

Constraint Solving

René Thiemann and Fabian Mitterwallner based on a previous course by Aart Middeldorp

Outline

- 1. Summary of Previous Lecture
- 2. Equality Logic
- 3. Equality Logic with Uninterpreted Functions
- 4. EUF
- 5. Congruence Closure
- 6. Further Reading

universität SS 2024 Constraint Solving lecture 5

SMT Problem

decide satisfiability of (quantifier-free) formulas in

propositional logic + domain-specific background theories (axiomatic or concrete model)

Terminology

theory solver for T (*T*-solver) is procedure for deciding *T*-satisfiability of conjunction of quantifier-free literals

Remark

- SMT solvers often use DPLL(*T*) framework
- DPLL(T): combine DPLL-based SAT-solver with T-solver; the latter is used for
- T-consistency checks find model w.r.t. theory or generate blocking clause
- *T***-propagation** find implied literals
- basic implementation of *T*-propagation: $M \models_T I$ if $M \land \neg I$ is unsatisfiable

Outline

- **1. Summary of Previous Lecture**
- 2. Equality Logic
- 3. Equality Logic with Uninterpreted Functions
- 4. EUF
- 5. Congruence Closure
- 6. Further Reading

Theory of Equality

- signature: no function symbols, only one binary symbol =
- axioms
 - reflexivity $\forall x. x = x$
 - symmetry $\forall x \ y. \ x = y \rightarrow y = x$
 - transitivity $\forall x \ y \ z. \ x = y \land y = z \rightarrow x = z$

Example

$y = z \land x = z \lor x \neq z \land x = y$

Remark

assumption: infinite domain; consequence: $\bigwedge_{1 \le i < j \le n} x_i \ne x_j$ is satisfiable for all $n \in \mathbb{N}$ small model property: satisfiable formula φ with n variables has model with domain $\{1, \ldots, n\}$

universität SS 2024 Constraint Solving lecture 5 2. Equality Logic

Remark

equality logic can be extended by uninterpreted constants

- extend signature by constants *a*, *b*, ...
- uninterpreted: different constants can be interpreted as equal values or as different values
- no significant extension: constants can easily be removed
 - replace each constant *a* by new variable *x*_a
- obtain equisatisfiable formula without constants
- example: $y = z \land b \neq z \lor a = b$ becomes $y = z \land x_b \neq z \lor x_a = x_b$

2. Equality Logic

universitat SS 2024 Constraint Solving lecture 5

Remark

equality logic can be extended by constants in concrete domain

- extend signature by constants, e.g., from domain in real numbers
- concrete domain: different constants represent different values
- no significant extension: constants can easily be removed
 - replace each constant c_i ($1 \le i \le n$) by new variable x_i
- add constraint $x_i \neq x_j$ for all $1 \le i < j \le n$
- obtain equisatisfiable formula without constants
- example: $y = z \land 2 \neq z \lor \sqrt{2} = 2$ becomes $(y = z \land x_2 \neq z \lor x_1 = x_2) \land x_1 \neq x_2$

Consequence

from now on consider equality logic without constants

Theorem

satisfiability problem for equality logic is NP-complete

Proof

- membership in NP
- guess assignment in $\{1, ..., n\}$ (small model property) where *n* is number of variables in formula and check correctness
- NP-hardness

reduction from SAT

- propositional formula φ with propositional atoms p_1, \ldots, p_n
- introduce variables $x_1, \ldots, x_n, y_1, \ldots, y_n$
- equality logic formula ψ is obtained from φ by replacing every p_i with $x_i = y_i$
- φ is satisfiable $\iff \psi$ is satisfiable

5/28

Satisfiability Procedure for Conjunctive Fragment of Equality Logic

easy but important case: conjunction of equalities and disequalities φ

merge equivalence classes that contain x and y

- **(3)** for each disequality $x \neq y$ in φ if x and y belong to same equivalence class, return unsatisfiable
- **4** return satisfiable

T-solver for equality logic

universität innsbruck SS 2024 Constraint Solving lecture 5 2. Equality Logic

contradictory cycles

Example

formula φ

• φ is unsatisfiable

Outline

- **1. Summary of Previous Lecture**
- 2. Equality Logic

3. Equality Logic with Uninterpreted Functions

- **4. EUF**
- 5. Congruence Closure
- 6. Further Reading

12/28

10/28

conjunction φ of equality logic literals over set of variables V

Definitions

- equality graph is undirected graph $G_{=}(\varphi) = (V, E_{=}, E_{\neq})$ with
 - $E_{=}$ edges corresponding to positive (equality) literals in φ
 - E_{\neq} edges corresponding to negative (inequality) literals in φ
- **contradictory cycle** is cycle with exactly one E_{\neq} edge
- contradictory cycle is simple if no node appears twice

Lemma

 φ is satisfiable \iff $G_{=}(\varphi)$ contains no simple contradictory cycles

universität innsbruck SS 2024 Constraint Solving lecture 5 2. Equality Logic

9/28

Aim

- further increase expressivity of logic
- one solution: add uninterpreted functions

Theory of Equality with Uninterpreted Symbols

- signature: function and predicate symbols, including binary symbol =
- axioms of equality logic, and the following ones
 - **function congruence** (for every *n*-ary function symbol *f*)

$$\forall x_1 \dots x_n \ y_1 \dots y_n \dots x_1 = y_1 \land \dots \land x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$

• predicate congruence (for every *n*-ary predicate symbol *P*)

$$\forall x_1 \dots x_n \ y_1 \dots y_n. \ x_1 = y_1 \land \dots \land x_n = y_n \rightarrow (P(x_1, \dots, x_n) \leftrightarrow P(y_1, \dots, y_n))$$

Quiz: Is the formula satisfiable?

• is formula

$$x = g(y,z) \land f(x) \neq f(g(y,z))$$

satisfiable?

• model $\mathcal M$ with $\mathbb N$ as carrier:

$$egin{array}{ll} f_{\mathcal{M}}(a) &= a+1 & orall a \in \mathbb{N} \ g_{\mathcal{M}}(a,b) &= 1 & orall a, b \in \mathbb{N} \ &=_{\mathcal{M}} = \{(a,b) \mid a = b ext{ or } a, b \in \{0,1\}\} \end{array}$$

• environment *I*: l(x) = l(y) = l(z) = 0

universität SS 2024 Constraint Solving lecture 5 3. Equality Logic with Uninterpreted Functions innsbruck

Congruence axioms are essential!

 $=_{\mathcal{M}}$ does not satisfy function congruence axiom $\forall x \ y. \ x = y \rightarrow f(x) = f(y)$

Remark

simplification: predicate symbols can be eliminated

- add fresh constant •
- add fresh *n*-ary function symbol f_P for each predicate symbol *P* of arity *n*
- replace every atomic formula $P(t_1, \ldots, t_n)$ by $f_P(t_1, \ldots, t_n) = \bullet$

Example

formula

$$P \land Q(x) \land \neg R(x,y) \land x = z \rightarrow R(x,z)$$

is transformed into

$$f_P = \bullet \land f_Q(x) = \bullet \land f_R(x,y) \neq \bullet \land x = z \rightarrow f_R(x,z) = \bullet$$

Theorem

satisfiability in theory of equality with uninterpreted functions is undecidable

Proof

reduction from PCP (Post correspondence problem) instance $P \subseteq \Gamma^+ \times \Gamma^+$

- constant *e*, unary function symbol *a* for all $a \in \Gamma$, binary predicate symbol *Q*
- if $\alpha = a_1 a_2 \cdots a_n$ then $\alpha(t)$ denotes $a_n(\cdots (a_2(a_1(t))) \cdots)$
- formula in theory of equality with uninterpreted functions

$$\bigwedge_{(\alpha,\beta) \in P} Q(\alpha(e),\beta(e)) \land \left(\forall v \ w.Q(v,w) \rightarrow \bigwedge_{(\alpha,\beta) \in P} Q(\alpha(v),\beta(w)) \right) \rightarrow \exists z. Q(z,z)$$

is valid \iff *P* has solution

universitat	SS 2024	Constraint Solving	lecture 5	3. Equality Logic with Uninterpreted Functions
nnspruck				

Outline

- **1. Summary of Previous Lecture**
- 2. Equality Logic
- 3. Equality Logic with Uninterpreted Functions
- 4. EUF
- 5. Congruence Closure
- 6. Further Reading

universität SS 2024 Constraint Solving lecture 5 4. EUF

Definition

EUF: quantifier-free fragment of equality logic with uninterpreted function symbols

Examples

• $x_1 \neq x_2 \lor f(x_1) = f(x_2) \lor f(x_1) \neq f(x_3)$

• $x_1 = x_2 \rightarrow f(f(g(x_1, x_2))) = f(g(x_2, x_1))$

Examples

- $a \neq b \land f(a) = f(b)$
- $a = f(b) \land b = f(a) \land f(b) \neq f(f(f(b)))$
- $a = b \vDash_{EUF} f(a) = f(b)$
- $a = b \not\equiv_{EUF} f(a) = f(b)$

Remark

- for satisfiability it does not matter whether one chooses variables or constants
- example: a = f(y) is equisatisfiable to $a = f(c_y)$ and to $x_a = f(y)$
- consequence: we use EUF restricted to ground terms, i.e., terms without variables

Remark

• example: $eq_1 \wedge eq_2 \rightarrow eq_3$

- SMT solvers are often used to validate certain consequences
 - (for universally quantified variables) (for existentially quantified variables)
- therefore prove unsatisfiability of $eq_1 \wedge eq_2 \wedge \neg eq_3$
- consequence: ability of SMT solvers to prove unsat is essential

EUF-consistent

not EUF-consistent

Example

• two C functions computing $x \mapsto x^3$ int power3(int in) { int i, out; out = in; for (i = 0; i < 2; i++) out = out * in; }

• are these functions equivalent?

$$\begin{array}{l} \varphi_a\colon \operatorname{out}_a^0=\operatorname{in}\wedge\operatorname{out}_a^1=g(\operatorname{out}_a^0,\operatorname{in})\wedge\operatorname{out}_a^2=g(\operatorname{out}_a^1,\operatorname{in})\\ \varphi_b\colon \operatorname{out}_b^0=g(g(\operatorname{in},\operatorname{in}),\operatorname{in})\\ \varphi_a\wedge\varphi_b\ \to\ \operatorname{out}_a^2=\operatorname{out}_b^0 \end{array}$$

• simplify problem by substituting uninterpreted function *g* for *

universität SS 2024 Constraint Solving lecture 5 4. EUF

21/28

SMT-LIB 2 Format for EUF

EUF formula $f(f(a)) = a \land f(a) = b \land a \neq b$

(declare-sort A) (declare-const a A) (declare-const b A) (declare-fun f (A) A) (assert (= (f (f a)) a)) (assert (= (f a) b)) (assert (distinct a b)) (check-sat) (get-model)

- terms are sorted
- declare-const x S creates variable x of sort S
- declare-fun f (S1 ... Sn) T creates uninterpreted function f: S₁ × ··· × S_n → T
- prefix notation for terms and equations
- (distinct x y) is equivalent to not (= x y)

universität SS 2024 Constraint Solving lecture 5 4. EUF

Outline

- **1. Summary of Previous Lecture**
- 2. Equality Logic
- 3. Equality Logic with Uninterpreted Functions
- 4. EUF

5. Congruence Closure

6. Further Reading

nput:	set <i>E</i> of ground equations and ground equation $s pprox t$
output:	valid $(E \vDash_{EUF} s = t)$ or invalid $(E \nvDash_{EUF} s = t)$
1 bui	ld congruence classes
(a)	put different subterms of terms in $E \cup \{s = t\}$ in separate sets
(b)	merge sets $\{\ldots, t_1, \ldots\}$ and $\{\ldots, t_2, \ldots\}$ for all $t_1 = t_2$ in E
(c)	repeatedly merge sets
	$\{\ldots, f(s_1, \ldots, s_n), \ldots\}$ and $\{\ldots, f(t_1, \ldots, t_n), \ldots\}$
	if s_i and t_i belong to same set for all $1\leqslant i\leqslant n$
2 if <i>s</i>	and t belong to same set then return valid else return invalid

Example (1)							
• set of equations E							
f(f(f(a))) = g(f(g(f(b))))	$f(g(f(b)))=f(a) \qquad g(g(b))=g(f(a)) \qquad g(a)=b$						
equation $f(a) = g(a)$							
• sets							
1. {a} 2. {f(a), f(g(f(b)))} 3. {b, g(a)} 4. {g(b)} • conclusion: $E \nvDash_{EUF} f(a) = g(a)$	 5. {f(f(a))} 6. {f(f(f(a))), g(f(g(f(b)))), g(g(b)), g(f(a)))} 7. {f(b)} 8. {g(f(b))} 						

Example (2)					
• set of equation	ons E				
	f(f(f(a))) = a	f(f(f(f(a))))) = a			
equation f(a	a) = a				
• sets					
	1. $\{a, f(f(f(a))), f(f(f(f(f(a))))), f(f(a)), f(a), f(f(f(f(a))))\}$				
• conclusion:	$E \models_{EUF} f(a) = a$				

universität SS 2024 Constraint Solving lecture 5 5. Congruence Closure
innsbruck

25/28

universität SS 2024 Constraint Solving lecture 5 5. Congruence Closure
Innsbruck

Outline

- **1. Summary of Previous Lecture**
- 2. Equality Logic
- **3. Equality Logic with Uninterpreted Functions**
- **4. EUF**
- 5. Congruence Closure
- 6. Further Reading

Kröning and Strichmann

- Chapter 4
- Section 11.3

Bradley and Manna

• Sections 9.1 and 9.2

Important Concepts

congruence closure contradictory cycle

equality graphequality logic

EUFuninterpreted function