

Constraint Solving

René Thiemann and Fabian Mitterwallner based on a previous course by Aart Middeldorp

- 1. Summary of Previous Lecture
- 2. Equality Logic
- 3. Equality Logic with Uninterpreted Functions
- 4. EUF
- 5. Congruence Closure
- 6. Further Reading

SMT Problem

decide satisfiability of (quantifier-free) formulas in

propositional logic + domain-specific background theories (axiomatic or concrete model)

Terminology

theory solver for T (T-solver) is procedure for deciding T-satisfiability of conjunction of quantifier-free literals

Remark

- SMT solvers often use DPLL(T) framework
- DPLL(T): combine DPLL-based SAT-solver with T-solver; the latter is used for
 - T-consistency checks find model w.r.t. theory or generate blocking clause
 - *T*-propagation find implied literals
 - basic implementation of *T*-propagation: $M \models_T I$ if $M \land \neg I$ is unsatisfiable

1. Summary of Previous Lecture

2. Equality Logic

- 3. Equality Logic with Uninterpreted Functions
- 4. EUF
- 5. Congruence Closure
- 6. Further Reading

Theory of Equality

- signature: no function symbols, only one binary symbol =
- axioms
 - reflexivity $\forall x. x = x$
 - symmetry $\forall x \ y. \ x = y \rightarrow y = x$
 - transitivity $\forall x \ y \ z . \ x = y \land y = z \rightarrow x = z$

Example

$$y = z \land x = z \lor x \neq z \land x = y$$

Remark

assumption: infinite domain; consequence: $\bigwedge_{1 \leq i < j \leq n} x_i \neq x_j$ is satisfiable for all $n \in \mathbb{N}$ small model property: satisfiable formula φ with n variables has model with domain $\{1, \ldots, n\}$

Remark

equality logic can be extended by uninterpreted constants

- extend signature by constants a, b, \dots
- uninterpreted: different constants can be interpreted as equal values or as different values
- no significant extension: constants can easily be removed
 - replace each constant a by new variable x_a
 - obtain equisatisfiable formula without constants
- example: $y = z \land b \neq z \lor a = b$ becomes $y = z \land x_b \neq z \lor x_a = x_b$

Remark

equality logic can be extended by constants in concrete domain

- extend signature by constants, e.g., from domain in real numbers
- concrete domain: different constants represent different values
- no significant extension: constants can easily be removed
 - replace each constant c_i (1 $\leq i \leq n$) by new variable x_i
 - add constraint $x_i \neq x_j$ for all $1 \leq i < j \leq n$
 - obtain equisatisfiable formula without constants
- example: $y = z \land 2 \neq z \lor \sqrt{2} = 2$ becomes $(y = z \land x_2 \neq z \lor x_1 = x_2) \land x_1 \neq x_2$

Consequence

from now on consider equality logic without constants

Theorem

satisfiability problem for equality logic is NP-complete

Proof

• membership in NP

guess assignment in $\{1, ..., n\}$ (small model property) where n is number of variables in formula and check correctness

NP-hardness

reduction from SAT

- propositional formula φ with propositional atoms p_1, \ldots, p_n
- introduce variables $x_1, \ldots, x_n, y_1, \ldots, y_n$
- equality logic formula ψ is obtained from φ by replacing every p_i with $x_i = y_i$
- φ is satisfiable $\iff \psi$ is satisfiable

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

- $\ensuremath{\mathbf{0}}$ define equivalence class for each variable in φ
- 2 for each equality x = y in φ merge equivalence classes that contain x and y
- 4 return satisfiable

T-solver for equality logic

conjunction φ of equality logic literals over set of variables V

Definitions

- equality graph is undirected graph $G_{=}(\varphi) = (V, E_{=}, E_{\neq})$ with
 - ullet $E_{=}$ edges corresponding to positive (equality) literals in arphi
 - \textit{E}_{\neq} edges corresponding to negative (inequality) literals in φ
- contradictory cycle is cycle with exactly one E_{\neq} edge
- contradictory cycle is simple if no node appears twice

Lemma

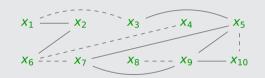
 φ is satisfiable \iff $G_{=}(\varphi)$ contains no simple contradictory cycles

Example

formula φ

$$x_1 = x_2 \land x_1 \neq x_3 \land x_3 = x_5 \land x_4 \neq x_6 \land x_6 \neq x_7 \land x_5 = x_9 \land x_2 = x_6 \land x_5 = x_7 \land x_8 \neq x_9 \land x_9 = x_{10} \land x_7 = x_9 \land x_5 \neq x_{10}$$

• equality graph $G_{=}(\varphi)$



contradictory cycles

• φ is unsatisfiable

- 1. Summary of Previous Lecture
- 2. Equality Logic
- 3. Equality Logic with Uninterpreted Functions
- 4. EUF
- 5. Congruence Closure
- 6. Further Reading

Aim

- further increase expressivity of logic
- one solution: add uninterpreted functions

Theory of Equality with Uninterpreted Symbols

- signature: function and predicate symbols, including binary symbol =
- axioms of equality logic, and the following ones
 - function congruence (for every n-ary function symbol f)

$$\forall x_1 \dots x_n \ y_1 \dots y_n \dots x_1 = y_1 \wedge \dots \wedge x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$

predicate congruence (for every n-ary predicate symbol P)

$$\forall x_1 \ldots x_n \ y_1 \ldots y_n \ldots x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (P(x_1, \ldots, x_n) \leftrightarrow P(y_1, \ldots, y_n))$$

Quiz: Is the formula satisfiable?

• is formula

$$x = g(y,z) \land f(x) \neq f(g(y,z))$$

satisfiable?

• model \mathcal{M} with \mathbb{N} as carrier:

$$egin{aligned} f_{\mathcal{M}}(a) &= a+1 & orall a \in \mathbb{N} \ g_{\mathcal{M}}(a,b) &= 1 & orall a,b \in \mathbb{N} \ &=_{\mathcal{M}} &= \{(a,b) \mid a=b ext{ or } a,b \in \{0,1\}\} \end{aligned}$$

• environment *I*: I(x) = I(y) = I(z) = 0

Congruence axioms are essential!

 $=_{\mathcal{M}}$ does not satisfy function congruence axiom $\forall x \ y. \ x = y \to f(x) = f(y)$

Remark

simplification: predicate symbols can be eliminated

- add fresh constant •
- add fresh n-ary function symbol f_P for each predicate symbol P of arity n
- replace every atomic formula $P(t_1, \ldots, t_n)$ by $f_P(t_1, \ldots, t_n) = \bullet$

Example

formula

$$P \wedge Q(x) \wedge \neg R(x,y) \wedge x = z \rightarrow R(x,z)$$

is transformed into

$$f_P = \bullet \ \land \ f_Q(x) = \bullet \ \land \ f_R(x,y) \neq \bullet \ \land \ x = z \ \rightarrow \ f_R(x,z) = \bullet$$

Theorem

satisfiability in theory of equality with uninterpreted functions is undecidable

Proof

reduction from PCP (Post correspondence problem) instance $P \subseteq \Gamma^+ \times \Gamma^+$

- constant e, unary function symbol a for all $a \in \Gamma$, binary predicate symbol Q
- if $\alpha = a_1 a_2 \cdots a_n$ then $\alpha(t)$ denotes $a_n(\cdots (a_2(a_1(t)))\cdots)$
- formula in theory of equality with uninterpreted functions

$$\bigwedge_{(\alpha,\beta)\in P} Q(\alpha(e),\beta(e)) \ \land \ \left(\forall v \ w.Q(v,w) \ \rightarrow \bigwedge_{(\alpha,\beta)\in P} Q(\alpha(v),\beta(w))\right) \ \rightarrow \ \exists z. \ Q(z,z)$$

is valid \iff *P* has solution

- 1. Summary of Previous Lecture
- 2. Equality Logic
- 3. Equality Logic with Uninterpreted Functions
- 4. EUF
- 5. Congruence Closure
- 6. Further Reading

Definition

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

•
$$x_1 \neq x_2 \lor f(x_1) = f(x_2) \lor f(x_1) \neq f(x_3)$$

•
$$x_1 = x_2 \rightarrow f(f(g(x_1, x_2))) = f(g(x_2, x_1))$$

Examples

•
$$a \neq b \land f(a) = f(b)$$

•
$$a = f(b) \land b = f(a) \land f(b) \neq f(f(f(b)))$$

•
$$a = b \models_{EUF} f(a) = f(b)$$

•
$$a = b \not\equiv_{EUF} f(a) = f(b)$$

EUF-consistent

not EUF-consistent

Remark

- for satisfiability it does not matter whether one chooses variables or constants
- example: a = f(y) is equisatisfiable to $a = f(c_y)$ and to $x_a = f(y)$
- consequence: we use EUF restricted to ground terms, i.e., terms without variables

Remark

- SMT solvers are often used to validate certain consequences
- ullet example: $eq_1 \wedge eq_2
 ightarrow eq_3$ (for universally quantified variables)
- therefore prove unsatisfiability of $eq_1 \wedge eq_2 \wedge \neg eq_3$ (for existentially quantified variables)
- consequence: ability of SMT solvers to prove unsat is essential

Example

• two C functions computing $x \mapsto x^3$

```
int power3(int in) {
    int i, out;
    out = in;
    for (i = 0; i < 2; i++)
        out = out * in;
    return out;
}</pre>
int power3_new(int in) {
    int out;
    out = (in * in) * in;
    return out;
}
```

are these functions equivalent?

```
egin{aligned} arphi_a\colon\operatorname{out}_a^0&=\operatorname{in}\wedge\operatorname{out}_a^1=oldsymbol{g}(\operatorname{out}_a^0,\operatorname{in})\wedge\operatorname{out}_a^2=oldsymbol{g}(\operatorname{out}_a^1,\operatorname{in})\ &arphi_b\colon\operatorname{out}_b^0=oldsymbol{g}(oldsymbol{g}(\operatorname{in},\operatorname{in}),\operatorname{in})\ &arphi_a\wedgearphi_b\,	o\,\operatorname{out}_a^2=\operatorname{out}_b^0 \end{aligned}
```

simplify problem by substituting uninterpreted function g for *

SMT-LIB 2 Format for EUF

$$EUF \ formula \quad f(f(a)) = a \ \land \ f(a) = b \ \land \ a \neq b$$

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```

- terms are sorted
- declare-const x S creates variable x of sort S
- declare-fun f (S1 ... Sn) T creates uninterpreted function $f \colon S_1 \times \cdots \times S_n \to T$
- prefix notation for terms and equations
- (distinct x y) is equivalent to not (= x y)

- 1. Summary of Previous Lecture
- 2. Equality Logic
- 3. Equality Logic with Uninterpreted Functions
- 4. EUF
- 5. Congruence Closure
- 6. Further Reading

Congruence Closure (core algorithm for T-Solver of EUF)

input: set E of ground equations and ground equation $s \approx t$

output: valid $(E \models_{EUF} s = t)$ or invalid $(E \nvDash_{EUF} s = t)$

- build congruence classes
 - (a) put different subterms of terms in $E \cup \{s=t\}$ in separate sets
 - **(b)** merge sets $\{\ldots,\,t_1,\,\ldots\}$ and $\{\ldots,\,t_2,\,\ldots\}$ for all $t_1=t_2$ in E
 - (c) repeatedly merge sets

$$\{\ldots, f(s_1, \ldots, s_n), \ldots\}$$
 and $\{\ldots, f(t_1, \ldots, t_n), \ldots\}$

if s_i and t_i belong to same set for all $1 \le i \le n$

2 if s and t belong to same set then return valid else return invalid

Example (1)

set of equations E

$$f(f(f(a))) = g(f(g(f(b)))) \qquad f(g(f(b))) = f(a) \qquad g(g(b)) = g(f(a)) \qquad g(a) = b$$
 equation
$$f(a) = g(a)$$

sets

- 1. {a}
- 2. {f(a), f(g(f(b)))}
- 3. {b, g(a)}
- 4. {g(b)}

- 5. {f(f(a))}
- 6. $\{f(f(f(a))), g(f(g(f(b)))), g(g(b)), g(f(a))\}$
- 7. {f(b)}
- 8. {g(f(b))}

• conclusion: $E \nvDash_{EUF} f(a) = g(a)$

Example (2)

set of equations E

$$f(f(f(a))) = a$$

$$f(f(f(f(f(a))))) = a$$

equation f(a) = a

sets

1.
$$\{a, f(f(f(a))), f(f(f(f(f(a))))), f(f(a)), f(a), f(f(f(f(a))))\}$$

• conclusion: $E \vDash_{EUF} f(a) = a$

- 1. Summary of Previous Lecture
- 2. Equality Logic
- 3. Equality Logic with Uninterpreted Functions
- 4. EUF
- 5. Congruence Closure
- 6. Further Reading

Kröning and Strichmann

- Chapter 4
- Section 11.3

Bradley and Manna

Sections 9.1 and 9.2

Important Concepts

- congruence closure
- contradictory cycle

- equality graph
- equality logic

- EUF
- uninterpreted function