

SS 2024 lecture 5

Constraint Solving

René Thiemann and Fabian Mitterwallner based on a previous course by Aart Middeldorp

Outline

- **1. Summary of Previous Lecture**
- 2. Equality Logic
- 3. Equality Logic with Uninterpreted Functions
- 4. EUF
- 5. Congruence Closure
- 6. Further Reading

SMT Problem

decide satisfiability of (quantifier-free) formulas in

propositional logic + domain-specific background theories (axiomatic or concrete model)

Terminology

theory solver for T (*T*-solver) is procedure for deciding *T*-satisfiability of conjunction of quantifier-free literals

SMT Problem

decide satisfiability of (quantifier-free) formulas in

propositional logic + domain-specific background theories (axiomatic or concrete model)

Terminology

theory solver for T (*T*-solver) is procedure for deciding *T*-satisfiability of conjunction of quantifier-free literals

Remark

- SMT solvers often use DPLL(*T*) framework
- DPLL(T): combine DPLL-based SAT-solver with T-solver; the latter is used for
 - T-consistency checks find model w.r.t. theory or generate blocking clause
 - T-propagation find implied literals
 - basic implementation of *T*-propagation: $M \models_T I$ if $M \land \neg I$ is unsatisfiable

Outline

1. Summary of Previous Lecture

2. Equality Logic

- 3. Equality Logic with Uninterpreted Functions
- **4. EUF**
- 5. Congruence Closure
- 6. Further Reading

• signature: no function symbols, only one binary symbol =

- signature: no function symbols, only one binary symbol =
- axioms
 - reflexivity $\forall x. x = x$

- signature: no function symbols, only one binary symbol =
- axioms
 - reflexivity $\forall x. x = x$
 - symmetry $\forall x \ y. \ x = y \rightarrow y = x$

- signature: no function symbols, only one binary symbol =
- axioms
 - reflexivity $\forall x. x = x$
 - symmetry $\forall x \ y. \ x = y \rightarrow y = x$
 - transitivity $\forall x \ y \ z. \ x = y \land y = z \rightarrow x = z$

- signature: no function symbols, only one binary symbol =
- axioms
 - reflexivity $\forall x. x = x$
 - symmetry $\forall x \ y. \ x = y \rightarrow y = x$
 - transitivity $\forall x \ y \ z. \ x = y \land y = z \rightarrow x = z$

Example

 $y = z \land x = z \lor x \neq z \land x = y$

- signature: no function symbols, only one binary symbol =
- axioms
 - reflexivity $\forall x. x = x$
 - symmetry $\forall x \ y. \ x = y \rightarrow y = x$
 - transitivity $\forall x \ y \ z. \ x = y \land y = z \rightarrow x = z$

Example

$$y = z \land x = z \lor x \neq z \land x = y$$

Remark

assumption: infinite domain; consequence: $\bigwedge_{1 \le i \le n} x_i \ne x_j$ is satisfiable for all $n \in \mathbb{N}$

- signature: no function symbols, only one binary symbol =
- axioms
 - reflexivity $\forall x. x = x$
 - symmetry $\forall x \ y. \ x = y \rightarrow y = x$
 - transitivity $\forall x \ y \ z. \ x = y \land y = z \rightarrow x = z$

Example

$$y = z \land x = z \lor x \neq z \land x = y$$

Remark

assumption: infinite domain; consequence: $\bigwedge_{1 \le i < j \le n} x_i \ne x_j$ is satisfiable for all $n \in \mathbb{N}$ small model property: satisfiable formula φ with n variables has model with domain $\{1, \ldots, n\}$

- extend signature by constants *a*, *b*, ...
- uninterpreted: different constants can be interpreted as equal values or as different values

- extend signature by constants *a*, *b*, ...
- uninterpreted: different constants can be interpreted as equal values or as different values
- no significant extension: constants can easily be removed

- extend signature by constants *a*, *b*, ...
- uninterpreted: different constants can be interpreted as equal values or as different values
- no significant extension: constants can easily be removed
 - replace each constant *a* by new variable *x*_a

- extend signature by constants *a*, *b*, ...
- uninterpreted: different constants can be interpreted as equal values or as different values
- no significant extension: constants can easily be removed
 - replace each constant *a* by new variable *x*_a
 - obtain equisatisfiable formula without constants

- extend signature by constants *a*, *b*, . . .
- uninterpreted: different constants can be interpreted as equal values or as different values
- no significant extension: constants can easily be removed
 - replace each constant a by new variable x_a
 - obtain equisatisfiable formula without constants
- example: $y = z \land b \neq z \lor a = b$ becomes $y = z \land x_b \neq z \lor x_a = x_b$

- extend signature by constants, e.g., from domain in real numbers
- concrete domain: different constants represent different values

- extend signature by constants, e.g., from domain in real numbers
- concrete domain: different constants represent different values
- no significant extension: constants can easily be removed
 - replace each constant c_i ($1 \le i \le n$) by new variable x_i

- extend signature by constants, e.g., from domain in real numbers
- concrete domain: different constants represent different values
- no significant extension: constants can easily be removed
 - replace each constant c_i ($1 \le i \le n$) by new variable x_i
 - add constraint $x_i \neq x_j$ for all $1 \le i < j \le n$

- extend signature by constants, e.g., from domain in real numbers
- concrete domain: different constants represent different values
- no significant extension: constants can easily be removed
 - replace each constant c_i ($1 \le i \le n$) by new variable x_i
 - add constraint $x_i \neq x_j$ for all $1 \le i < j \le n$
 - obtain equisatisfiable formula without constants

- extend signature by constants, e.g., from domain in real numbers
- concrete domain: different constants represent different values
- no significant extension: constants can easily be removed
 - replace each constant c_i ($1 \le i \le n$) by new variable x_i
 - add constraint $x_i \neq x_j$ for all $1 \le i < j \le n$
 - obtain equisatisfiable formula without constants
- example: $y = z \land 2 \neq z \lor \sqrt{2} = 2$ becomes $(y = z \land x_2 \neq z \lor x_1 = x_2) \land x_1 \neq x_2$

equality logic can be extended by constants in concrete domain

- extend signature by constants, e.g., from domain in real numbers
- concrete domain: different constants represent different values
- no significant extension: constants can easily be removed
 - replace each constant c_i ($1 \le i \le n$) by new variable x_i
 - add constraint $x_i \neq x_j$ for all $1 \le i < j \le n$
 - obtain equisatisfiable formula without constants
- example: $y = z \land 2 \neq z \lor \sqrt{2} = 2$ becomes $(y = z \land x_2 \neq z \lor x_1 = x_2) \land x_1 \neq x_2$

Consequence

from now on consider equality logic without constants

satisfiability problem for equality logic is NP-complete

satisfiability problem for equality logic is NP-complete

Proof

• membership in NP

satisfiability problem for equality logic is NP-complete

Proof

membership in NP

guess assignment in $\{1, ..., n\}$ where *n* is number of variables in formula and check correctness

satisfiability problem for equality logic is NP-complete

Proof

membership in NP

guess assignment in $\{1, ..., n\}$ (small model property) where *n* is number of variables in formula and check correctness

satisfiability problem for equality logic is NP-complete

Proof

membership in NP

guess assignment in $\{1, ..., n\}$ (small model property) where *n* is number of variables in formula and check correctness

NP-hardness

satisfiability problem for equality logic is NP-complete

Proof

membership in NP

guess assignment in $\{1, ..., n\}$ (small model property) where *n* is number of variables in formula and check correctness

NP-hardness

reduction from SAT

• propositional formula φ with propositional atoms p_1, \ldots, p_n

satisfiability problem for equality logic is NP-complete

Proof

membership in NP

guess assignment in $\{1, ..., n\}$ (small model property) where *n* is number of variables in formula and check correctness

NP-hardness

- propositional formula φ with propositional atoms p_1, \ldots, p_n
- introduce variables $x_1, \ldots, x_n, y_1, \ldots, y_n$

satisfiability problem for equality logic is NP-complete

Proof

membership in NP

guess assignment in $\{1, ..., n\}$ (small model property) where *n* is number of variables in formula and check correctness

NP-hardness

- propositional formula φ with propositional atoms p_1, \ldots, p_n
- introduce variables $x_1, \ldots, x_n, y_1, \ldots, y_n$
- equality logic formula ψ is obtained from φ by replacing every p_i with $x_i = y_i$

satisfiability problem for equality logic is NP-complete

Proof

membership in NP

guess assignment in $\{1, ..., n\}$ (small model property) where *n* is number of variables in formula and check correctness

NP-hardness

- propositional formula φ with propositional atoms p_1, \ldots, p_n
- introduce variables $x_1, \ldots, x_n, y_1, \ldots, y_n$
- equality logic formula ψ is obtained from φ by replacing every p_i with $x_i = y_i$
- φ is satisfiable $\iff \psi$ is satisfiable

easy but important case: conjunction of equalities and disequalities φ

easy but important case: conjunction of equalities and disequalities φ

Examples

$$x_1 = x_2 \land x_1 \neq x_3 \land x_2 = x_4 \land x_3 = x_5 \land x_2 \neq x_5 \land x_4 = x_5$$

$$x_1 = x_2 \lor (x_3 = x_5 \land x_2 \neq x_5 \land x_1 = x_5)$$

easy but important case: conjunction of equalities and disequalities φ

Examples

$$x_1 = x_2 \land x_1 \neq x_3 \land x_2 = x_4 \land x_3 = x_5 \land x_2 \neq x_5 \land x_4 = x_5$$

$$x_1 = x_2 \lor (x_3 = x_5 \land x_2 \neq x_5 \land x_1 = x_5)$$

easy but important case: conjunction of equalities and disequalities φ

1 define equivalence class for each variable in φ

Examples

$$x_1 = x_2 \land x_1 \neq x_3 \land x_2 = x_4 \land x_3 = x_5 \land x_2 \neq x_5 \land x_4 = x_5$$
easy but important case: conjunction of equalities and disequalities φ

1 define equivalence class for each variable in φ

$$x_1 = x_2 \land x_1 \neq x_3 \land x_2 = x_4 \land x_3 = x_5 \land x_2 \neq x_5 \land x_4 = x_5$$

$$\{x_1\} \ \{x_2\} \ \{x_3\} \ \{x_4\} \ \{x_5\}$$

easy but important case: conjunction of equalities and disequalities φ

- 1 define equivalence class for each variable in φ
- 2 for each equality x = y in φ

merge equivalence classes that contain x and y

$$x_1 = x_2 \land x_1 \neq x_3 \land x_2 = x_4 \land x_3 = x_5 \land x_2 \neq x_5 \land x_4 = x_5$$

$$\{x_1\} \ \{x_2\} \ \{x_3\} \ \{x_4\} \ \{x_5\}$$

easy but important case: conjunction of equalities and disequalities φ

- 1 define equivalence class for each variable in φ
- 2 for each equality x = y in φ

merge equivalence classes that contain x and y

$$x_1 = x_2 \land x_1 \neq x_3 \land x_2 = x_4 \land x_3 = x_5 \land x_2 \neq x_5 \land x_4 = x_5$$

$$\{x_1\} \ \{x_2\} \ \{x_3\} \ \{x_4\} \ \{x_5\}$$

easy but important case: conjunction of equalities and disequalities φ

- 1 define equivalence class for each variable in φ
- 2 for each equality x = y in φ

merge equivalence classes that contain x and y

$$x_1 = x_2 \land x_1 \neq x_3 \land x_2 = x_4 \land x_3 = x_5 \land x_2 \neq x_5 \land x_4 = x_5$$

$$\{x_1, x_2\} \ \{x_3\} \ \{x_4\} \ \{x_5\}$$

easy but important case: conjunction of equalities and disequalities φ

- 1 define equivalence class for each variable in φ
- 2 for each equality x = y in φ

merge equivalence classes that contain x and y

Examples

$$x_1 = x_2 \land x_1 \neq x_3 \land x_2 = x_4 \land x_3 = x_5 \land x_2 \neq x_5 \land x_4 = x_5$$

 $\{x_1, x_2, x_4\} \ \{x_3\} \ \{x_5\}$

easy but important case: conjunction of equalities and disequalities φ

- 1 define equivalence class for each variable in φ
- 2 for each equality x = y in φ

merge equivalence classes that contain x and y

Examples

$$x_1 = x_2 \land x_1 \neq x_3 \land x_2 = x_4 \land x_3 = x_5 \land x_2 \neq x_5 \land x_4 = x_5$$

 $\{x_1, x_2, x_4\} \{x_3, x_5\}$

easy but important case: conjunction of equalities and disequalities φ

- 1 define equivalence class for each variable in φ
- 2 for each equality x = y in φ

merge equivalence classes that contain x and y

Examples

$$x_1 = x_2 \land x_1 \neq x_3 \land x_2 = x_4 \land x_3 = x_5 \land x_2 \neq x_5 \land x_4 = x_5$$

 $\{x_1, x_2, x_3, x_4, x_5\}$

easy but important case: conjunction of equalities and disequalities φ

- 1 define equivalence class for each variable in φ
- **2** for each equality x = y in φ

merge equivalence classes that contain x and y

3 for each disequality $x \neq y$ in φ

if x and y belong to same equivalence class, return unsatisfiable

Examples

$$x_1 = x_2 \land x_1 \neq x_3 \land x_2 = x_4 \land x_3 = x_5 \land x_2 \neq x_5 \land x_4 = x_5$$

 $\{x_1, x_2, x_3, x_4, x_5\}$

easy but important case: conjunction of equalities and disequalities φ

- 1 define equivalence class for each variable in φ
- 2 for each equality x = y in φ

merge equivalence classes that contain x and y

3 for each disequality $x \neq y$ in φ

if x and y belong to same equivalence class, return unsatisfiable

Examples

$$x_1 = x_2 \land x_1 \neq x_3 \land x_2 = x_4 \land x_3 = x_5 \land x_2 \neq x_5 \land x_4 = x_5$$

 $\{x_1, x_2, x_3, x_4, x_5\}$ unsatisfiable

easy but important case: conjunction of equalities and disequalities φ

- 1 define equivalence class for each variable in φ
- **2** for each equality x = y in φ

merge equivalence classes that contain x and y

3 for each disequality $x \neq y$ in φ

if x and y belong to same equivalence class, return unsatisfiable

• return satisfiable

Examples

$$x_1 = x_2 \land x_1 \neq x_3 \land x_2 = x_4 \land x_3 = x_5 \land x_2 \neq x_5 \land x_4 = x_5$$

 $\{x_1, x_2, x_3, x_4, x_5\}$ unsatisfiable

easy but important case: conjunction of equalities and disequalities φ

- 1 define equivalence class for each variable in φ
- 2 for each equality x = y in φ

merge equivalence classes that contain x and y

3 for each disequality $x \neq y$ in φ

if x and y belong to same equivalence class, return unsatisfiable

• return satisfiable

T-solver for equality logic

conjunction φ of equality logic literals over set of variables V

Definitions

• equality graph is undirected graph $G_{=}(\varphi) = (V, E_{=}, E_{\neq})$

- equality graph is undirected graph $G_{=}(\varphi) = (V, E_{=}, E_{\neq})$ with
 - $E_{=}$ edges corresponding to positive (equality) literals in φ

- equality graph is undirected graph $G_{=}(\varphi) = (V, E_{=}, E_{\neq})$ with
 - $E_{=}$ edges corresponding to positive (equality) literals in φ
 - E_{\neq} edges corresponding to negative (inequality) literals in φ

- equality graph is undirected graph $G_{=}(\varphi) = (V, E_{=}, E_{\neq})$ with
 - $E_{=}$ edges corresponding to positive (equality) literals in φ
 - E_{\neq} edges corresponding to negative (inequality) literals in φ
- **contradictory cycle** is cycle with exactly one E_{\neq} edge

- equality graph is undirected graph $G_{=}(\varphi) = (V, E_{=}, E_{\neq})$ with
 - $E_{=}$ edges corresponding to positive (equality) literals in φ
 - E_{\neq} edges corresponding to negative (inequality) literals in φ
- contradictory cycle is cycle with exactly one E_{\neq} edge
- contradictory cycle is simple if no node appears twice

- equality graph is undirected graph $G_{=}(\varphi) = (V, E_{=}, E_{\neq})$ with
 - $E_{=}$ edges corresponding to positive (equality) literals in φ
 - E_{\neq} edges corresponding to negative (inequality) literals in φ
- contradictory cycle is cycle with exactly one E_{\neq} edge
- contradictory cycle is simple if no node appears twice

formula φ

formula φ

$$\begin{array}{l} x_1 = x_2 \ \land \ x_1 \neq x_3 \ \land \ x_3 = x_5 \ \land \ x_4 \neq x_6 \ \land \ x_6 \neq x_7 \ \land \ x_5 = x_9 \ \land \\ x_2 = x_6 \ \land \ x_5 = x_7 \ \land \ x_8 \neq x_9 \ \land \ x_9 = x_{10} \ \land \ x_7 = x_9 \ \land \ x_5 \neq x_{10} \end{array}$$

formula φ

$$\begin{array}{l} x_1 = x_2 \ \land \ x_1 \neq x_3 \ \land \ x_3 = x_5 \ \land \ x_4 \neq x_6 \ \land \ x_6 \neq x_7 \ \land \ x_5 = x_9 \ \land \\ x_2 = x_6 \ \land \ x_5 = x_7 \ \land \ x_8 \neq x_9 \ \land \ x_9 = x_{10} \ \land \ x_7 = x_9 \ \land \ x_5 \neq x_{10} \end{array}$$

formula φ

$$x_1 \xrightarrow{} x_2 \xrightarrow{} x_3 \xrightarrow{} x_4 \xrightarrow{} x_5$$

 $x_6 x_7 x_8 x_9 x_{10}$

formula φ

$$\begin{array}{l} x_1 = x_2 \ \land \ x_1 \neq x_3 \ \land \ x_3 = x_5 \ \land \ x_4 \neq x_6 \ \land \ x_6 \neq x_7 \ \land \ x_5 = x_9 \ \land \\ x_2 = x_6 \ \land \ x_5 = x_7 \ \land \ x_8 \neq x_9 \ \land \ x_9 = x_{10} \ \land \ x_7 = x_9 \ \land \ x_5 \neq x_{10} \end{array}$$

formula φ

$$\begin{array}{l} x_1 = x_2 \ \land \ x_1 \neq x_3 \ \land \ x_3 = x_5 \ \land \ x_4 \neq x_6 \ \land \ x_6 \neq x_7 \ \land \ x_5 = x_9 \ \land \\ x_2 = x_6 \ \land \ x_5 = x_7 \ \land \ x_8 \neq x_9 \ \land \ x_9 = x_{10} \ \land \ x_7 = x_9 \ \land \ x_5 \neq x_{10} \end{array}$$

• equality graph $G_{=}(\varphi)$

• contradictory cycles

$$x_9$$
 x_5 x_{10}

formula φ

$$\begin{array}{l} x_1 = x_2 \ \land \ x_1 \neq x_3 \ \land \ x_3 = x_5 \ \land \ x_4 \neq x_6 \ \land \ x_6 \neq x_7 \ \land \ x_5 = x_9 \ \land \\ x_2 = x_6 \ \land \ x_5 = x_7 \ \land \ x_8 \neq x_9 \ \land \ x_9 = x_{10} \ \land \ x_7 = x_9 \ \land \ x_5 \neq x_{10} \end{array}$$

• equality graph $G_{=}(\varphi)$

• contradictory cycles

$$x_9$$
 x_5 x_{10} x_7 x_9 x_{10} x_5

formula φ

$$\begin{array}{l} x_1 = x_2 \ \land \ x_1 \neq x_3 \ \land \ x_3 = x_5 \ \land \ x_4 \neq x_6 \ \land \ x_6 \neq x_7 \ \land \ x_5 = x_9 \ \land \\ x_2 = x_6 \ \land \ x_5 = x_7 \ \land \ x_8 \neq x_9 \ \land \ x_9 = x_{10} \ \land \ x_7 = x_9 \ \land \ x_5 \neq x_{10} \end{array}$$

• equality graph $G_{=}(\varphi)$

• contradictory cycles

$$x_9 - x_5 - x_{10}$$
 $x_7 - x_9 - x_{10} - x_5$ $x_5 - x_3 - x_5 - x_{10} - x_9$

formula φ

$$\begin{array}{l} x_1 = x_2 \ \land \ x_1 \neq x_3 \ \land \ x_3 = x_5 \ \land \ x_4 \neq x_6 \ \land \ x_6 \neq x_7 \ \land \ x_5 = x_9 \ \land \\ x_2 = x_6 \ \land \ x_5 = x_7 \ \land \ x_8 \neq x_9 \ \land \ x_9 = x_{10} \ \land \ x_7 = x_9 \ \land \ x_5 \neq x_{10} \end{array}$$

• equality graph $G_{=}(\varphi)$

contradictory cycles

formula φ

• equality graph $G_{=}(\varphi)$

contradictory cycles

• φ is unsatisfiable

Outline

- **1. Summary of Previous Lecture**
- 2. Equality Logic

3. Equality Logic with Uninterpreted Functions

- **4. EUF**
- 5. Congruence Closure
- 6. Further Reading

- further increase expressivity of logic
- one solution: add uninterpreted functions

- further increase expressivity of logic
- one solution: add uninterpreted functions

Theory of Equality with Uninterpreted Symbols

• signature: function and predicate symbols, including binary symbol =

- further increase expressivity of logic
- one solution: add uninterpreted functions

Theory of Equality with Uninterpreted Symbols

- signature: function and predicate symbols, including binary symbol =
- axioms of equality logic, and the following ones

- further increase expressivity of logic
- one solution: add uninterpreted functions

Theory of Equality with Uninterpreted Symbols

- signature: function and predicate symbols, including binary symbol =
- axioms of equality logic, and the following ones
 - function congruence (for every *n*-ary function symbol *f*)

$$\forall x_1 \dots x_n \ y_1 \dots y_n. \ x_1 = y_1 \land \dots \land x_n = y_n \ \rightarrow \ f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$

- further increase expressivity of logic
- one solution: add uninterpreted functions

Theory of Equality with Uninterpreted Symbols

- signature: function and predicate symbols, including binary symbol =
- axioms of equality logic, and the following ones
 - function congruence (for every *n*-ary function symbol *f*)

$$\forall x_1 \dots x_n \ y_1 \dots y_n. \ x_1 = y_1 \land \dots \land x_n = y_n \ \rightarrow \ f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$

• predicate congruence (for every *n*-ary predicate symbol *P*)

$$\forall x_1 \ldots x_n \ y_1 \ldots y_n. \ x_1 = y_1 \land \cdots \land x_n = y_n \ \rightarrow \ (P(x_1, \ldots, x_n) \leftrightarrow P(y_1, \ldots, y_n))$$

Quiz: Is the formula satisfiable?

• is formula

$$x = g(y,z) \land f(x) \neq f(g(y,z))$$

satisfiable?

Quiz: Is the formula satisfiable?

• is formula

$$x = g(y,z) \land f(x) \neq f(g(y,z))$$

satisfiable?

• model \mathcal{M} with \mathbb{N} as carrier:

$$f_{\mathcal{M}}(a) = a + 1 \quad \forall a \in \mathbb{N}$$

Quiz: Is the formula satisfiable?

• is formula

$$x = g(y,z) \land f(x) \neq f(g(y,z))$$

satisfiable?

• model \mathcal{M} with \mathbb{N} as carrier:

$$egin{array}{ll} f_{\mathcal{M}}(a) &= a+1 & orall a \in \mathbb{N} \ g_{\mathcal{M}}(a,b) &= 1 & orall a, b \in \mathbb{N} \end{array}$$
Quiz: Is the formula satisfiable?

• is formula

$$x = g(y,z) \land f(x) \neq f(g(y,z))$$

satisfiable?

• model \mathcal{M} with \mathbb{N} as carrier:

$$egin{array}{ll} f_{\mathcal{M}}(a) &= a+1 & orall a \in \mathbb{N} \ g_{\mathcal{M}}(a,b) &= 1 & orall a, b \in \mathbb{N} \ &=_{\mathcal{M}} = \{(a,b) \mid a = b ext{ or } a, b \in \{0,1\}\} \end{array}$$

Quiz: Is the formula satisfiable?

• is formula

$$x = g(y,z) \land f(x) \neq f(g(y,z))$$

satisfiable?

• model \mathcal{M} with \mathbb{N} as carrier:

$$egin{array}{ll} f_{\mathcal{M}}(a) &= a+1 & orall a \in \mathbb{N} \ g_{\mathcal{M}}(a,b) &= 1 & orall a, b \in \mathbb{N} \ &=_{\mathcal{M}} = \{(a,b) \mid a = b ext{ or } a, b \in \{0,1\}\} \end{array}$$

• environment *I*: I(x) = I(y) = I(z) = 0

Congruence axioms are essential!

 $=_{\mathcal{M}}$ does not satisfy function congruence axiom $\forall x \ y. \ x = y \rightarrow f(x) = f(y)$

simplification: predicate symbols can be eliminated

simplification: predicate symbols can be eliminated

add fresh constant •

simplification: predicate symbols can be eliminated

- add fresh constant •
- add fresh *n*-ary function symbol f_P for each predicate symbol *P* of arity *n*

simplification: predicate symbols can be eliminated

- add fresh constant •
- add fresh *n*-ary function symbol f_P for each predicate symbol *P* of arity *n*
- replace every atomic formula $P(t_1, \ldots, t_n)$ by $f_P(t_1, \ldots, t_n) = \bullet$

simplification: predicate symbols can be eliminated

- add fresh constant •
- add fresh *n*-ary function symbol f_P for each predicate symbol *P* of arity *n*
- replace every atomic formula $P(t_1, \ldots, t_n)$ by $f_P(t_1, \ldots, t_n) = \bullet$

Example

formula

$$P \land Q(x) \land \neg R(x,y) \land x = z \rightarrow R(x,z)$$

simplification: predicate symbols can be eliminated

- add fresh constant •
- add fresh *n*-ary function symbol f_P for each predicate symbol *P* of arity *n*
- replace every atomic formula $P(t_1, \ldots, t_n)$ by $f_P(t_1, \ldots, t_n) = \bullet$

Example

formula

$$P \land Q(x) \land \neg R(x,y) \land x = z \rightarrow R(x,z)$$

is transformed into

$$f_P = \bullet \land f_Q(x) = \bullet \land f_R(x,y) \neq \bullet \land x = z \rightarrow f_R(x,z) = \bullet$$

satisfiability in theory of equality with uninterpreted functions is undecidable

satisfiability in theory of equality with uninterpreted functions is undecidable

Proof

reduction from PCP (Post correspondence problem) instance $\mathit{P} \subseteq \Gamma^+ imes \Gamma^+$

satisfiability in theory of equality with uninterpreted functions is undecidable

Proof

reduction from PCP (Post correspondence problem) instance $\mathit{P} \subseteq \Gamma^+ \times \Gamma^+$

• constant *e*, unary function symbol *a* for all $a \in \Gamma$, binary predicate symbol *Q*

satisfiability in theory of equality with uninterpreted functions is undecidable

Proof

reduction from PCP (Post correspondence problem) instance $\mathit{P} \subseteq \Gamma^+ imes \Gamma^+$

- constant *e*, unary function symbol *a* for all $a \in \Gamma$, binary predicate symbol *Q*
- if $\alpha = a_1 a_2 \cdots a_n$ then $\alpha(t)$ denotes $a_n(\cdots (a_2(a_1(t))) \cdots)$

satisfiability in theory of equality with uninterpreted functions is undecidable

Proof

reduction from PCP (Post correspondence problem) instance $P \subseteq \Gamma^+ imes \Gamma^+$

- constant *e*, unary function symbol *a* for all $a \in \Gamma$, binary predicate symbol *Q*
- if $\alpha = a_1 a_2 \cdots a_n$ then $\alpha(t)$ denotes $a_n(\cdots (a_2(a_1(t))) \cdots)$
- formula in theory of equality with uninterpreted functions

$$\bigwedge_{\boldsymbol{\alpha},\boldsymbol{\beta})\in \boldsymbol{P}} Q(\boldsymbol{\alpha}(e),\boldsymbol{\beta}(e)) \land \left(\forall v \ w.Q(v,w) \rightarrow \bigwedge_{(\boldsymbol{\alpha},\boldsymbol{\beta})\in \boldsymbol{P}} Q(\boldsymbol{\alpha}(v),\boldsymbol{\beta}(w)) \right) \rightarrow \exists z. Q(z,z)$$

is valid \iff *P* has solution

satisfiability in theory of equality with uninterpreted functions is undecidable

Proof

reduction from PCP (Post correspondence problem) instance $P \subseteq \Gamma^+ imes \Gamma^+$

- constant *e*, unary function symbol *a* for all $a \in \Gamma$, binary predicate symbol *Q*
- if $\alpha = a_1 a_2 \cdots a_n$ then $\alpha(t)$ denotes $a_n(\cdots (a_2(a_1(t))) \cdots)$
- formula in theory of equality with uninterpreted functions

$$\bigwedge_{(\alpha,\beta) \in P} Q(\alpha(e),\beta(e)) \land \left(\forall v \ w.Q(v,w) \rightarrow \bigwedge_{(\alpha,\beta) \in P} Q(\alpha(v),\beta(w)) \right) \rightarrow \exists z. Q(z,z)$$

is valid \iff *P* has solution

Outline

- **1. Summary of Previous Lecture**
- 2. Equality Logic
- 3. Equality Logic with Uninterpreted Functions

4. EUF

- 5. Congruence Closure
- 6. Further Reading

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

- $x_1 \neq x_2 \lor f(x_1) = f(x_2) \lor f(x_1) \neq f(x_3)$
- $x_1 = x_2 \rightarrow f(f(g(x_1, x_2))) = f(g(x_2, x_1))$

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

- $x_1 \neq x_2 \lor f(x_1) = f(x_2) \lor f(x_1) \neq f(x_3)$
- $x_1 = x_2 \rightarrow f(f(g(x_1, x_2))) = f(g(x_2, x_1))$

Examples

• $a \neq b \land f(a) = f(b)$

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

- $x_1 \neq x_2 \lor f(x_1) = f(x_2) \lor f(x_1) \neq f(x_3)$
- $x_1 = x_2 \rightarrow f(f(g(x_1, x_2))) = f(g(x_2, x_1))$

Examples

• $a \neq b \land f(a) = f(b)$

EUF-consistent

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

- $x_1 \neq x_2 \lor f(x_1) = f(x_2) \lor f(x_1) \neq f(x_3)$
- $x_1 = x_2 \rightarrow f(f(g(x_1, x_2))) = f(g(x_2, x_1))$

Examples

- $a \neq b \land f(a) = f(b)$
- $a = f(b) \land b = f(a) \land f(b) \neq f(f(f(b)))$

EUF-consistent

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

- $x_1 \neq x_2 \lor f(x_1) = f(x_2) \lor f(x_1) \neq f(x_3)$
- $x_1 = x_2 \rightarrow f(f(g(x_1, x_2))) = f(g(x_2, x_1))$

Examples

- $a \neq b \land f(a) = f(b)$
- $a = f(b) \land b = f(a) \land f(b) \neq f(f(f(b)))$

EUF-consistent not EUF-consistent

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

- $x_1 \neq x_2 \lor f(x_1) = f(x_2) \lor f(x_1) \neq f(x_3)$
- $x_1 = x_2 \rightarrow f(f(g(x_1, x_2))) = f(g(x_2, x_1))$

Examples

- $a \neq b \land f(a) = f(b)$
- $a = f(b) \land b = f(a) \land f(b) \neq f(f(f(b)))$
- $a = b \vDash_{EUF} f(a) = f(b)$

EUF-consistent not EUF-consistent

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

- $x_1 \neq x_2 \lor f(x_1) = f(x_2) \lor f(x_1) \neq f(x_3)$
- $x_1 = x_2 \rightarrow f(f(g(x_1, x_2))) = f(g(x_2, x_1))$

Examples

- $a \neq b \land f(a) = f(b)$
- $a = f(b) \land b = f(a) \land f(b) \neq f(f(f(b)))$
- $a = b \vDash_{EUF} f(a) = f(b)$
- $a = b \not\equiv_{EUF} f(a) = f(b)$

EUF-consistent not EUF-consistent

• for satisfiability it does not matter whether one chooses variables or constants

- for satisfiability it does not matter whether one chooses variables or constants
- example: a = f(y) is equisatisfiable to $a = f(c_y)$ and to $x_a = f(y)$

- for satisfiability it does not matter whether one chooses variables or constants
- example: a = f(y) is equisatisfiable to $a = f(c_y)$ and to $x_a = f(y)$
- consequence: we use EUF restricted to ground terms, i.e., terms without variables

- for satisfiability it does not matter whether one chooses variables or constants
- example: a = f(y) is equisatisfiable to $a = f(c_y)$ and to $x_a = f(y)$
- consequence: we use EUF restricted to ground terms, i.e., terms without variables

Remark

• SMT solvers are often used to validate certain consequences

- for satisfiability it does not matter whether one chooses variables or constants
- example: a = f(y) is equisatisfiable to $a = f(c_y)$ and to $x_a = f(y)$
- consequence: we use EUF restricted to ground terms, i.e., terms without variables

Remark

- SMT solvers are often used to validate certain consequences
- example: $eq_1 \wedge eq_2 \rightarrow eq_3$

(for universally quantified variables)

- for satisfiability it does not matter whether one chooses variables or constants
- example: a = f(y) is equisatisfiable to $a = f(c_y)$ and to $x_a = f(y)$
- consequence: we use EUF restricted to ground terms, i.e., terms without variables

Remark

- SMT solvers are often used to validate certain consequences
- example: $eq_1 \wedge eq_2 \rightarrow eq_3$

(for universally quantified variables)

• therefore prove unsatisfiability of $eq_1 \wedge eq_2 \wedge \neg eq_3$

(for existentially quantified variables)

- for satisfiability it does not matter whether one chooses variables or constants
- example: a = f(y) is equisatisfiable to $a = f(c_y)$ and to $x_a = f(y)$
- consequence: we use EUF restricted to ground terms, i.e., terms without variables

Remark

- SMT solvers are often used to validate certain consequences
- example: $eq_1 \wedge eq_2 \rightarrow eq_3$ (for universally quantified variables)
- therefore prove unsatisfiability of $eq_1 \wedge eq_2 \wedge \neg eq_3$ (for existentially quantified variables)
- consequence: ability of SMT solvers to prove unsat is essential

```
• two C functions computing x \mapsto x^3
```

```
int power3(int in) {
    int i, out;
    out = in;
    for (i = 0; i < 2; i++)
        out = out * in;
    return out;
}</pre>
```

```
int power3_new(int in) {
    int out;
    out = (in * in) * in;
    return out;
}
```

universität SS 2024 Constraint Solving lecture 5 4. EUF

```
• two C functions computing x \mapsto x^3
```

```
int power3(int in) {
    int i, out;
    out = in;
    for (i = 0; i < 2; i++)
        out = out * in;
    return out;
}</pre>
```

```
int power3_new(int in) {
    int out;
    out = (in * in) * in;
    return out;
}
```

```
are these functions equivalent?
```

```
• two C functions computing x → x<sup>3</sup>
int power3(int in) {
    int i, out;
    out = in;
    for (i = 0; i < 2; i++)
        out = out * in;
    return out;
}</pre>
```

```
int power3_new(int in) {
    int out;
    out = (in * in) * in;
    return out;
}
```

are these functions equivalent?

 φ_a : $\mathtt{out}_a^0 = \mathtt{in}$

```
• two C functions computing x → x<sup>3</sup>
int power3(int in) {
    int i, out;
    out = in;
    for (i = 0; i < 2; i++)
        out = out * in;
    return out;
}</pre>
```

```
int power3_new(int in) {
    int out;
    out = (in * in) * in;
    return out;
}
```

are these functions equivalent?

$$arphi_a\colon \operatorname{out}_a^0=\operatorname{in}\wedge\operatorname{out}_a^1=\operatorname{out}_a^0*\operatorname{in}$$

```
• two C functions computing x → x<sup>3</sup>
int power3(int in) {
    int i, out;
    out = in;
    for (i = 0; i < 2; i++)
        out = out * in;
    return out;
}</pre>
```

```
int power3_new(int in) {
    int out;
    out = (in * in) * in;
    return out;
}
```

are these functions equivalent?

$$\varphi_a$$
: $\operatorname{out}_a^0 = \operatorname{in} \wedge \operatorname{out}_a^1 = \operatorname{out}_a^0 * \operatorname{in} \wedge \operatorname{out}_a^2 = \operatorname{out}_a^1 * \operatorname{in}$
```
• two C functions computing x \mapsto x^3
```

```
int power3(int in) {
    int i, out;
    out = in;
    for (i = 0; i < 2; i++)
        out = out * in;
    return out;
}</pre>
```

```
int power3_new(int in) {
    int out;
    out = (in * in) * in;
    return out;
}
```

are these functions equivalent?

$$arphi_a$$
: $\operatorname{out}_a^0 = \operatorname{in} \wedge \operatorname{out}_a^1 = \operatorname{out}_a^0 * \operatorname{in} \wedge \operatorname{out}_a^2 = \operatorname{out}_a^1 * \operatorname{in}$
 $arphi_b$: $\operatorname{out}_b^0 = (\operatorname{in} * \operatorname{in}) * \operatorname{in}$

```
• two C functions computing x \mapsto x^3
```

```
int power3(int in) {
    int i, out;
    out = in;
    for (i = 0; i < 2; i++)
        out = out * in;
    return out;
}</pre>
```

```
int power3_new(int in) {
    int out;
    out = (in * in) * in;
    return out;
}
```

are these functions equivalent?

$$egin{array}{lll} arphi_a\colon \operatorname{out}^0_a=\operatorname{in}\wedge\operatorname{out}^1_a=\operatorname{out}^0_a*\operatorname{in}\wedge\operatorname{out}^2_a=\operatorname{out}^1_a*\operatorname{in}\ arphi_b\colon\operatorname{out}^0_b=(\operatorname{in}*\operatorname{in})*\operatorname{in}\ arphi_a\wedgearphi_b o\operatorname{out}^2_a=\operatorname{out}^0_b \end{array}$$

```
• two C functions computing x \mapsto x^3
```

```
int power3(int in) {
    int i, out;
    out = in;
    for (i = 0; i < 2; i++)
        out = out * in;
    return out;
}</pre>
```

```
int power3_new(int in) {
    int out;
    out = (in * in) * in;
    return out;
}
```

are these functions equivalent?

$$arphi_a$$
: $\operatorname{out}_a^0 = \operatorname{in} \wedge \operatorname{out}_a^1 = \operatorname{out}_a^0 * \operatorname{in} \wedge \operatorname{out}_a^2 = \operatorname{out}_a^1 * \operatorname{in}$
 $arphi_b$: $\operatorname{out}_b^0 = (\operatorname{in} * \operatorname{in}) * \operatorname{in}$
 $arphi_a \wedge arphi_b \to \operatorname{out}_a^2 = \operatorname{out}_b^0$

simplify problem by substituting uninterpreted function g for *

```
• two C functions computing x \mapsto x^3
```

```
int power3(int in) {
    int i, out;
    out = in;
    for (i = 0; i < 2; i++)
        out = out * in;
    return out;
}</pre>
```

```
int power3_new(int in) {
    int out;
    out = (in * in) * in;
    return out;
}
```

are these functions equivalent?

simplify problem by substituting uninterpreted function g for *

 $\mathsf{EUF} \ \mathsf{formula} \quad \mathsf{f}(\mathsf{f}(\mathsf{a})) = \mathsf{a} \ \land \ \mathsf{f}(\mathsf{a}) = \mathsf{b} \ \land \ \mathsf{a} \neq \mathsf{b}$

EUF formula $f(f(a)) = a \land f(a) = b \land a \neq b$

(declare-sort A)

terms are sorted

```
EUF formula f(f(a)) = a \land f(a) = b \land a \neq b
```

(declare-sort A)
(declare-const a A)
(declare-const b A)

- terms are sorted
- declare-const x S

creates variable x of sort S

 $\mathsf{EUF} \ \mathsf{formula} \quad \mathsf{f}(\mathsf{f}(\mathsf{a})) = \mathsf{a} \ \land \ \mathsf{f}(\mathsf{a}) = \mathsf{b} \ \land \ \mathsf{a} \neq \mathsf{b}$

(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)

- terms are sorted
- declare-const x S

creates variable x of sort S

• declare-fun f (S1 ... Sn) T

creates uninterpreted function $f: S_1 \times \cdots \times S_n \rightarrow T$

```
\mathsf{EUF} \ \mathsf{formula} \quad \mathsf{f}(\mathsf{f}(\mathsf{a})) = \mathsf{a} \ \land \ \mathsf{f}(\mathsf{a}) = \mathsf{b} \ \land \ \mathsf{a} \neq \mathsf{b}
```

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
```

- terms are sorted
- declare-const x S creates variable x of sort S
- declare-fun f (S1 ... Sn) T
 - creates uninterpreted function $f: S_1 \times \cdots \times S_n \to T$
- prefix notation for terms and equations

```
\mathsf{EUF} \ \mathsf{formula} \quad \mathsf{f}(\mathsf{f}(\mathsf{a})) = \mathsf{a} \ \land \ \mathsf{f}(\mathsf{a}) = \mathsf{b} \ \land \ \mathsf{a} \neq \mathsf{b}
```

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
```

- terms are sorted
- declare-const x S creates variable x of sort S
- declare-fun f (S1 ... Sn) T creates uninterpreted function $f: S_1 \times \cdots \times S_n \to T$
- prefix notation for terms and equations
- (distinct x y) is equivalent to not (= x y)

```
\mathsf{EUF} \ \mathsf{formula} \quad \mathsf{f}(\mathsf{f}(\mathsf{a})) = \mathsf{a} \ \land \ \mathsf{f}(\mathsf{a}) = \mathsf{b} \ \land \ \mathsf{a} \neq \mathsf{b}
```

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```

- terms are sorted
- declare-const x S creates variable x of sort S
- declare-fun f (S1 ... Sn) T creates uninterpreted function $f: S_1 \times \cdots \times S_n \to T$
- prefix notation for terms and equations
- (distinct x y) is equivalent to not (= x y)

Outline

- **1. Summary of Previous Lecture**
- 2. Equality Logic
- 3. Equality Logic with Uninterpreted Functions
- 4. EUF

5. Congruence Closure

6. Further Reading

input: set *E* of ground equations and ground equation $s \approx t$ output: valid ($E \vDash_{EUF} s = t$) or invalid ($E \nvDash_{EUF} s = t$)

input: set *E* of ground equations and ground equation $s \approx t$ output: valid ($E \vDash_{EUF} s = t$) or invalid ($E \nvDash_{EUF} s = t$)

- build congruence classes
 - (a) put different subterms of terms in $E \cup \{s = t\}$ in separate sets

input: set *E* of ground equations and ground equation $s \approx t$ output: valid ($E \vDash_{EUF} s = t$) or invalid ($E \nvDash_{EUF} s = t$)

- build congruence classes
 - (a) put different subterms of terms in $E \cup \{s = t\}$ in separate sets
 - (b) merge sets $\{..., t_1, ...\}$ and $\{..., t_2, ...\}$ for all $t_1 = t_2$ in *E*

input: set *E* of ground equations and ground equation $s \approx t$ output: valid ($E \vDash_{EUF} s = t$) or invalid ($E \nvDash_{EUF} s = t$)

- build congruence classes
 - (a) put different subterms of terms in $E \cup \{s = t\}$ in separate sets
 - (b) merge sets $\{..., t_1, ...\}$ and $\{..., t_2, ...\}$ for all $t_1 = t_2$ in *E*
 - (c) repeatedly merge sets

 $\{\ldots, f(s_1, \ldots, s_n), \ldots\}$ and $\{\ldots, f(t_1, \ldots, t_n), \ldots\}$

if s_i and t_i belong to same set for all $1 \leq i \leq n$

input: set *E* of ground equations and ground equation $s \approx t$ output: valid ($E \vDash_{EUF} s = t$) or invalid ($E \nvDash_{EUF} s = t$)

- build congruence classes
 - (a) put different subterms of terms in $E \cup \{s = t\}$ in separate sets
 - (b) merge sets $\{..., t_1, ...\}$ and $\{..., t_2, ...\}$ for all $t_1 = t_2$ in *E*
 - (c) repeatedly merge sets

 $\{\ldots, f(s_1, \ldots, s_n), \ldots\}$ and $\{\ldots, f(t_1, \ldots, t_n), \ldots\}$

if s_i and t_i belong to same set for all $1 \leq i \leq n$

2 if *s* and *t* belong to same set then return valid else return invalid

• set of equations E

 $f(f(f(a))) = g(f(g(f(b)))) \qquad f(g(f(b))) = f(a) \qquad g(g(b)) = g(f(a)) \qquad g(a) = b$ equation f(a) = g(a)

set of equations E

 $f(f(f(a))) = g(f(g(f(b)))) \qquad f(g(f(b))) = f(a) \qquad g(g(b)) = g(f(a)) \qquad g(a) = b$ equation f(a) = g(a)

1.{a}	5. {f(f(a))}	9. {f(g(f(b)))}	13. {g(a)}
2. {f(a)}	6. {f(f(f(a)))}	10. {g(f(g(f(b))))}	
3. {b}	7. {f(b)}	11. {g(g(b))}	
4. {g(b)}	8. {g(f(b))}	12. {g(f(a))}	

set of equations E

 $f(f(f(a))) = g(f(g(f(b)))) \qquad f(g(f(b))) = f(a) \qquad g(g(b)) = g(f(a)) \qquad g(a) = b$ equation f(a) = g(a)

1.{a}	5. {f(f(a))}	9. {f(g(f(b)))}	13. {g(a)}
2. {f(a)}	6. {f(f(f(a)))}	10. {g(f(g(f(b))))}	
3. {b}	7. {f(b)}	11. {g(g(b))}	
4. {g(b)}	8. {g(f(b))}	12. {g(f(a))}	

• set of equations E

$$\begin{split} f(f(f(a))) &= g(f(g(f(b)))) \qquad f(g(f(b))) = f(a) \qquad g(g(b)) = g(f(a)) \qquad g(a) = b \\ equation \quad f(a) &= g(a) \end{split}$$

1. {a}	5. {f(f(a))}	9. {f(g(f(b)))}	13. {g(a)}
2. {f(a)}	6. {f(f(f(a))), g(f	f(g(f(b))))}	
3. {b}	7. {f(b)}	11. $\{g(g(b))\}$	
4. {g(b)}	8. {g(f(b))}	12. {g(f(a))}	

• set of equations E

$$\begin{split} f(f(f(a))) &= g(f(g(f(b)))) \qquad f(g(f(b))) = f(a) \qquad g(g(b)) = g(f(a)) \qquad g(a) = b \\ equation \quad f(a) &= g(a) \end{split}$$

1. {a}	5. {f(f(a))}	9. {f(g(f(b)))}	13. {g(a)}
2. {f(a)}	6. {f(f(f(a))), g(f	f(g(f(b))))}	
3. {b}	7. {f(b)}	11. {g(g(b))}	
4. {g(b)}	8. {g(f(b))}	12. {g(f(a))}	

set of equations E

 $f(f(f(a))) = g(f(g(f(b)))) \qquad f(g(f(b))) = f(a) \qquad g(g(b)) = g(f(a)) \qquad g(a) = b$ equation f(a) = g(a)

sets

1. $\{a\}$ 5. $\{f(f(a))\}$ 13. $\{g(a)\}$ 2. $\{f(a), f(g(f(b)))\}$ 6. $\{f(f(f(a))), g(f(g(f(b))))\}$ 3. $\{b\}$ 7. $\{f(b)\}$ 11. $\{g(g(b))\}$ 4. $\{g(b)\}$ 8. $\{g(f(b))\}$ 12. $\{g(f(a))\}$

• set of equations E

 $f(f(f(a))) = g(f(g(f(b)))) \qquad f(g(f(b))) = f(a) \qquad g(g(b)) = g(f(a)) \qquad g(a) = b$ equation f(a) = g(a)

1. {a}	5. {f(f(a))}		13. {g(a)}
2. {f(a), f(g(f(b)))}	6. {f(f(f(a))), g(f(g(f(b))))}	
3. {b}	7. {f(b)}	11. {g(g(b))}	
4. {g(b)}	8. {g(f(b))}	12. {g(f(a))}	

set of equations E

```
f(f(f(a))) = g(f(g(f(b)))) \qquad f(g(f(b))) = f(a) \qquad g(g(b)) = g(f(a)) \qquad g(a) = b
equation f(a) = g(a)
```

1. {a}	5. {f(f(a))}		13. {g(a)}
2. {f(a), f(g(f(b)))}	6. {f(f(f(a))), g(f(g	(f(b))))}	
3. {b}	7. {f(b)}	11. $\{g(g(b)), g(f(a))\}$	
4. {g(b)}	8. {g(f(b))}		

set of equations E

$$\begin{split} f(f(f(a))) &= g(f(g(f(b)))) \qquad f(g(f(b))) = f(a) \qquad g(g(b)) = g(f(a)) \qquad g(a) = b \\ equation \quad f(a) &= g(a) \end{split}$$

1.{a}	5. {f(f(a))}		13. {g(a)}
2. {f(a), f(g(f(b)))}	6. {f(f(f(a))), g(f	f(g(f(b))))}	
3. {b}	7. {f(b)}	11. $\{g(g(b)), g(f(a))\}$	
4. {g(b)}	8. {g(f(b))}		

set of equations E

```
f(f(f(a))) = g(f(g(f(b)))) \qquad f(g(f(b))) = f(a) \qquad g(g(b)) = g(f(a)) \qquad g(a) = b
equation f(a) = g(a)
```

```
1. \{a\}5. \{f(f(a))\}2. \{f(a), f(g(f(b)))\}6. \{f(f(f(a))), g(f(g(f(b))))\}3. \{b, g(a)\}7. \{f(b)\}4. \{g(b)\}8. \{g(f(b))\}
```

set of equations E

```
f(f(f(a))) = g(f(g(f(b)))) \qquad f(g(f(b))) = f(a) \qquad g(g(b)) = g(f(a)) \qquad g(a) = b
equation f(a) = g(a)
```

```
1. \{a\}5. \{f(f(a))\}2. \{f(a), f(g(f(b)))\}6. \{f(f(f(a))), g(f(g(f(b))))\}3. \{b, g(a)\}7. \{f(b)\}11. \{g(g(b)), g(f(a))\}4. \{g(b)\}8. \{g(f(b))\}
```

set of equations E

 $f(f(f(a))) = g(f(g(f(b)))) \qquad f(g(f(b))) = f(a) \qquad g(g(b)) = g(f(a)) \qquad g(a) = b$ equation f(a) = g(a)

```
      1. {a}
      5. {f(f(a))}

      2. {f(a), f(g(f(b)))}
      6. {f(f(f(a))), g(f(g(f(b)))), g(g(b)), g(f(a))}

      3. {b, g(a)}
      7. {f(b)}

      4. {g(b)}
      8. {g(f(b))}
```

set of equations E

```
f(f(f(a))) = g(f(g(f(b)))) \qquad f(g(f(b))) = f(a) \qquad g(g(b)) = g(f(a)) \qquad g(a) = b
equation f(a) = g(a)
```

sets

```
1. \{a\}5. \{f(f(a))\}2. \{f(a), f(g(f(b)))\}6. \{f(f(f(a))), g(f(g(f(b)))), g(g(b)), g(f(a))\}3. \{b, g(a)\}7. \{f(b)\}4. \{g(b)\}8. \{g(f(b))\}
```

• conclusion: $E \nvDash_{EUF} f(a) = g(a)$

set of equations E

f(f(f(a))) = a

f(f(f(f(f(a))))) = a

equation f(a) = a

• set of equations E

f(f(f(a))) = aequation f(a) = a sets 1. {a} 2. { f(a) } 3. $\{f(f(a))\}$ 4. { f(f(f(a))) } 5. { f(f(f(a))) } 6. { f(f(f(f(a)))) }

f(f(f(f(f(a))))) = a

• set of equations E

f(f(f(a))) = aequation f(a) = a sets 1. {a} 2. { f(a) } 3. $\{f(f(a))\}$ 4. { f(f(f(a))) } 5. { f(f(f(a))) } 6. { f(f(f(f(a)))) }

f(f(f(f(f(a))))) = a

• set of equations E

f(f(f(a))) = a

f(f(f(f(f(a))))) = a

```
equation f(a) = a
```

- {a, f(f(f(a)))}
 {f(a)}
 {f(f(a))}
 {f(f(a))}
- $\begin{array}{l} 5. \; \{f(f(f(a))))\} \\ 6. \; \{f(f(f(f(a)))))\} \end{array}$

• set of equations E

f(f(f(a))) = a

f(f(f(f(f(a))))) = a

```
equation f(a) = a
```

- {a, f(f(f(a)))}
 {f(a)}
 {f(f(a))}
 {f(f(a))}
- $\begin{array}{l} 5. \; \{f(f(f(a)))) \} \\ 6. \; \{f(f(f(f(a))))) \} \end{array}$

• set of equations E

f(f(f(a))) = a

f(f(f(f(f(a))))) = a

```
equation f(a) = a
```

sets

1. {a, f(f(f(a))), f(f(f(f(a))))} 2. {f(a)} 3. {f(f(a))}

5. $\{f(f(f(f(a))))\}$
• set of equations E

f(f(f(a))) = a

f(f(f(f(f(a))))) = a

```
equation f(a) = a
```

sets

1. {a, f(f(f(a))), f(f(f(f(a)))))}
2. {f(a)}
3. {f(f(a))}

5. $\{f(f(f(a))))\}$

• set of equations E

f(f(f(a))) = a

f(f(f(f(f(a))))) = a

```
equation f(a) = a
```

sets

{a, f(f(f(a))), f(f(f(f(a)))))}
 {f(a), f(f(f(f(a))))}
 {f(f(a))}

• set of equations E

f(f(f(a))) = a

f(f(f(f(f(a))))) = a

```
equation f(a) = a
```

sets

1. {a, f(f(f(a))), f(f(f(f(a)))))}
2. {f(a), f(f(f(f(a))))}
3. {f(f(a))}

• set of equations E

 $f(f(f(a))) = a \qquad \qquad f(f(f(f(a)))) = a$

```
equation f(a) = a
```

sets

{a, f(f(f(a))), f(f(f(f(a)))), f(f(a))}
 {f(a), f(f(f(f(a))))}

• set of equations E

 $f(f(f(a))) = a \qquad \qquad f(f(f(f(a)))) = a$

```
equation f(a) = a
```

sets

{a, f(f(f(a))), f(f(f(f(a)))), f(f(a))}
 {f(a), f(f(f(f(a))))}

• set of equations E

 $f(f(f(a))) = a \qquad \qquad f(f(f(f(a)))) = a$

```
equation f(a) = a
```

sets

 $1. \; \{ a, \, f(f(f(a))), \, f(f(f(f(a))))), \, f(f(a)), \, f(a), \, f(f(f(f(a)))) \} \;$

• set of equations E

 $f(f(f(a))) = a \qquad \qquad f(f(f(f(a)))) = a$

```
equation f(a) = a
```

sets

1. {a, f(f(f(a))), f(f(f(f(a)))), f(f(a)), f(f(a)), f(f(f(a))))}

• conclusion: $E \models_{EUF} f(a) = a$

Outline

- **1. Summary of Previous Lecture**
- 2. Equality Logic
- 3. Equality Logic with Uninterpreted Functions
- **4. EUF**
- 5. Congruence Closure
- 6. Further Reading

Kröning and Strichmann

- Chapter 4
- Section 11.3

Kröning and Strichmann

- Chapter 4
- Section 11.3

Bradley and Manna

• Sections 9.1 and 9.2

Kröning and Strichmann

- Chapter 4
- Section 11.3

Bradley and Manna

• Sections 9.1 and 9.2

Important Concepts		
congruence closure	equality graph	• EUF
 contradictory cycle 	equality logic	 uninterpreted function

