem by substituting uninterpreted function g for *
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SMT-LIB 2 Format for EUF

EUF formula f(f(a)) = a ∧ f(a) = b ∧ a ̸= b

(declare-sort A)

(declare-const a A)

(declare-const b A)

(declare-fun f (A) A)

(assert (= (f (f a)) a))

(assert (= (f a) b))

(assert (distinct a b))

(check-sat)

(get-model)

• terms are sorted

• declare-const x S

creates variable x of sort S

• declare-fun f (S1 ... Sn) T

creates uninterpreted function f : S1 × · · · × Sn → T

• prefix notation for terms and equations

• (distinct x y) is equivalent to not (= x y)
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Congruence Closure (core algorithm for T-Solver of EUF)

input: set E of ground equations and ground equation s ≈ t

output: valid (E ⊨EUF s = t) or invalid (E ⊭EUF s = t)

1 build congruence classes

(a) put different subterms of terms in E ∪ {s = t} in separate sets

(b) merge sets { . . . , t1, . . .} and { . . . , t2, . . .} for all t1 = t2 in E

(c) repeatedly merge sets

{ . . . , f(s1, . . . , sn), . . .} and { . . . , f(t1, . . . , tn), . . .}
if si and ti belong to same set for all 1 ⩽ i ⩽ n

2 if s and t belong to same set then return valid else return invalid
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(a) put different subterms of terms in E ∪ {s = t} in separate sets

(b) merge sets { . . . , t1, . . .} and { . . . , t2, . . .} for all t1 = t2 in E

(c) repeatedly merge sets

{ . . . , f(s1, . . . , sn), . . .} and { . . . , f(t1, . . . , tn), . . .}
if si and ti belong to same set for all 1 ⩽ i ⩽ n

2 if s and t belong to same set then return valid else return invalid
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Example (1)

• set of equations E

f(f(f(a))) = g(f(g(f(b)))) f(g(f(b))) = f(a) g(g(b)) = g(f(a)) g(a) = b

equation f(a) = g(a)

• sets

1. {a} 5. {f(f(a))} 9. {f(g(f(b)))} 13. {g(a)}
2. {f(a)} 6. {f(f(f(a)))} 10. {g(f(g(f(b))))}
3. {b} 7. {f(b)} 11. {g(g(b))}
4. {g(b)} 8. {g(f(b))} 12. {g(f(a))}

• conclusion: E ⊭EUF f(a) = g(a)
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Outline

1. Summary of Previous Lecture

2. Equality Logic

3. Equality Logic with Uninterpreted Functions

4. EUF

5. Congruence Closure
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Kröning and Strichmann

• Chapter 4

• Section 11.3

Bradley and Manna

• Sections 9.1 and 9.2

Important Concepts

• congruence closure

• contradictory cycle

• equality graph

• equality logic

• EUF

• uninterpreted function
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