

Constraint Solving

René Thiemann and Fabian Mitterwallner
based on a previous course by Aart Middeldorp

Outline

1. Summary of Previous Lecture
2. Equality Logic
3. Equality Logic with Uninterpreted Functions
4. EUF
5. Congruence Closure
6. Further Reading

SMT Problem

decide satisfiability of (quantifier-free) formulas in
propositional logic + domain-specific background theories (axiomatic or concrete model)

Terminology

theory solver for T (T-solver) is procedure for deciding T-satisfiability of conjunction of quantifier-free literals

SMT Problem

decide satisfiability of (quantifier-free) formulas in
propositional logic + domain-specific background theories (axiomatic or concrete model)

Terminology

theory solver for T (T-solver) is procedure for deciding T-satisfiability of conjunction of quantifier-free literals

Remark

- SMT solvers often use $\operatorname{DPLL}(T)$ framework
- DPLL(T): combine DPLL-based SAT-solver with T-solver; the latter is used for
- T-consistency checks - find model w.r.t. theory or generate blocking clause
- T-propagation - find implied literals
- basic implementation of T-propagation: $M \models_{T}$ / if $M \wedge \neg /$ is unsatisfiable

Outline

1. Summary of Previous Lecture

2. Equality Logic

3. Equality Logic with Uninterpreted Functions
4. EUF
5. Congruence Closure
6. Further Reading

Theory of Equality

- signature: no function symbols, only one binary symbol =

Theory of Equality

- signature: no function symbols, only one binary symbol =
- axioms
- reflexivity $\forall x . x=x$

Theory of Equality

- signature: no function symbols, only one binary symbol =
- axioms
- reflexivity $\forall x . x=x$
- symmetry $\forall x y . x=y \rightarrow y=x$

Theory of Equality

- signature: no function symbols, only one binary symbol =
- axioms
- reflexivity $\forall x . x=x$
- symmetry $\forall x y . x=y \rightarrow y=x$
- transitivity $\forall x y z . x=y \wedge y=z \rightarrow x=z$

Theory of Equality

- signature: no function symbols, only one binary symbol =
- axioms
- reflexivity $\forall x . x=x$
- symmetry $\forall x y . x=y \rightarrow y=x$
- transitivity $\forall x y z . x=y \wedge y=z \rightarrow x=z$

Example

$$
y=z \wedge x=z \quad \vee \quad x \neq z \wedge x=y
$$

Theory of Equality

- signature: no function symbols, only one binary symbol =
- axioms
- reflexivity $\forall x . x=x$
- symmetry $\forall x y . x=y \rightarrow y=x$
- transitivity $\forall x y z . x=y \wedge y=z \rightarrow x=z$

Example

$y=z \wedge x=z \quad \vee \quad x \neq z \wedge x=y$

Remark

assumption: infinite domain; consequence: $\bigwedge_{1 \leq i<j \leq n} x_{i} \neq x_{j}$ is satisfiable for all $n \in \mathbb{N}$

Theory of Equality

- signature: no function symbols, only one binary symbol =
- axioms
- reflexivity $\forall x . x=x$
- symmetry $\forall x y . x=y \rightarrow y=x$
- transitivity $\forall x y z . x=y \wedge y=z \rightarrow x=z$

Example

$y=z \wedge x=z \quad \vee \quad x \neq z \wedge x=y$

Remark

assumption: infinite domain; consequence: $\bigwedge_{1 \leq i<j \leq n} x_{i} \neq x_{j}$ is satisfiable for all $n \in \mathbb{N}$ small model property: satisfiable formula φ with n variables has model with domain $\{1, \ldots, n\}$

Remark

equality logic can be extended by uninterpreted constants

- extend signature by constants a, b, \ldots
- uninterpreted: different constants can be interpreted as equal values or as different values

Remark

equality logic can be extended by uninterpreted constants

- extend signature by constants a, b, \ldots
- uninterpreted: different constants can be interpreted as equal values or as different values
- no significant extension: constants can easily be removed

Remark

equality logic can be extended by uninterpreted constants

- extend signature by constants a, b, \ldots
- uninterpreted: different constants can be interpreted as equal values or as different values
- no significant extension: constants can easily be removed
- replace each constant a by new variable x_{a}

Remark

equality logic can be extended by uninterpreted constants

- extend signature by constants a, b, \ldots
- uninterpreted: different constants can be interpreted as equal values or as different values
- no significant extension: constants can easily be removed
- replace each constant a by new variable x_{a}
- obtain equisatisfiable formula without constants

Remark

equality logic can be extended by uninterpreted constants

- extend signature by constants a, b, \ldots
- uninterpreted: different constants can be interpreted as equal values or as different values
- no significant extension: constants can easily be removed
- replace each constant a by new variable x_{a}
- obtain equisatisfiable formula without constants
- example: $y=z \wedge b \neq z \vee a=b$ becomes $y=z \wedge x_{b} \neq z \vee x_{a}=x_{b}$

Remark

equality logic can be extended by constants in concrete domain

- extend signature by constants, e.g., from domain in real numbers
- concrete domain: different constants represent different values

Remark

equality logic can be extended by constants in concrete domain

- extend signature by constants, e.g., from domain in real numbers
- concrete domain: different constants represent different values
- no significant extension: constants can easily be removed
- replace each constant $c_{i}(1 \leq i \leq n)$ by new variable x_{i}

Remark

equality logic can be extended by constants in concrete domain

- extend signature by constants, e.g., from domain in real numbers
- concrete domain: different constants represent different values
- no significant extension: constants can easily be removed
- replace each constant $c_{i}(1 \leq i \leq n)$ by new variable x_{i}
- add constraint $x_{i} \neq x_{j}$ for all $1 \leq i<j \leq n$

Remark

equality logic can be extended by constants in concrete domain

- extend signature by constants, e.g., from domain in real numbers
- concrete domain: different constants represent different values
- no significant extension: constants can easily be removed
- replace each constant $c_{i}(1 \leq i \leq n)$ by new variable x_{i}
- add constraint $x_{i} \neq x_{j}$ for all $1 \leq i<j \leq n$
- obtain equisatisfiable formula without constants

Remark

equality logic can be extended by constants in concrete domain

- extend signature by constants, e.g., from domain in real numbers
- concrete domain: different constants represent different values
- no significant extension: constants can easily be removed
- replace each constant $c_{i}(1 \leq i \leq n)$ by new variable x_{i}
- add constraint $x_{i} \neq x_{j}$ for all $1 \leq i<j \leq n$
- obtain equisatisfiable formula without constants
- example: $y=z \wedge 2 \neq z \vee \sqrt{2}=2$ becomes $\left(y=z \wedge x_{2} \neq z \vee x_{1}=x_{2}\right) \wedge x_{1} \neq x_{2}$

Remark

equality logic can be extended by constants in concrete domain

- extend signature by constants, e.g., from domain in real numbers
- concrete domain: different constants represent different values
- no significant extension: constants can easily be removed
- replace each constant $c_{i}(1 \leq i \leq n)$ by new variable x_{i}
- add constraint $x_{i} \neq x_{j}$ for all $1 \leq i<j \leq n$
- obtain equisatisfiable formula without constants
- example: $y=z \wedge 2 \neq z \vee \sqrt{2}=2$ becomes $\left(y=z \wedge x_{2} \neq z \vee x_{1}=x_{2}\right) \wedge x_{1} \neq x_{2}$

Consequence

from now on consider equality logic without constants

Theorem

satisfiability problem for equality logic is NP-complete

Theorem

satisfiability problem for equality logic is NP-complete

Proof

- membership in NP

Theorem

satisfiability problem for equality logic is NP-complete

Proof

- membership in NP
guess assignment in $\{1, \ldots, n\}$
where n is number of variables in formula and check correctness

Theorem

satisfiability problem for equality logic is NP-complete

Proof

- membership in NP
guess assignment in $\{1, \ldots, n\} \quad$ (small model property)
where n is number of variables in formula and check correctness

Theorem

satisfiability problem for equality logic is NP-complete

Proof

- membership in NP
guess assignment in $\{1, \ldots, n\} \quad$ (small model property)
where n is number of variables in formula and check correctness
- NP-hardness
reduction from SAT

Theorem

satisfiability problem for equality logic is NP-complete

Proof

- membership in NP
guess assignment in $\{1, \ldots, n\} \quad$ (small model property)
where n is number of variables in formula and check correctness
- NP-hardness
reduction from SAT
- propositional formula φ with propositional atoms p_{1}, \ldots, p_{n}

Theorem

satisfiability problem for equality logic is NP-complete

Proof

- membership in NP
guess assignment in $\{1, \ldots, n\} \quad$ (small model property)
where n is number of variables in formula and check correctness
- NP-hardness
reduction from SAT
- propositional formula φ with propositional atoms p_{1}, \ldots, p_{n}
- introduce variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$

Theorem

satisfiability problem for equality logic is NP-complete

Proof

- membership in NP
guess assignment in $\{1, \ldots, n\} \quad$ (small model property)
where n is number of variables in formula and check correctness
- NP-hardness
reduction from SAT
- propositional formula φ with propositional atoms p_{1}, \ldots, p_{n}
- introduce variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$
- equality logic formula ψ is obtained from φ by replacing every p_{i} with $x_{i}=y_{i}$

Theorem

satisfiability problem for equality logic is NP-complete

Proof

- membership in NP
guess assignment in $\{1, \ldots, n\} \quad$ (small model property)
where n is number of variables in formula and check correctness
- NP-hardness
reduction from SAT
- propositional formula φ with propositional atoms p_{1}, \ldots, p_{n}
- introduce variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$
- equality logic formula ψ is obtained from φ by replacing every p_{i} with $x_{i}=y_{i}$
$\bullet \varphi$ is satisfiable $\Longleftrightarrow \psi$ is satisfiable

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ

Examples

$$
\begin{aligned}
& x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2}=x_{4} \wedge x_{3}=x_{5} \wedge x_{2} \neq x_{5} \wedge x_{4}=x_{5} \\
& x_{1}=x_{2} \vee\left(x_{3}=x_{5} \wedge x_{2} \neq x_{5} \wedge x_{1}=x_{5}\right)
\end{aligned}
$$

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ

Examples

$$
\begin{aligned}
& x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2}=x_{4} \wedge x_{3}=x_{5} \wedge x_{2} \neq x_{5} \wedge x_{4}=x_{5} \\
& x_{1}=x_{2} \vee\left(x_{3}=x_{5} \wedge x_{2} \neq x_{5} \wedge x_{1}=x_{5}\right)
\end{aligned}
$$

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ
(1) define equivalence class for each variable in φ

Examples

$$
x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2}=x_{4} \wedge x_{3}=x_{5} \wedge x_{2} \neq x_{5} \wedge x_{4}=x_{5}
$$

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ
(1) define equivalence class for each variable in φ

Examples

$$
\begin{gathered}
x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2}=x_{4} \wedge x_{3}=x_{5} \wedge x_{2} \neq x_{5} \wedge x_{4}=x_{5} \\
\left\{x_{1}\right\} \quad\left\{x_{2}\right\} \quad\left\{x_{3}\right\} \quad\left\{x_{4}\right\} \quad\left\{x_{5}\right\}
\end{gathered}
$$

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ
(1) define equivalence class for each variable in φ
(2) for each equality $x=y$ in φ
merge equivalence classes that contain x and y

Examples

$$
\begin{gathered}
x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2}=x_{4} \wedge x_{3}=x_{5} \wedge x_{2} \neq x_{5} \wedge x_{4}=x_{5} \\
\left\{x_{1}\right\} \quad\left\{x_{2}\right\} \quad\left\{x_{3}\right\} \quad\left\{x_{4}\right\} \quad\left\{x_{5}\right\}
\end{gathered}
$$

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ
(1) define equivalence class for each variable in φ
(2) for each equality $x=y$ in φ
merge equivalence classes that contain x and y

Examples

$$
\begin{gathered}
x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2}=x_{4} \wedge x_{3}=x_{5} \wedge x_{2} \neq x_{5} \wedge x_{4}=x_{5} \\
\left\{x_{1}\right\} \quad\left\{x_{2}\right\} \quad\left\{x_{3}\right\} \quad\left\{x_{4}\right\} \quad\left\{x_{5}\right\}
\end{gathered}
$$

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ
(1) define equivalence class for each variable in φ
(2) for each equality $x=y$ in φ
merge equivalence classes that contain x and y

Examples

$$
\begin{gathered}
x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2}=x_{4} \wedge x_{3}=x_{5} \wedge x_{2} \neq x_{5} \wedge x_{4}=x_{5} \\
\left\{x_{1}, x_{2}\right\} \quad\left\{x_{3}\right\} \quad\left\{x_{4}\right\} \quad\left\{x_{5}\right\}
\end{gathered}
$$

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ
(1) define equivalence class for each variable in φ
(2) for each equality $x=y$ in φ
merge equivalence classes that contain x and y

Examples

$$
\begin{gathered}
x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2}=x_{4} \wedge x_{3}=x_{5} \wedge x_{2} \neq x_{5} \wedge x_{4}=x_{5} \\
\left\{x_{1}, x_{2}, x_{4}\right\} \quad\left\{x_{3}\right\} \quad\left\{x_{5}\right\}
\end{gathered}
$$

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ
(1) define equivalence class for each variable in φ
(2) for each equality $x=y$ in φ
merge equivalence classes that contain x and y

Examples

$$
\begin{gathered}
x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2}=x_{4} \wedge x_{3}=x_{5} \wedge x_{2} \neq x_{5} \wedge x_{4}=x_{5} \\
\left\{x_{1}, x_{2}, x_{4}\right\} \quad\left\{x_{3}, x_{5}\right\}
\end{gathered}
$$

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ
(1) define equivalence class for each variable in φ
(2) for each equality $x=y$ in φ
merge equivalence classes that contain x and y

Examples

$$
\begin{gathered}
x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2}=x_{4} \wedge x_{3}=x_{5} \wedge x_{2} \neq x_{5} \wedge x_{4}=x_{5} \\
\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}
\end{gathered}
$$

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ
(1) define equivalence class for each variable in φ
(2) for each equality $x=y$ in φ merge equivalence classes that contain x and y
(3) for each disequality $x \neq y$ in φ
if x and y belong to same equivalence class, return unsatisfiable

Examples

$$
\begin{gathered}
x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2}=x_{4} \wedge x_{3}=x_{5} \wedge x_{2} \neq x_{5} \wedge x_{4}=x_{5} \\
\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}
\end{gathered}
$$

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ
(1) define equivalence class for each variable in φ
(2) for each equality $x=y$ in φ merge equivalence classes that contain x and y
(3) for each disequality $x \neq y$ in φ
if x and y belong to same equivalence class, return unsatisfiable

Examples

$$
\begin{gathered}
x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2}=x_{4} \wedge x_{3}=x_{5} \wedge x_{2} \neq x_{5} \wedge x_{4}=x_{5} \\
\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \quad \text { unsatisfiable }
\end{gathered}
$$

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ
(1) define equivalence class for each variable in φ
(2) for each equality $x=y$ in φ merge equivalence classes that contain x and y
(3) for each disequality $x \neq y$ in φ
if x and y belong to same equivalence class, return unsatisfiable
(4) return satisfiable

Examples

$$
\begin{gathered}
x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2}=x_{4} \wedge x_{3}=x_{5} \wedge x_{2} \neq x_{5} \wedge x_{4}=x_{5} \\
\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \quad \text { unsatisfiable }
\end{gathered}
$$

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ

1. define equivalence class for each variable in φ
(2) for each equality $x=y$ in φ
merge equivalence classes that contain x and y
(3) for each disequality $x \neq y$ in φ
if x and y belong to same equivalence class, return unsatisfiable
(4) return satisfiable
T-solver for equality logic

Definitions

- equality graph is undirected graph $G_{=}(\varphi)=\left(V, E_{=}, E_{\neq}\right)$

Definitions

- equality graph is undirected graph $G_{=}(\varphi)=\left(V, E_{=}, E_{\neq}\right)$with
- $E_{=}$edges corresponding to positive (equality) literals in φ

Definitions

- equality graph is undirected graph $G_{=}(\varphi)=\left(V, E_{=}, E_{\neq}\right)$with
- $E_{=}$edges corresponding to positive (equality) literals in φ
- E_{\neq}edges corresponding to negative (inequality) literals in φ

Definitions

- equality graph is undirected graph $G_{=}(\varphi)=\left(V, E_{=}, E_{\neq}\right)$with
- $E_{=}$edges corresponding to positive (equality) literals in φ
- E_{\neq}edges corresponding to negative (inequality) literals in φ
- contradictory cycle is cycle with exactly one E_{\neq}edge

Definitions

- equality graph is undirected graph $G_{=}(\varphi)=\left(V, E_{=}, E_{\neq}\right)$with
- $E_{=}$edges corresponding to positive (equality) literals in φ
- E_{\neq}edges corresponding to negative (inequality) literals in φ
- contradictory cycle is cycle with exactly one E_{\neq}edge
- contradictory cycle is simple if no node appears twice

Definitions

- equality graph is undirected graph $G_{=}(\varphi)=\left(V, E_{=}, E_{\neq}\right)$with
- $E_{=}$edges corresponding to positive (equality) literals in φ
- E_{\neq}edges corresponding to negative (inequality) literals in φ
- contradictory cycle is cycle with exactly one E_{\neq}edge
- contradictory cycle is simple if no node appears twice

Lemma

φ is satisfiable $\Longleftrightarrow G_{=}(\varphi)$ contains no simple contradictory cycles

Example

formula φ

$$
\begin{aligned}
& x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{2}=x_{6} \wedge x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

Example

formula φ

$$
\begin{aligned}
& x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{2}=x_{6} \wedge x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- equality graph $G_{=}(\varphi)$

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
x_{6}	x_{7}	x_{8}	x_{9}	x_{10}

Example

formula φ

$$
\begin{aligned}
& x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{2}=x_{6} \wedge x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- equality graph $G_{=}(\varphi)$

$x_{1}-x_{2}$	x_{3}	x_{4}	x_{5}	
x_{6}	x_{7}	x_{8}	x_{9}	x_{10}

Example

formula φ

$$
\begin{aligned}
& x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{2}=x_{6} \wedge x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- equality graph $G_{=}(\varphi)$

x_{6}	x_{7}	x_{8}	x_{9}	x_{10}

Example

formula φ

$$
\begin{aligned}
& x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{2}=x_{6} \wedge x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- equality graph $G_{=}(\varphi)$

Example

formula φ

$$
\begin{aligned}
& x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{2}=x_{6} \wedge x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- equality graph $G_{=}(\varphi)$

- contradictory cycles

$$
x_{9}=x_{5} \ldots x_{10}
$$

Example

formula φ

$$
\begin{aligned}
& x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{2}=x_{6} \wedge x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- equality graph $G_{=}(\varphi)$

- contradictory cycles

$$
x_{9}=x_{5} \ldots x_{10} \quad x_{7}=x_{9}-x_{10} \ldots x_{5}
$$

Example

formula φ

$$
\begin{aligned}
& x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{2}=x_{6} \wedge x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- equality graph $G_{=}(\varphi)$

- contradictory cycles

$$
x_{9}=x_{5}-\ldots x_{10} \quad x_{7}=x_{9}-x_{10}-x_{5} \quad x_{5}=x_{3}-x_{5}--x_{10}-x_{9}
$$

Example

formula φ

$$
\begin{aligned}
& x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{2}=x_{6} \wedge x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- equality graph $G_{=}(\varphi)$

- contradictory cycles

Example

formula φ

$$
\begin{aligned}
& x_{1}=x_{2} \wedge x_{1} \neq x_{3} \wedge x_{3}=x_{5} \wedge x_{4} \neq x_{6} \wedge x_{6} \neq x_{7} \wedge x_{5}=x_{9} \wedge \\
& x_{2}=x_{6} \wedge x_{5}=x_{7} \wedge x_{8} \neq x_{9} \wedge x_{9}=x_{10} \wedge x_{7}=x_{9} \wedge x_{5} \neq x_{10}
\end{aligned}
$$

- equality graph $G_{=}(\varphi)$

- contradictory cycles

- φ is unsatisfiable

Outline

1. Summary of Previous Lecture
2. Equality Logic
3. Equality Logic with Uninterpreted Functions
4. EUF
5. Congruence Closure
6. Further Reading

Aim

- further increase expressivity of logic
- one solution: add uninterpreted functions

Aim

- further increase expressivity of logic
- one solution: add uninterpreted functions

Theory of Equality with Uninterpreted Symbols

- signature: function and predicate symbols, including binary symbol =

Aim

- further increase expressivity of logic
- one solution: add uninterpreted functions

Theory of Equality with Uninterpreted Symbols

- signature: function and predicate symbols, including binary symbol $=$
- axioms of equality logic, and the following ones

Aim

- further increase expressivity of logic
- one solution: add uninterpreted functions

Theory of Equality with Uninterpreted Symbols

- signature: function and predicate symbols, including binary symbol $=$
- axioms of equality logic, and the following ones
- function congruence (for every n-ary function symbol f)

$$
\forall x_{1} \ldots x_{n} y_{1} \ldots y_{n} \cdot x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

Aim

- further increase expressivity of logic
- one solution: add uninterpreted functions

Theory of Equality with Uninterpreted Symbols

- signature: function and predicate symbols, including binary symbol $=$
- axioms of equality logic, and the following ones
- function congruence (for every n-ary function symbol f)

$$
\forall x_{1} \ldots x_{n} y_{1} \ldots y_{n} . x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

- predicate congruence (for every n-ary predicate symbol P)

$$
\forall x_{1} \ldots x_{n} y_{1} \ldots y_{n} \cdot x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n} \rightarrow\left(P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow P\left(y_{1}, \ldots, y_{n}\right)\right)
$$

Quiz: Is the formula satisfiable?

- is formula

$$
x=g(y, z) \wedge f(x) \neq f(g(y, z))
$$

satisfiable?

Quiz: Is the formula satisfiable?

- is formula

$$
x=g(y, z) \wedge f(x) \neq f(g(y, z))
$$

satisfiable?

- model \mathcal{M} with \mathbb{N} as carrier:

$$
f_{\mathcal{M}}(a)=a+1 \quad \forall a \in \mathbb{N}
$$

Quiz: Is the formula satisfiable?

- is formula

$$
x=g(y, z) \wedge f(x) \neq f(g(y, z))
$$

satisfiable?

- model \mathcal{M} with \mathbb{N} as carrier:

$$
\begin{aligned}
f_{\mathcal{M}}(a) & =a+1 & & \forall a \in \mathbb{N} \\
g_{\mathcal{M}}(a, b) & =1 & & \forall a, b \in \mathbb{N}
\end{aligned}
$$

Quiz: Is the formula satisfiable?

- is formula

$$
x=g(y, z) \wedge f(x) \neq f(g(y, z))
$$

satisfiable?

- model \mathcal{M} with \mathbb{N} as carrier:

$$
\begin{aligned}
f_{\mathcal{M}}(a) & =a+1 & & \forall a \in \mathbb{N} \\
g_{\mathcal{M}}(a, b) & =1 & & \forall a, b \in \mathbb{N} \\
={ }_{\mathcal{M}} & =\{(a, b) & & a=b \text { or } a, b \in\{0,1\}\}
\end{aligned}
$$

Quiz: Is the formula satisfiable?

- is formula

$$
x=g(y, z) \wedge f(x) \neq f(g(y, z))
$$

satisfiable?

- model \mathcal{M} with \mathbb{N} as carrier:

$$
\begin{aligned}
f_{\mathcal{M}}(a) & =a+1 & & \forall a \in \mathbb{N} \\
g_{\mathcal{M}}(a, b) & =1 & & \forall a, b \in \mathbb{N} \\
={ }_{\mathcal{M}} & =\{(a, b) \mid & & a=b \text { or } a, b \in\{0,1\}\}
\end{aligned}
$$

- environment $I: \quad I(x)=I(y)=I(z)=0$

Congruence axioms are essential!

$=\mathcal{M}$ does not satisfy function congruence axiom $\quad \forall x y . x=y \rightarrow f(x)=f(y)$

Remark

simplification: predicate symbols can be eliminated

Remark

simplification: predicate symbols can be eliminated

- add fresh constant •

Remark

simplification: predicate symbols can be eliminated

- add fresh constant •
- add fresh n-ary function symbol f_{P} for each predicate symbol P of arity n

Remark

simplification: predicate symbols can be eliminated

- add fresh constant •
- add fresh n-ary function symbol f_{P} for each predicate symbol P of arity n
- replace every atomic formula $P\left(t_{1}, \ldots, t_{n}\right)$ by $f_{P}\left(t_{1}, \ldots, t_{n}\right)=\bullet$

Remark

simplification: predicate symbols can be eliminated

- add fresh constant -
- add fresh n-ary function symbol f_{P} for each predicate symbol P of arity n
- replace every atomic formula $P\left(t_{1}, \ldots, t_{n}\right)$ by $f_{P}\left(t_{1}, \ldots, t_{n}\right)=\bullet$

Example

formula

$$
P \wedge Q(x) \wedge \neg R(x, y) \wedge x=z \rightarrow R(x, z)
$$

Remark

simplification: predicate symbols can be eliminated

- add fresh constant -
- add fresh n-ary function symbol f_{P} for each predicate symbol P of arity n
- replace every atomic formula $P\left(t_{1}, \ldots, t_{n}\right)$ by $f_{P}\left(t_{1}, \ldots, t_{n}\right)=\bullet$

Example

formula

$$
P \wedge Q(x) \wedge \neg R(x, y) \wedge x=z \rightarrow R(x, z)
$$

is transformed into

$$
f_{P}=\bullet \wedge f_{Q}(x)=\bullet \wedge f_{R}(x, y) \neq \bullet \wedge x=z \rightarrow f_{R}(x, z)=\bullet
$$

Theorem

satisfiability in theory of equality with uninterpreted functions is undecidable

Theorem

satisfiability in theory of equality with uninterpreted functions is undecidable

Proof

reduction from PCP (Post correspondence problem) instance $P \subseteq \Gamma^{+} \times \Gamma^{+}$

Theorem

satisfiability in theory of equality with uninterpreted functions is undecidable

Proof

reduction from PCP (Post correspondence problem) instance $P \subseteq \Gamma^{+} \times \Gamma^{+}$

- constant e, unary function symbol a for all $a \in \Gamma$, binary predicate symbol Q

Theorem

satisfiability in theory of equality with uninterpreted functions is undecidable

Proof

reduction from PCP (Post correspondence problem) instance $P \subseteq \Gamma^{+} \times \Gamma^{+}$

- constant e, unary function symbol a for all $a \in \Gamma$, binary predicate symbol Q
- if $\alpha=a_{1} a_{2} \cdots a_{n}$ then $\alpha(t)$ denotes $a_{n}\left(\cdots\left(a_{2}\left(a_{1}(t)\right)\right) \cdots\right)$

Theorem

satisfiability in theory of equality with uninterpreted functions is undecidable

Proof

reduction from PCP (Post correspondence problem) instance $P \subseteq \Gamma^{+} \times \Gamma^{+}$

- constant e, unary function symbol a for all $a \in \Gamma$, binary predicate symbol Q
- if $\alpha=a_{1} a_{2} \cdots a_{n}$ then $\alpha(t)$ denotes $a_{n}\left(\cdots\left(a_{2}\left(a_{1}(t)\right)\right) \cdots\right)$
- formula in theory of equality with uninterpreted functions

$$
\bigwedge_{(\alpha, \beta) \in P} Q(\alpha(e), \beta(e)) \wedge\left(\forall v w \cdot Q(v, w) \rightarrow \bigwedge_{(\alpha, \beta) \in P} Q(\alpha(v), \beta(w))\right) \rightarrow \exists z \cdot Q(z, z)
$$

is valid $\Longleftrightarrow P$ has solution

Theorem

satisfiability in theory of equality with uninterpreted functions is undecidable

Proof

reduction from PCP (Post correspondence problem) instance $P \subseteq \Gamma^{+} \times \Gamma^{+}$

- constant e, unary function symbol a for all $a \in \Gamma$, binary predicate symbol Q
- if $\alpha=a_{1} a_{2} \cdots a_{n}$ then $\alpha(t)$ denotes $a_{n}\left(\cdots\left(a_{2}\left(a_{1}(t)\right)\right) \cdots\right)$
- formula in theory of equality with uninterpreted functions

$$
\bigwedge_{(\alpha, \beta) \in P} Q(\alpha(e), \beta(e)) \wedge\left(\forall v w \cdot Q(v, w) \rightarrow \bigwedge_{(\alpha, \beta) \in P} Q(\alpha(v), \beta(w))\right) \rightarrow \exists z \cdot Q(z, z)
$$

is valid $\Longleftrightarrow P$ has solution

Outline

1. Summary of Previous Lecture
2. Equality Logic
3. Equality Logic with Uninterpreted Functions

4. EUF

5. Congruence Closure
6. Further Reading

Definition

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Definition

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

- $x_{1} \neq x_{2} \vee \mathrm{f}\left(x_{1}\right)=\mathrm{f}\left(x_{2}\right) \vee \mathrm{f}\left(x_{1}\right) \neq \mathrm{f}\left(x_{3}\right)$
- $x_{1}=x_{2} \rightarrow \mathrm{f}\left(\mathrm{f}\left(\mathrm{g}\left(\mathrm{x}_{1}, x_{2}\right)\right)\right)=\mathrm{f}\left(\mathrm{g}\left(\mathrm{x}_{2}, x_{1}\right)\right)$

Definition

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

- $x_{1} \neq x_{2} \vee \mathrm{f}\left(x_{1}\right)=\mathrm{f}\left(x_{2}\right) \vee \mathrm{f}\left(x_{1}\right) \neq \mathrm{f}\left(x_{3}\right)$
- $x_{1}=x_{2} \rightarrow \mathrm{f}\left(\mathrm{f}\left(\mathrm{g}\left(x_{1}, x_{2}\right)\right)\right)=\mathrm{f}\left(\mathrm{g}\left(x_{2}, x_{1}\right)\right)$

Examples

- $a \neq b \wedge f(a)=f(b)$

Definition

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

- $x_{1} \neq x_{2} \vee \mathrm{f}\left(x_{1}\right)=f\left(x_{2}\right) \vee \mathrm{f}\left(x_{1}\right) \neq \mathrm{f}\left(x_{3}\right)$
- $x_{1}=x_{2} \rightarrow \mathrm{f}\left(\mathrm{f}\left(\mathrm{g}\left(x_{1}, x_{2}\right)\right)\right)=\mathrm{f}\left(\mathrm{g}\left(x_{2}, x_{1}\right)\right)$

Examples

- $a \neq b \wedge f(a)=f(b)$

Definition

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

- $x_{1} \neq x_{2} \vee \mathrm{f}\left(x_{1}\right)=f\left(x_{2}\right) \vee \mathrm{f}\left(x_{1}\right) \neq \mathrm{f}\left(x_{3}\right)$
- $x_{1}=x_{2} \rightarrow \mathrm{f}\left(\mathrm{f}\left(\mathrm{g}\left(x_{1}, x_{2}\right)\right)\right)=\mathrm{f}\left(\mathrm{g}\left(x_{2}, x_{1}\right)\right)$

Examples

- $a \neq b \wedge f(a)=f(b)$

EUF-consistent

- $a=f(b) \wedge b=f(a) \wedge f(b) \neq f(f(f(b)))$

Definition

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

- $x_{1} \neq x_{2} \vee \mathrm{f}\left(x_{1}\right)=f\left(x_{2}\right) \vee \mathrm{f}\left(x_{1}\right) \neq \mathrm{f}\left(x_{3}\right)$
- $x_{1}=x_{2} \rightarrow \mathrm{f}\left(\mathrm{f}\left(\mathrm{g}\left(x_{1}, x_{2}\right)\right)\right)=\mathrm{f}\left(\mathrm{g}\left(x_{2}, x_{1}\right)\right)$

Examples

- $a \neq b \wedge f(a)=f(b)$
- $a=f(b) \wedge b=f(a) \wedge f(b) \neq f(f(f(b)))$

EUF-consistent not EUF-consistent

Definition

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

- $x_{1} \neq x_{2} \vee \mathrm{f}\left(x_{1}\right)=f\left(x_{2}\right) \vee \mathrm{f}\left(x_{1}\right) \neq \mathrm{f}\left(x_{3}\right)$
- $x_{1}=x_{2} \rightarrow \mathrm{f}\left(\mathrm{f}\left(\mathrm{g}\left(x_{1}, x_{2}\right)\right)\right)=\mathrm{f}\left(\mathrm{g}\left(x_{2}, x_{1}\right)\right)$

Examples

- $a \neq b \wedge f(a)=f(b)$
- $a=f(b) \wedge b=f(a) \wedge f(b) \neq f(f(f(b)))$
not EUF-consistent
- $a=b \vDash_{\text {EUF }} f(a)=f(b)$

Definition

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

- $x_{1} \neq x_{2} \vee \mathrm{f}\left(x_{1}\right)=f\left(x_{2}\right) \vee \mathrm{f}\left(x_{1}\right) \neq \mathrm{f}\left(x_{3}\right)$
- $x_{1}=x_{2} \rightarrow \mathrm{f}\left(\mathrm{f}\left(\mathrm{g}\left(x_{1}, x_{2}\right)\right)\right)=\mathrm{f}\left(\mathrm{g}\left(x_{2}, x_{1}\right)\right)$

Examples

- $a \neq b \wedge f(a)=f(b)$

EUF-consistent

- $a=f(b) \wedge b=f(a) \wedge f(b) \neq f(f(f(b)))$
not EUF-consistent
- $a=b \vDash_{\text {EUF }} f(a)=f(b)$
- $a=b \not \equiv_{\text {EUF }} f(a)=f(b)$

Remark

- for satisfiability it does not matter whether one chooses variables or constants

Remark

- for satisfiability it does not matter whether one chooses variables or constants
- example: $a=f(y)$ is equisatisfiable to $a=f\left(c_{y}\right)$ and to $x_{a}=f(y)$

Remark

- for satisfiability it does not matter whether one chooses variables or constants
- example: $\mathrm{a}=\mathrm{f}(y)$ is equisatisfiable to $\mathrm{a}=\mathrm{f}\left(\mathrm{c}_{y}\right)$ and to $x_{\mathrm{a}}=\mathrm{f}(y)$
- consequence: we use EUF restricted to ground terms, i.e., terms without variables

Remark

- for satisfiability it does not matter whether one chooses variables or constants
- example: $a=f(y)$ is equisatisfiable to $a=f\left(c_{y}\right)$ and to $x_{a}=f(y)$
- consequence: we use EUF restricted to ground terms, i.e., terms without variables

Remark

- SMT solvers are often used to validate certain consequences

Remark

- for satisfiability it does not matter whether one chooses variables or constants
- example: $a=f(y)$ is equisatisfiable to $a=f\left(c_{y}\right)$ and to $x_{a}=f(y)$
- consequence: we use EUF restricted to ground terms, i.e., terms without variables

Remark

- SMT solvers are often used to validate certain consequences
- example: $e q_{1} \wedge e q_{2} \rightarrow e q_{3}$
(for universally quantified variables)

Remark

- for satisfiability it does not matter whether one chooses variables or constants
- example: $a=f(y)$ is equisatisfiable to $a=f\left(c_{y}\right)$ and to $x_{a}=f(y)$
- consequence: we use EUF restricted to ground terms, i.e., terms without variables

Remark

- SMT solvers are often used to validate certain consequences
- example: $e q_{1} \wedge e q_{2} \rightarrow e q_{3}$
- therefore prove unsatisfiability of $e q_{1} \wedge e q_{2} \wedge \neg e q_{3}$
(for universally quantified variables) (for existentially quantified variables)

Remark

- for satisfiability it does not matter whether one chooses variables or constants
- example: $a=f(y)$ is equisatisfiable to $a=f\left(c_{y}\right)$ and to $x_{a}=f(y)$
- consequence: we use EUF restricted to ground terms, i.e., terms without variables

Remark

- SMT solvers are often used to validate certain consequences
- example: $e q_{1} \wedge e q_{2} \rightarrow e q_{3}$
- therefore prove unsatisfiability of $e q_{1} \wedge e q_{2} \wedge \neg e q_{3}$
- consequence: ability of SMT solvers to prove unsat is essential

Example

- two C functions computing $x \mapsto x^{3}$

```
int power3(int in) {
        int i, out;
        out = in;
        for (i = 0; i < 2; i++)
        out = out * in;
        return out;
}
```

```
int power3_new(int in) {
    int out;
    out = (in * in) * in;
    return out;
}
```


Example

- two C functions computing $x \mapsto x^{3}$

```
int power3(int in) {
    int i, out;
        out = in;
        for (i = 0; i < 2; i++)
            out = out * in;
        return out;
}
```

- are these functions equivalent?

Example

- two C functions computing $x \mapsto x^{3}$

```
int power3(int in) {
    int i, out;
        out = in;
        for (i = 0; i < 2; i++)
            out = out * in;
        return out;
}
```

- are these functions equivalent?

$$
\varphi_{a}: \text { out }_{a}^{0}=\text { in }
$$

Example

- two C functions computing $x \mapsto x^{3}$

```
int power3(int in) { int power3_new(int in) {
    int i, out;
        out = in;
        for (i = 0; i < 2; i++)
            out = out * in;
        return out;
}
```

- are these functions equivalent?

$$
\varphi_{a}: \text { out }_{a}^{0}=\text { in } \wedge \text { out }_{a}^{1}=\text { out }_{a}^{0} * \text { in }
$$

Example

- two C functions computing $x \mapsto x^{3}$

```
int power3(int in) { int power3_new(int in) {
    int i, out;
        out = in;
        for (i = 0; i < 2; i++)
                out = out * in;
        return out;
}
```

- are these functions equivalent?

$$
\varphi_{a}: \text { out }_{a}^{0}=\text { in } \wedge \text { out }_{a}^{1}=\text { out }_{a}^{0} * \text { in } \wedge \text { out }_{a}^{2}=\text { out }_{a}^{1} * \text { in }
$$

Example

- two C functions computing $x \mapsto x^{3}$

```
int power3(int in) {
    int i, out;
        out = in;
        for (i = 0; i < 2; i++)
                out = out * in;
        return out;
}
```

- are these functions equivalent?

$$
\begin{aligned}
& \varphi_{a}: \text { out }_{a}^{0}=\text { in } \wedge \text { out }_{a}^{1}=\text { out }_{a}^{0} * \text { in } \wedge \text { out }_{a}^{2}=\text { out }_{a}^{1} * \text { in } \\
& \varphi_{b}: \text { out }_{b}^{0}=(\text { in } * \text { in }) * \text { in }
\end{aligned}
$$

Example

- two C functions computing $x \mapsto x^{3}$

```
int power3(int in) { int power3_new(int in) {
    int i, out;
        out = in;
        for (i = 0; i < 2; i++)
                out = out * in;
        return out;
}
```

- are these functions equivalent?

$$
\begin{aligned}
& \varphi_{a}: \text { out }_{a}^{0}=\text { in } \wedge \text { out }_{a}^{1}=\text { out }_{a}^{0} * \text { in } \wedge \text { out }_{a}^{2}=\text { out }_{a}^{1} * \text { in } \\
& \varphi_{b}: \text { out }_{b}^{0}=(\text { in } * \text { in }) * \text { in } \\
& \varphi_{a} \wedge \varphi_{b} \rightarrow \text { out }_{a}^{2}=\text { out }_{b}^{0}
\end{aligned}
$$

Example

- two C functions computing $x \mapsto x^{3}$

```
int power3(int in) { int power3_new(int in) {
    int i, out;
        out = in;
        for (i = 0; i < 2; i++)
                out = out * in;
        return out;
}
```

- are these functions equivalent?

$$
\begin{gathered}
\varphi_{a}: \text { out }_{a}^{0}=\text { in } \wedge \text { out }_{a}^{1}=\text { out }_{a}^{0} * \text { in } \wedge \text { out }_{a}^{2}=\text { out }_{a}^{1} * \text { in } \\
\varphi_{b}: \text { out }_{b}^{0}=(\text { in } * \text { in }) * \text { in } \\
\varphi_{a} \wedge \varphi_{b} \rightarrow \text { out }_{a}^{2}=\text { out }_{b}^{0}
\end{gathered}
$$

- simplify problem by substituting uninterpreted function g for $*$

Example

- two C functions computing $x \mapsto x^{3}$

```
int power3(int in) { int power3_new(int in) {
    int i, out;
        out = in;
        for (i = 0; i < 2; i++)
                out = out * in;
        return out;
}
```

- are these functions equivalent?

$$
\begin{gathered}
\varphi_{a}: \operatorname{out}_{a}^{0}=\text { in } \wedge \text { out }_{a}^{1}=g\left(\text { out }_{a}^{0}, \text { in }\right) \wedge \text { out }_{a}^{2}=g\left(\text { out }_{a}^{1}, \text { in }\right) \\
\varphi_{b}: \text { out }_{b}^{0}=g(g(\text { in }, \text { in }), \text { in }) \\
\varphi_{a} \wedge \varphi_{b} \rightarrow \text { out }_{a}^{2}=\text { out }_{b}^{0}
\end{gathered}
$$

- simplify problem by substituting uninterpreted function g for $*$

SMT-LIB 2 Format for EUF

EUF formula $f(f(a))=a \wedge f(a)=b \wedge a \neq b$

SMT-LIB 2 Format for EUF

EUF formula $\mathrm{f}(\mathrm{f}(\mathrm{a}))=\mathrm{a} \wedge \mathrm{f}(\mathrm{a})=\mathrm{b} \wedge \mathrm{a} \neq \mathrm{b}$
(declare-sort A)

- terms are sorted

SMT-LIB 2 Format for EUF

EUF formula $f(f(a))=a \wedge f(a)=b \wedge a \neq b$
(declare-sort A)
(declare-const a A)
(declare-const b A)

- terms are sorted
- declare-const x S creates variable x of sort S

SMT-LIB 2 Format for EUF

EUF formula $f(f(a))=a \wedge f(a)=b \wedge a \neq b$

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
```

- terms are sorted
- declare-const x S creates variable x of sort S
- declare-fun f (S1 ... Sn) T
creates uninterpreted function $f: S_{1} \times \cdots \times S_{n} \rightarrow T$

SMT-LIB 2 Format for EUF

EUF formula $f(f(a))=a \wedge f(a)=b \wedge a \neq b$

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
```

- terms are sorted
- declare-const x S creates variable x of sort S
- declare-fun f (S1 ... Sn) T creates uninterpreted function $f: S_{1} \times \cdots \times S_{n} \rightarrow T$
- prefix notation for terms and equations

SMT-LIB 2 Format for EUF

EUF formula $f(f(a))=a \wedge f(a)=b \wedge a \neq b$

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
```

- terms are sorted
- declare-const x S creates variable x of sort S
- declare-fun f (S1 ... Sn) T creates uninterpreted function $f: S_{1} \times \cdots \times S_{n} \rightarrow T$
- prefix notation for terms and equations
- (distinct $\mathrm{x} y$) is equivalent to not (= x y)

SMT-LIB 2 Format for EUF

EUF formula $f(f(a))=a \wedge f(a)=b \wedge a \neq b$

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```

- terms are sorted
- declare-const x S creates variable x of sort S
- declare-fun f (S1 ... Sn) T creates uninterpreted function $f: S_{1} \times \cdots \times S_{n} \rightarrow T$
- prefix notation for terms and equations
- (distinct $\mathrm{x} y$) is equivalent to not (= x y)

Outline

1. Summary of Previous Lecture
2. Equality Logic
3. Equality Logic with Uninterpreted Functions
4. EUF

5. Congruence Closure

6. Further Reading

Congruence Closure (core algorithm for T-Solver of EUF)

input: \quad set E of ground equations and ground equation $s \approx t$ output: valid $\left(E \vDash_{E U F} s=t\right)$ or invalid $\left(E \nvdash_{E U F} s=t\right)$

Congruence Closure (core algorithm for T-Solver of EUF)

input: \quad set E of ground equations and ground equation $s \approx t$
output: valid $\left(E \vDash_{E U F} s=t\right)$ or invalid $\left(E \nvdash_{E U F} s=t\right)$
(1) build congruence classes
(a) put different subterms of terms in $E \cup\{s=t\}$ in separate sets

Congruence Closure (core algorithm for T-Solver of EUF)

input: \quad set E of ground equations and ground equation $s \approx t$
output: valid $\left(E \vDash_{E U F} s=t\right)$ or invalid $\left(E \nvdash_{E U F} s=t\right)$
(1) build congruence classes
(a) put different subterms of terms in $E \cup\{s=t\}$ in separate sets
(b) merge sets $\left\{\ldots, t_{1}, \ldots\right\}$ and $\left\{\ldots, t_{2}, \ldots\right\}$ for all $t_{1}=t_{2}$ in E

Congruence Closure (core algorithm for T-Solver of EUF)

input: set E of ground equations and ground equation $s \approx t$
output: valid $\left(E \vDash_{E U F} s=t\right)$ or invalid $\left(E \nvdash_{E U F} s=t\right)$
(1) build congruence classes
(a) put different subterms of terms in $E \cup\{s=t\}$ in separate sets
(b) merge sets $\left\{\ldots, t_{1}, \ldots\right\}$ and $\left\{\ldots, t_{2}, \ldots\right\}$ for all $t_{1}=t_{2}$ in E
(c) repeatedly merge sets

$$
\left\{\ldots, f\left(s_{1}, \ldots, s_{n}\right), \ldots\right\} \text { and }\left\{\ldots, f\left(t_{1}, \ldots, t_{n}\right), \ldots\right\}
$$

if s_{i} and t_{i} belong to same set for all $1 \leqslant i \leqslant n$

Congruence Closure (core algorithm for T-Solver of EUF)

input: set E of ground equations and ground equation $s \approx t$
output: valid $\left(E \vDash_{E U F} s=t\right)$ or invalid $\left(E \nvdash_{E U F} s=t\right)$
(1) build congruence classes
(a) put different subterms of terms in $E \cup\{s=t\}$ in separate sets
(b) merge sets $\left\{\ldots, t_{1}, \ldots\right\}$ and $\left\{\ldots, t_{2}, \ldots\right\}$ for all $t_{1}=t_{2}$ in E
(c) repeatedly merge sets

$$
\left\{\ldots, f\left(s_{1}, \ldots, s_{n}\right), \ldots\right\} \text { and }\left\{\ldots, f\left(t_{1}, \ldots, t_{n}\right), \ldots\right\}
$$

if s_{i} and t_{i} belong to same set for all $1 \leqslant i \leqslant n$
2 if s and t belong to same set then return valid else return invalid

Example (1)

- set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

equation $f(a)=g(a)$

Example (1)

- set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

equation $f(a)=g(a)$

- sets

1. $\{a\}$	5. $\{f(f(a))\}$	9. $\{f(g(f(b)))\}$	13. $\{g(a)\}$
2. $\{f(a)\}$	6. $\{f(f(f(a)))\}$	10. $\{g(f(g(f(b))))\}$	
3. $\{b\}$	7. $\{f(b)\}$	11. $\{g(g(b))\}$	
4. $\{g(b)\}$	8. $\{g(f(b))\}$	12. $\{g(f(a))\}$	

Example (1)

- set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

equation $f(a)=g(a)$

- sets

1. $\{a\}$	5. $\{f(f(a))\}$	9. $\{f(g(f(b)))\}$	13. $\{g(a)\}$
2. $\{f(a)\}$	6. $\{f(f(f(a)))\}$	10. $\{g(f(g(f(b))))\}$	
3. $\{b\}$	7. $\{f(b)\}$	11. $\{g(g(b))\}$	
4. $\{g(b)\}$	8. $\{g(f(b))\}$	12. $\{g(f(a))\}$	

Example (1)

- set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

equation $f(a)=g(a)$

- sets

1. $\{a\}$
2. $\{f(a)\}$
3. $\{b\}$
4. $\{g(b)\}$
5. $\{f(f(a))\}$
6. $\{f(f(f(a))), g(f(g(f(b))))\}$
7. $\{f(b)\}$
8. $\{g(f(b))\}$
9. $\{f(g(f(b)))\}$
10. $\{g(g(b))\}$
11. $\{g(f(a))\}$
12. $\{g(a)\}$

Example (1)

- set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

equation $f(a)=g(a)$

- sets

1. $\{a\}$
2. $\{f(a)\}$
3. $\{b\}$
4. $\{g(b)\}$
5. $\{f(f(a))\}$
6. $\{f(f(f(a))), g(f(g(f(b))))\}$
7. $\{f(b)\}$
8. $\{g(f(b))\}$
9. $\{f(g(f(b)))\}$
10. $\{g(g(b))\}$
11. $\{g(f(a))\}$
12. $\{g(a)\}$

Example (1)

- set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

equation $f(a)=g(a)$

- sets

1. $\{a\}$
2. $\{f(a), f(g(f(b)))\}$
3. $\{b\}$
4. $\{g(b)\}$
5. $\{f(f(a))\}$
6. $\{f(f(f(a))), g(f(g(f(b))))\}$
7. $\{f(b)\}$
8. $\{g(f(b))\}$
9. $\{g(g(b))\}$
10. $\{g(f(a))\}$
11. $\{g(a)\}$

Example (1)

- set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

equation $f(a)=g(a)$

- sets

1. $\{a\}$
2. $\{f(a), f(g(f(b)))\}$
3. $\{b\}$
4. $\{g(b)\}$
5. $\{f(f(a))\}$
6. $\{f(f(f(a))), g(f(g(f(b))))\}$
7. $\{f(b)\}$
8. $\{g(f(b))\}$
9. $\{g(g(b))\}$
10. $\{g(f(a))\}$
11. $\{g(a)\}$

Example (1)

- set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

equation $f(a)=g(a)$

- sets

1. $\{a\}$
2. $\{f(a), f(g(f(b)))\}$
3. $\{b\}$
4. $\{g(b)\}$
5. $\{f(f(a))\}$
6. $\{f(f(f(a))), g(f(g(f(b))))\}$
7. $\{f(b)\}$
8. $\{g(f(b))\}$
9. $\{g(g(b)), g(f(a))\}$
10. $\{g(a)\}$

Example (1)

- set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

equation $f(a)=g(a)$

- sets

1. $\{a\}$
2. $\{f(a), f(g(f(b)))\}$
3. $\{b\}$
4. $\{g(b)\}$
5. $\{f(f(a))\}$
6. $\{f(f(f(a))), g(f(g(f(b))))\}$
7. $\{f(b)\}$
8. $\{g(f(b))\}$
9. $\{g(g(b)), g(f(a))\}$
10. $\{g(a)\}$

Example (1)

- set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

equation $f(a)=g(a)$

- sets

1. $\{a\}$
2. $\{f(a), f(g(f(b)))\}$
3. $\{b, g(a)\}$
4. $\{g(b)\}$
5. $\{f(f(a))\}$
6. $\{f(f(f(a))), g(f(g(f(b))))\}$
7. $\{f(b)\}$
8. $\{g(f(b))\}$
9. $\{g(g(b)), g(f(a))\}$

Example (1)

- set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

equation $f(a)=g(a)$

- sets

1. $\{a\}$
2. $\{f(a), f(g(f(b)))\}$
3. $\{b, g(a)\}$
4. $\{g(b)\}$
5. $\{f(f(a))\}$
6. $\{f(f(f(a))), g(f(g(f(b))))\}$
7. $\{f(b)\}$
8. $\{g(f(b))\}$
9. $\{g(g(b)), g(f(a))\}$

Example (1)

- set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

equation $f(a)=g(a)$

- sets

1. $\{a\}$
2. $\{f(a), f(g(f(b)))\}$
3. $\{b, g(a)\}$
4. $\{g(b)\}$
5. $\{f(f(a))\}$
6. $\{f(f(f(a))), g(f(g(f(b)))), g(g(b)), g(f(a))\}$
7. $\{f(b)\}$
8. $\{g(f(b))\}$

Example (1)

- set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

equation $f(a)=g(a)$

- sets

1. $\{a\}$
2. $\{f(a), f(g(f(b)))\}$
3. $\{b, g(a)\}$
4. $\{g(b)\}$
5. $\{f(f(a))\}$
6. $\{f(f(f(a))), g(f(g(f(b)))), g(g(b)), g(f(a))\}$
7. $\{f(b)\}$
8. $\{g(f(b))\}$

- conclusion: $E \nvdash_{\text {EUF }} f(a)=g(a)$

Example (2)

- set of equations E

$$
f(f(f(a)))=a
$$

$$
\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))=\mathrm{a}
$$

equation $f(a)=a$

Example (2)

- set of equations E

$$
f(f(f(a)))=a
$$

$$
f(f(f(f(f(a)))))=a
$$

equation $f(a)=a$

- sets

1. $\{a\}$
2. $\{f(a)\}$
3. $\{f(f(a))\}$
4. $\{f(f(f(a)))\}$
5. $\{f(f(f(f(a))))\}$
6. $\{\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))\}$

Example (2)

- set of equations E

$$
f(f(f(a)))=a
$$

$$
f(f(f(f(f(a)))))=a
$$

equation $f(a)=a$

- sets

1. $\{a\}$
2. $\{f(a)\}$
3. $\{f(f(a))\}$
4. $\{f(f(f(a)))\}$
5. $\{f(f(f(f(a))))\}$
6. $\{\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))\}$

Example (2)

- set of equations E

$$
f(f(f(a)))=a
$$

$$
f(f(f(f(f(a)))))=a
$$

equation $f(a)=a$

- sets

1. $\{a, f(f(f(a)))\}$
2. $\{f(a)\}$
3. $\{f(f(a))\}$
4. $\{f(f(f(f(a))))\}$
5. $\{\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))\}$

Example (2)

- set of equations E

$$
f(f(f(a)))=a
$$

$$
f(f(f(f(f(a)))))=a
$$

equation $f(a)=a$

- sets

1. $\{a, f(f(f(a)))\}$
2. $\{f(a)\}$
3. $\{f(f(a))\}$
4. $\{f(f(f(f(a))))\}$
5. $\{\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))\}$

Example (2)

- set of equations E

$$
f(f(f(a)))=a
$$

$$
f(f(f(f(f(a)))))=a
$$

equation $f(a)=a$

- sets

1. $\{\mathrm{a}, \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))), \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))\}$
2. $\{f(a)\}$
3. $\{f(f(a))\}$
4. $\{f(f(f(f(a))))\}$

Example (2)

- set of equations E

$$
f(f(f(a)))=a
$$

$$
f(f(f(f(f(a)))))=a
$$

equation $f(a)=a$

- sets

1. $\{\mathrm{a}, \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))), \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))\}$
2. $\{f(a)\}$
3. $\{f(f(a))\}$
4. $\{f(f(f(f(a))))\}$

Example (2)

- set of equations E

$$
f(f(f(a)))=a
$$

$$
f(f(f(f(f(a)))))=a
$$

equation $f(a)=a$

- sets

$$
\begin{aligned}
& \text { 1. }\{a, f(f(f(a))), f(f(f(f(f(a)))))\} \\
& \text { 2. }\{f(a), f(f(f(f(a))))\} \\
& \text { 3. }\{f(f(a))\}
\end{aligned}
$$

Example (2)

- set of equations E

$$
f(f(f(a)))=a
$$

$$
f(f(f(f(f(a)))))=a
$$

equation $f(a)=a$

- sets

$$
\begin{aligned}
& \text { 1. }\{a, f(f(f(a))), f(f(f(f(f(a)))))\} \\
& \text { 2. }\{f(a), f(f(f(f(a))))\} \\
& \text { 3. }\{f(f(a))\}
\end{aligned}
$$

Example (2)

- set of equations E

$$
f(f(f(a)))=a
$$

$$
\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))=\mathrm{a}
$$

equation $f(a)=a$

- sets

$$
\begin{aligned}
& \text { 1. }\{\mathrm{a}, \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))), \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))))), f(\mathrm{f}(\mathrm{a}))\} \\
& \text { 2. }\{f(\mathrm{a}), f(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))\}
\end{aligned}
$$

Example (2)

- set of equations E

$$
f(f(f(a)))=a
$$

$$
f(f(f(f(f(a)))))=a
$$

equation $f(a)=a$

- sets

$$
\begin{aligned}
& \text { 1. }\{\mathrm{a}, \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))), \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))))), f(\mathrm{f}(\mathrm{a}))\} \\
& \text { 2. }\{f(\mathrm{a}), \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))\}
\end{aligned}
$$

Example (2)

- set of equations E

$$
f(f(f(a)))=a \quad f(f(f(f(f(a)))))=a
$$

equation $f(a)=a$

- sets

$$
\text { 1. }\{\mathrm{a}, \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))), \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))))), \mathrm{f}(\mathrm{f}(\mathrm{a})), f(\mathrm{a}), f(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))))\}
$$

Example (2)

- set of equations E

$$
f(f(f(a)))=a \quad f(f(f(f(f(a)))))=a
$$

equation $f(a)=a$

- sets

$$
\text { 1. }\{\mathrm{a}, \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))), \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))))), \mathrm{f}(\mathrm{f}(\mathrm{a})), f(\mathrm{a}), f(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))))\}
$$

- conclusion: $E \models_{\text {EUF }} f(a)=a$

Outline

1. Summary of Previous Lecture
2. Equality Logic
3. Equality Logic with Uninterpreted Functions
4. EUF
5. Congruence Closure
6. Further Reading

Kröning and Strichmann

- Chapter 4
- Section 11.3

Kröning and Strichmann

- Chapter 4
- Section 11.3

Bradley and Manna

- Sections 9.1 and 9.2

Kröning and Strichmann

- Chapter 4
- Section 11.3

Bradley and Manna

- Sections 9.1 and 9.2

Important Concepts

- congruence closure
- contradictory cycle
- equality graph
- equality logic
- EUF
- uninterpreted function

