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Definition (Equality Logic)

terms are restricted to variables, no quantifiers:

φ ::= φ ∧ φ | φ ∨ φ | φ→ φ | ¬φ | t = t t ::= x

T-solver for conjunction φ of equality logic literals over set of variables V

Definition

equality graph is undirected graph G=(φ) = (V, E=, E̸=) with

• E= edges corresponding to positive (equality) literals in φ

• E̸= edges corresponding to negative (inequality) literals in φ

Lemma

φ is satisfiable ⇐⇒
G=(φ) contains no simple contradictory cycles (with exactly one E̸= edge)
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Quantifier-Free Fragment of Equality Logic with Uninterpreted Functions (EUF)

φ ::= φ ∧ φ | φ ∨ φ | φ→ φ | ¬φ | t = t t ::= f(t, . . . , t)

T-Solver for Conjunctive Fragment via Congruence Closure

input: set E of ground equations and ground equation s ≈ t

output: valid (E ⊨T s = t) or invalid (E ⊭T s = t)

1 build congruence classes

(a) put different subterms of terms in E ∪ {s = t} in separate sets

(b) merge sets { . . . , t1, . . .} and { . . . , t2, . . .} for all t1 = t2 in E

(c) repeatedly merge sets

{ . . . , f(s1, . . . , sn), . . .} and { . . . , f(t1, . . . , tn), . . .}
if si and ti belong to same set for all 1 ⩽ i ⩽ n

2 if s and t belong to same set then return valid else return invalid
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Difference Logic

atoms are constraints of the form

• x− y ⩽ c

• x− y < c

where x and y are variables and c is some constant of Z or Q

Remarks

• difference logic is fragment of linear arithmetic; advantage: faster decision procedure

• domains: Z or Q (T-solver in polynomial time)

• x− y = c ⇐⇒ x− y ⩽ c ∧ y− x ⩽ −c

• x− y ⩾ c ⇐⇒ y− x ⩽ −c

• x− y > c ⇐⇒ y− x < −c

• x < c ⇐⇒ x− x0 < c where x0 is fresh variable that must be assigned 0
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Example Job -Shop Scheduling

• m machines (M1, . . . , Mm)

and n jobs (J1, . . . , Jn)

• each job Ji is sequence (Mi
1,d

i
1), . . . , (M

i
ni
,di

ni
) of operations consisting of machine and

duration (rational number; τ(M,d) = d)

• O is multiset of all operations from all jobs

• schedule is function S that defines for each operation v ∈ O its starting time S(v) on
machine specified by v

• schedule S is feasible if

S(v) ⩾ 0 for all v ∈ O

S(vi) + τ(vi) ⩽ S(vj) for all consecutive vi, vj in same job

S(vi) + τ(vi) ⩽ S(vj) ∨ S(vj) + τ(vj) ⩽ S(vi)

for every pair of different operations vi, vj scheduled on same machine

• aim: minimize global duration gd; add constraints S(v) + τ(v) ≤ gd for each v ∈ O
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Definition Inequality Graph

conjunction φ of nonstrict difference constraints

• inequality graph of φ contains edge from x to y with weight c for every constraint x− y ⩽ c
in φ

Theorem

conjunction φ of nonstrict difference constraints is satisfiable ⇐⇒
inequality graph of φ has no negative cycle

Example

x− y ⩽ 2

y− z ⩽ − 3

z − x ⩽ 2

x y
2

z
−3

2 satisfiable
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Theorem

conjunction φ of nonstrict difference constraints is satisfiable ⇐⇒
inequality graph of φ has no negative cycle

Proof

⇒ negative

cycle x1
k1−−→ x2

k2−−→ x3 −−→ · · · −−→ xn
kn−−→ x1

in inequality graph of φ

corresponds to conjuction

x1 − x2 ⩽ k1 ∧ x2 − x3 ⩽ k2 ∧ · · · ∧ xn − x1 ⩽ kn

adding these literals gives

0 ⩽ k1 + k2 + · · ·+ kn

with k1 + k2 + · · ·+ kn < 0 �
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Theorem

conjunction φ of nonstrict difference constraints is satisfiable ⇐⇒
inequality graph of φ has no negative cycle

Proof

⇐ assume inequality graph of φ has no negative cycle

construct satisfying assignment for φ as follows

• add additional starting node s in graph, add edges s→ x with weight 0 for all variables x
• define v(x) = −distance(s, x); well-defined, since there are no negative cycles
• v satisfies φ

Example

x y
2

z
−3

2

s
0

0
v(x) = 1, v(y) = 0, v(z) = 3
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Algorithms for Distance Computation and Negative Cycle Detection

• Dijkstra

• computes distances from a single source to all other nodes
• complexity: O(|V| · log(|V|) + |E|)
• restriction: no negative cycles allowed

• Bellman–Ford

• computes distances from a single source to all other nodes
• complexity: O(|V| · |E|)
• can also detect negative cycles

• Floyd–Warshall

• computes distances between all nodes
• complexity: O(|V|3)
• can also detect negative cycles

⇒ use Bellman–Ford algorithm for difference logic
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Bellman–Ford Algorithm for Inequality Graphs

Input inequality graph (V,E,w) with fresh starting node s

Output “∃ negative cycle” or distances to node s

1 distance[v] := 0 for all nodes v ∈ V (this step is special for inequality graphs)

2 repeat |V| − 1 times

for all (u, v) ∈ E do

if distance[v] > distance[u] + w(u, v) then

distance[v] := distance[u] + w(u, v)

predecessor[v] := u

3 for all (u, v) ∈ E do

if distance[v] > distance[u] + w(u, v) then

return “∃ negative cycle ”

which can be reconstructed using predecessor array

4 return distance array, shortest paths available via predecessor array
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Example Bellman–Ford in Action

a b

c d

e f

g h

s

0

0

0

0

0

0

0

0

2

-5

1

4
2 -89

4
-7

5

1

iteration a b c d e f g h

0 0 0 0 0 0 0 0 0

1 0 0 0 -5 -8 -7 0 0

2 -1 0 -4 -5 -8 -7 0 -4

3 -2 0 -4 -5 -8 -11 0 -4

4 -2 0 -4 -5 -10 -11 0 -4

5 -2 0 -4 -5 -10 -11 -1 -6
. . . 2 more iterations, then negative cycle is detected
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Definition (Theory of Linear Arithmetic over D)

• for variables x1, . . . , xn, built quantifier-free formulas according to grammar

φ ::= ¬φ | φ ∨ φ | φ ∧ φ | t < t | t ≤ t s = t is encoded as s ≤ t ∧ t ≤ s

t ::= a1x1 + · · ·+ anxn + b for a1, . . . , an,b ∈ in domain D

• solution assigns values in D to x1, . . . , xn

Definitions

• Linear Real Arithmetic (LRA) uses domain D = R
• Linear Integer Arithmetic (LIA) uses domain D = Z

Example

• x + y + z = 2 ∧ z > y ∧ y > −1

is satisfiable in LRA and LIA, e.g. with v(x) = v(y) = 0 and v(z) = 2

• x < 3 ∧ 2x > 4
is unsatisfiable in LIA but satisfiable in LRA, e.g. with v(x) = 2.5
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Relevance of Linear Arithmetic

LRA and LIA admit more natural and succinct encodings of

• everything with cardinality constraints: n-queens, Sudoku, Minesweeper, . . .
• planning problems
• scheduling problems
• component configuration problems
• . . .
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T-Solver for Conjunctions of Linear Arithmetic Inequalities

• integers (LIA): NP-complete

• reals or rationals (LRA): polynomial Simplex algorithm

Some History

1947 Danzig proposed Simplex algorithm to solve optimization problem:

maximize c(x⃗) such that Ax⃗ ≤ b and x⃗ ≥ 0

for linear objective function c, matrix A, vector b, and vector of variables x⃗
▶ also known as linear programming

1979 Khachiyan proposed polynomial version based on ellipsoid method

1984 Karmakar proposed polynomial version based on interior points method

2000- T-solver version of simplex algorithm to solve satisfiability problem

Ax⃗ ≤ b

exponential worst-case complexity
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Problem Input (General Form)

• m equalities a1x1 + · · ·+ anxn = 0

• (optional) lower and upper bounds on variables li ≤ xi ≤ ui

Lemma

any conjunctive LRA problem without < can be turned into equisatisfiable general form

Example

x− y≥ −1

y≤ 4

x + y≥ 6

3x− y≤ 7

=⇒

−x + y− s1 = 0 s1 ≤ 1

y− s2 = 0 s2 ≤ 4

−x− y− s3 = 0 s3 ≤ −6

3x− y− s4 = 0 s4 ≤ 7

slack variables

• s1, s2, s3, s4 are slack variables

• x, y are problem variables
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• x, y are problem variables
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Representation

• represent equalities −x + y− s1 = 0

y− s2 = 0

−x− y− s3 = 0

3x− y− s4 = 0

via m× n matrix presentation
x y

← nonbasic variables

basic variables→

s1

s2

s3

s4


−1 1

0 1
−1 −1

3 −1



Notation

• matrix is tableau

• B is set of basic variables (in tableau listed vertically)

• N is set of nonbasic variables (in tableau listed horizontally)
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Simplex Algorithm as T-solver

Input: conjunction of LRA atoms φ without <
Output: satisfiable assignment or unsatisfiable

1 transform φ into general form and construct tableau

2 fix order on variables and assign 0 to each variable

3 if all basic variables satisfy their bounds then return current (satisfying) assignment

4 let xi ∈ B be variable that violates its bounds

5 search for suitable variable xj ∈ N for pivoting with xi

6 return unsatisfiable if search unsuccessful

7 perform pivot operation on xi and xj

9 update assignment

10 go to step 3

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 20/30



Simplex Algorithm as T-solver

Input: conjunction of LRA atoms φ without <
Output: satisfiable assignment or unsatisfiable

1 transform φ into general form and construct tableau

2 fix order on variables and assign 0 to each variable

3 if all basic variables satisfy their bounds then return current (satisfying) assignment

4 let xi ∈ B be variable that violates its bounds

5 search for suitable variable xj ∈ N for pivoting with xi

6 return unsatisfiable if search unsuccessful

7 perform pivot operation on xi and xj

9 update assignment

10 go to step 3

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 20/30



Simplex Algorithm as T-solver

Input: conjunction of LRA atoms φ without <
Output: satisfiable assignment or unsatisfiable

1 transform φ into general form and construct tableau

2 fix order on variables and assign 0 to each variable

3 if all basic variables satisfy their bounds then return current (satisfying) assignment

4 let xi ∈ B be variable that violates its bounds

5 search for suitable variable xj ∈ N for pivoting with xi

6 return unsatisfiable if search unsuccessful

7 perform pivot operation on xi and xj

9 update assignment

10 go to step 3

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 20/30



Simplex Algorithm as T-solver

Input: conjunction of LRA atoms φ without <
Output: satisfiable assignment or unsatisfiable

1 transform φ into general form and construct tableau

2 fix order on variables and assign 0 to each variable

3 if all basic variables satisfy their bounds then return current (satisfying) assignment

4 let xi ∈ B be variable that violates its bounds

5 search for suitable variable xj ∈ N for pivoting with xi

6 return unsatisfiable if search unsuccessful

7 perform pivot operation on xi and xj

9 update assignment

10 go to step 3

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 20/30



Simplex Algorithm as T-solver

Input: conjunction of LRA atoms φ without <
Output: satisfiable assignment or unsatisfiable

1 transform φ into general form and construct tableau

2 fix order on variables and assign 0 to each variable

3 if all basic variables satisfy their bounds then return current (satisfying) assignment

4 let xi ∈ B be variable that violates its bounds

5 search for suitable variable xj ∈ N for pivoting with xi

6 return unsatisfiable if search unsuccessful

7 perform pivot operation on xi and xj

9 update assignment

10 go to step 3

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 20/30



Simplex Algorithm as T-solver

Input: conjunction of LRA atoms φ without <
Output: satisfiable assignment or unsatisfiable

1 transform φ into general form and construct tableau

2 fix order on variables and assign 0 to each variable

3 if all basic variables satisfy their bounds then return current (satisfying) assignment

4 let xi ∈ B be variable that violates its bounds

5 search for suitable variable xj ∈ N for pivoting with xi

6 return unsatisfiable if search unsuccessful

7 perform pivot operation on xi and xj

9 update assignment

10 go to step 3

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 20/30



Simplex Algorithm as T-solver

Input: conjunction of LRA atoms φ without <
Output: satisfiable assignment or unsatisfiable

1 transform φ into general form and construct tableau

2 fix order on variables and assign 0 to each variable

3 if all basic variables satisfy their bounds then return current (satisfying) assignment

4 let xi ∈ B be variable that violates its bounds

5 search for suitable variable xj ∈ N for pivoting with xi

6 return unsatisfiable if search unsuccessful

7 perform pivot operation on xi and xj

9 update assignment

10 go to step 3

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 20/30



Simplex Algorithm as T-solver

Input: conjunction of LRA atoms φ without <
Output: satisfiable assignment or unsatisfiable

1 transform φ into general form and construct tableau

2 fix order on variables and assign 0 to each variable

3 if all basic variables satisfy their bounds then return current (satisfying) assignment

4 let xi ∈ B be variable that violates its bounds

5 search for suitable variable xj ∈ N for pivoting with xi

6 return unsatisfiable if search unsuccessful

7 perform pivot operation on xi and xj

9 update assignment

10 go to step 3

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 20/30



Simplex Algorithm as T-solver

Input: conjunction of LRA atoms φ without <
Output: satisfiable assignment or unsatisfiable

1 transform φ into general form and construct tableau

2 fix order on variables and assign 0 to each variable

3 if all basic variables satisfy their bounds then return current (satisfying) assignment

4 let xi ∈ B be variable that violates its bounds

5 search for suitable variable xj ∈ N for pivoting with xi

6 return unsatisfiable if search unsuccessful

7 perform pivot operation on xi and xj

9 update assignment

10 go to step 3

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 20/30



Simplex Algorithm as T-solver

Input: conjunction of LRA atoms φ without <
Output: satisfiable assignment or unsatisfiable

1 transform φ into general form and construct tableau

2 fix order on variables and assign 0 to each variable

3 if all basic variables satisfy their bounds then return current (satisfying) assignment

4 let xi ∈ B be variable that violates its bounds

5 search for suitable variable xj ∈ N for pivoting with xi

6 return unsatisfiable if search unsuccessful

7 perform pivot operation on xi and xj

9 update assignment

10 go to step 3

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 20/30



Simplex Algorithm as T-solver

Input: conjunction of LRA atoms φ without <
Output: satisfiable assignment or unsatisfiable

1 transform φ into general form and construct tableau

2 fix order on variables and assign 0 to each variable

3 if all basic variables satisfy their bounds then return current (satisfying) assignment

4 let xi ∈ B be variable that violates its bounds

5 search for suitable variable xj ∈ N for pivoting with xi

6 return unsatisfiable if search unsuccessful

7 perform pivot operation on xi and xj

9 update assignment

10 go to step 3

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 20/30



Simplex, Visually

• constraints

x− y≥ −1

y≤ 4

x + y≥ 6

3x− y≤ 7

• solution space

• Simplex solution search

1 2 3 4 5 6

1

2

3

4

5

6
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Example

tableau bounds

assignment

s1

s2

s3

s4


x y

−1 1

0 1

−1 −1

3 −1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

0 0 0 0 0 0

1 Iteration 1

• s3 violates its bounds
• decreasing s3 requires to increase x or y (both suitable since they have no upper bound)

• pivot s3 with y:
s3 = −x− y ↔ y = −x− s3

s1 = −x + y = −x + (−x− s3) = −2x− s3

s2 = −x− s3 s4 = 4x + s3

• update assignment s3 := −6 x = 0
s1 := −2x− s3 = 6 s2 := 6 y := 6 s4 := −6

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1
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s4
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s2 = −x− s3 s4 = 4x + s3

• update assignment s3 := −6 x = 0
s1 := −2x− s3 = 6 s2 := 6 y := 6 s4 := −6

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1

s2

s3

s4


x y

−1 1

0 1

−1 −1

3 −1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

0 0 0 0 0 0

1 Iteration 1

• s3 violates its bounds

• decreasing s3 requires to increase x or y (both suitable since they have no upper bound)

• pivot s3 with y:
s3 = −x− y ↔ y = −x− s3

s1 = −x + y = −x + (−x− s3) = −2x− s3

s2 = −x− s3 s4 = 4x + s3

• update assignment s3 := −6 x = 0
s1 := −2x− s3 = 6 s2 := 6 y := 6 s4 := −6

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1

s2

s3

s4


x y

−1 1

0 1

−1 −1

3 −1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

0 0 0 0 0 0

1 Iteration 1

• s3 violates its bounds
• decreasing s3 requires to increase x or y (both suitable since they have no upper bound)

• pivot s3 with y:
s3 = −x− y ↔ y = −x− s3

s1 = −x + y = −x + (−x− s3) = −2x− s3

s2 = −x− s3 s4 = 4x + s3

• update assignment s3 := −6 x = 0
s1 := −2x− s3 = 6 s2 := 6 y := 6 s4 := −6

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1

s2

s3

s4


x y

−1 1

0 1

−1 −1

3 −1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

0 0 0 0 0 0

1 Iteration 1

• s3 violates its bounds
• decreasing s3 requires to increase x or y (both suitable since they have no upper bound)

• pivot s3 with y:
s3 = −x− y ↔ y = −x− s3

s1 = −x + y = −x + (−x− s3) = −2x− s3

s2 = −x− s3 s4 = 4x + s3

• update assignment s3 := −6 x = 0
s1 := −2x− s3 = 6 s2 := 6 y := 6 s4 := −6

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1

s2

y

s4


x s3

−2 −1

−1 −1

−1 −1

4 1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

0 0 0 0 0 0

1 Iteration 1

• s3 violates its bounds
• decreasing s3 requires to increase x or y (both suitable since they have no upper bound)

• pivot s3 with y:
s3 = −x− y ↔ y = −x− s3

s1 = −x + y = −x + (−x− s3) = −2x− s3

s2 = −x− s3 s4 = 4x + s3

• update assignment s3 := −6 x = 0
s1 := −2x− s3 = 6 s2 := 6 y := 6 s4 := −6

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1

s2

y

s4


x s3

−2 −1

−1 −1

−1 −1

4 1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

0 0 0 0 0 0

1 Iteration 1

• s3 violates its bounds
• decreasing s3 requires to increase x or y (both suitable since they have no upper bound)

• pivot s3 with y:
s3 = −x− y ↔ y = −x− s3

s1 = −x + y = −x + (−x− s3) = −2x− s3

s2 = −x− s3 s4 = 4x + s3

• update assignment s3 := −6 x = 0
s1 := −2x− s3 = 6 s2 := 6 y := 6 s4 := −6

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1

s2

y

s4


x s3

−2 −1

−1 −1

−1 −1

4 1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

0 6 6 6 −6 −6

1 Iteration 1

• s3 violates its bounds
• decreasing s3 requires to increase x or y (both suitable since they have no upper bound)

• pivot s3 with y:
s3 = −x− y ↔ y = −x− s3

s1 = −x + y = −x + (−x− s3) = −2x− s3

s2 = −x− s3 s4 = 4x + s3

• update assignment s3 := −6 x = 0
s1 := −2x− s3 = 6 s2 := 6 y := 6 s4 := −6

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1

s2

y

s4


x s3

−2 −1

−1 −1

−1 −1

4 1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

0 6 6 6 −6 −6

2 Iteration 2

• s2 violates its bounds
• decreasing s2 requires increase of x or s3: x is suitable, but s3 is not

• pivot s2 with x: x = −s2 − s3 s1 = −2x− s3 = 2s2 + s3

y = −x− s3 = s2 s4 = 4x + s3 = −4s2 − 3s3

• update assignment s2 := 4 s3 = −6
s1 := 2 x := 2 y := 4 s4 := 2

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1

s2

y

s4


x s3

−2 −1

−1 −1

−1 −1

4 1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

0 6 6 6 −6 −6

2 Iteration 2

• s2 violates its bounds

• decreasing s2 requires increase of x or s3: x is suitable, but s3 is not

• pivot s2 with x: x = −s2 − s3 s1 = −2x− s3 = 2s2 + s3

y = −x− s3 = s2 s4 = 4x + s3 = −4s2 − 3s3

• update assignment s2 := 4 s3 = −6
s1 := 2 x := 2 y := 4 s4 := 2

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1

s2

y

s4


x s3

−2 −1

−1 −1

−1 −1

4 1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

0 6 6 6 −6 −6

2 Iteration 2

• s2 violates its bounds
• decreasing s2 requires increase of x or s3: x is suitable, but s3 is not

• pivot s2 with x: x = −s2 − s3 s1 = −2x− s3 = 2s2 + s3

y = −x− s3 = s2 s4 = 4x + s3 = −4s2 − 3s3

• update assignment s2 := 4 s3 = −6
s1 := 2 x := 2 y := 4 s4 := 2

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1

s2

y

s4


x s3

−2 −1

−1 −1

−1 −1

4 1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

0 6 6 6 −6 −6

2 Iteration 2

• s2 violates its bounds
• decreasing s2 requires increase of x or s3: x is suitable, but s3 is not

• pivot s2 with x: x = −s2 − s3 s1 = −2x− s3 = 2s2 + s3

y = −x− s3 = s2 s4 = 4x + s3 = −4s2 − 3s3

• update assignment s2 := 4 s3 = −6
s1 := 2 x := 2 y := 4 s4 := 2

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1

x

y

s4


s2 s3

2 1

−1 −1

1 0

−4 −3


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

0 6 6 6 −6 −6

2 Iteration 2

• s2 violates its bounds
• decreasing s2 requires increase of x or s3: x is suitable, but s3 is not

• pivot s2 with x: x = −s2 − s3 s1 = −2x− s3 = 2s2 + s3

y = −x− s3 = s2 s4 = 4x + s3 = −4s2 − 3s3

• update assignment s2 := 4 s3 = −6
s1 := 2 x := 2 y := 4 s4 := 2

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1

x

y

s4


s2 s3

2 1

−1 −1

1 0

−4 −3


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

0 6 6 6 −6 −6

2 Iteration 2

• s2 violates its bounds
• decreasing s2 requires increase of x or s3: x is suitable, but s3 is not

• pivot s2 with x: x = −s2 − s3 s1 = −2x− s3 = 2s2 + s3

y = −x− s3 = s2 s4 = 4x + s3 = −4s2 − 3s3

• update assignment s2 := 4 s3 = −6
s1 := 2 x := 2 y := 4 s4 := 2

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1

x

y

s4


s2 s3

2 1

−1 −1

1 0

−4 −3


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

2 4 2 4 −6 2

2 Iteration 2

• s2 violates its bounds
• decreasing s2 requires increase of x or s3: x is suitable, but s3 is not

• pivot s2 with x: x = −s2 − s3 s1 = −2x− s3 = 2s2 + s3

y = −x− s3 = s2 s4 = 4x + s3 = −4s2 − 3s3

• update assignment s2 := 4 s3 = −6
s1 := 2 x := 2 y := 4 s4 := 2

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1

x

y

s4


s2 s3

2 1

−1 −1

1 0

−4 −3


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

2 4 2 4 −6 2

3 Iteration 3

• s1 violates its bounds

• decreasing s1 requires to decrease s2 or s3 (both suitable since they have no lower bound)

• pivot s1 with s3: s3 = s1 − 2s2 x = −s1 + s2

y = s2 s4 = −3s1 + 2s2

• update assignment s1 := 1 s2 = 4
s3 := −7 x := 3 y := 4 s4 := 5

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1

x

y

s4


s2 s3

2 1

−1 −1

1 0

−4 −3


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

2 4 2 4 −6 2

3 Iteration 3

• s1 violates its bounds
• decreasing s1 requires to decrease s2 or s3 (both suitable since they have no lower bound)

• pivot s1 with s3: s3 = s1 − 2s2 x = −s1 + s2

y = s2 s4 = −3s1 + 2s2

• update assignment s1 := 1 s2 = 4
s3 := −7 x := 3 y := 4 s4 := 5

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s1

x

y

s4


s2 s3

2 1

−1 −1

1 0

−4 −3


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

2 4 2 4 −6 2

3 Iteration 3

• s1 violates its bounds
• decreasing s1 requires to decrease s2 or s3 (both suitable since they have no lower bound)

• pivot s1 with s3: s3 = s1 − 2s2 x = −s1 + s2

y = s2 s4 = −3s1 + 2s2

• update assignment s1 := 1 s2 = 4
s3 := −7 x := 3 y := 4 s4 := 5

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s3

x

y

s4


s2 s1

−2 1

1 −1

1 0

2 −3


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

2 4 2 4 −6 2

3 Iteration 3

• s1 violates its bounds
• decreasing s1 requires to decrease s2 or s3 (both suitable since they have no lower bound)

• pivot s1 with s3: s3 = s1 − 2s2 x = −s1 + s2

y = s2 s4 = −3s1 + 2s2

• update assignment s1 := 1 s2 = 4
s3 := −7 x := 3 y := 4 s4 := 5

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s3

x

y

s4


s2 s1

−2 1

1 −1

1 0

2 −3


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

2 4 2 4 −6 2

3 Iteration 3

• s1 violates its bounds
• decreasing s1 requires to decrease s2 or s3 (both suitable since they have no lower bound)

• pivot s1 with s3: s3 = s1 − 2s2 x = −s1 + s2

y = s2 s4 = −3s1 + 2s2

• update assignment s1 := 1 s2 = 4
s3 := −7 x := 3 y := 4 s4 := 5

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s3

x

y

s4


s2 s1

−2 1

1 −1

1 0

2 −3


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

3 4 1 4 −7 5

3 Iteration 3

• s1 violates its bounds
• decreasing s1 requires to decrease s2 or s3 (both suitable since they have no lower bound)

• pivot s1 with s3: s3 = s1 − 2s2 x = −s1 + s2

y = s2 s4 = −3s1 + 2s2

• update assignment s1 := 1 s2 = 4
s3 := −7 x := 3 y := 4 s4 := 5

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Example

tableau bounds assignment

s3

x

y

s4


s2 s1

−2 1

1 −1

1 0

2 −3


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6

s4 ⩽ 7

x y s1 s2 s3 s4

3 4 1 4 −7 5

4 Iteration 4

• all variables satisfy their bounds

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm 22/30



Simplex Algorithm as T-solver

Ax⃗N = x⃗B (1)

−∞ ≤ li ≤ xi ≤ ui ≤ +∞ (2)

xj

xi

 . . . . . .

Aij

. . . . . .


nonbasic x⃗N

b
a
si

c
x⃗

B

Invariant
• (1) is satisfied and (2) holds for all nonbasic variables

Pivoting
• swap basic xi and nonbasic xj, so i ∈ B and j ∈ N

xi =
∑
k∈N

Aikxk =⇒ xj =
1

Aij

xi −
∑

k∈N−{j}

Aikxk



(⋆)

• new tableau A′ consists of (⋆) and AB−{i}x⃗N = x⃗B−{i} with (⋆) substituted

Update
• assignment of xi is updated to previously violated bound li or ui,

• assignment of xk is recomputed using A′ for all k ∈ B− {i} ∪ {j}
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Simplex Algorithm as T-solver

Ax⃗N = x⃗B (1)

∀i ∈ N. −∞ ≤ li ≤ xi ≤ ui ≤ +∞ (2)

Suitability
• basic variable xi violates lower or upper bound

• pick nonbasic variable xj such that

• if ui < li: problem is trivially unsatisfiable and no suitable xj exists

• if xi < li: Aij > 0 and xj < uj or Aij < 0 and xj > lj
• if xi > ui: Aij > 0 and xj > lj or Aij < 0 and xj < uj

Observation
• problem is unsatisfiable if no suitable pivot exists
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Motivation

strict inequalities naturally arise, e.g., as negated non-strict inequalities in DPLL(T)

¬(x + 3 ≤ 5y) ↔ x + 3 > 5y

How to Treat Strict Inequalities

replace in conjunction of inequalities C every strict inequality

a1x1 + · · ·+ anxn > b a1x1 + · · ·+ anxn < b

by non-strict inequality

a1x1 + · · ·+ anxn ≥ b + δ a1x1 + · · ·+ anxn ≤ b− δ

to obtain constraints Cδ in LRA without > and <, and treat δ symbolically during simplex
algorithm (δ represents small positive rational number)

Lemma

C is satisfiable ⇐⇒ ∃ rational number δ > 0 such that Cδ is satisfiable
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Symbolical computation with δ

• δ represents small positive rational number, i.e., smaller than every concrete
rational number that occurs during the computations of the simplex algorithm

• treat δ symbolically: Qδ = {(c, k) | c, k ∈ Q} with (c, k) representing c + kδ
• operations for all a, c1, k1, c2, k2 ∈ Q

• addition: (c1, k1) + (c2, k2) = (c1 + c2, k1 + k2)
• multiplication: a · (c1, k1) = (ac1, ak1)
• equality: (c1, k1) = (c2, k2) ↔ c1 = c2 ∧ k1 = k2

• comparison: (c1, k1) < (c2, k2) ↔ c1 < c2 ∨ c1 = c2 ∧ k1 < k2

(c1, k1) ≤ (c2, k2) ↔ c1 < c2 ∨ c1 = c2 ∧ k1 ≤ k2

• multiplication of two Qδ-numbers is not defined, but also not required for the
simplex algorithm

• coefficients in the tableau stay in Q
• only bounds and assignment require Qδ
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Example

tableau constraints assignment

s1

s2

s3


x y

1 1

2 −1

−1 2

 2 < s1

0 ⩽ s2

1 ⩽ s3

x y s1 s2 s3

0 0 0 0 0

• pivot s1 with x

=⇒ x = s1 − y

s2 = 2(s1 − y)− y = 2s1 − 3y

s3 = −(s1 − y) + 2y = −s1 + 3y
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tableau constraints assignment

s1

s2

s3


x y

1 1

2 −1

−1 2

 (2,1) ⩽ s1

(0,0) ⩽ s2

(1,0) ⩽ s3

x y s1 s2 s3

(0,0) (0,0) (0,0) (0,0) (0,0)
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Example

tableau constraints assignment

x

s2

s3


s1 y

1 −1

2 −3

−1 3

 (2,1) ⩽ s1

(0,0) ⩽ s2

(1,0) ⩽ s3

x y s1 s2 s3

(0,0) (0,0) (0,0) (0,0) (0,0)

• pivot s1 with x =⇒ x = s1 − y

s2 = 2(s1 − y)− y = 2s1 − 3y

s3 = −(s1 − y) + 2y = −s1 + 3y
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Example

tableau constraints assignment

x

s2

s3


s1 y

1 −1

2 −3

−1 3

 (2,1) ⩽ s1

(0,0) ⩽ s2

(1,0) ⩽ s3

x y s1 s2 s3

(0,0) (0,0) (2,1) (0,0) (0,0)

• pivot s1 with x =⇒ x = s1 − y

s2 = 2(s1 − y)− y = 2s1 − 3y

s3 = −(s1 − y) + 2y = −s1 + 3y
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Example

tableau constraints assignment

x

s2

s3


s1 y

1 −1

2 −3

−1 3

 (2,1) ⩽ s1

(0,0) ⩽ s2

(1,0) ⩽ s3

x y s1 s2 s3

(2,1) (0,0) (2,1) (4,2) (−2,−1)

• pivot s1 with x =⇒ x = s1 − y

s2 = 2(s1 − y)− y = 2s1 − 3y

s3 = −(s1 − y) + 2y = −s1 + 3y
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Kröning and Strichmann

• Sections 5.1, 5.2 and 5.7

Further Reading

Bruno Dutertre and Leonardo de Moura.
A Fast Linear-Arithmetic Solver for DPLL(T)
In Proc. of International Conference on Computer Aided Verification, pp. 81–94, 2006.

Important Concepts

• basic and nonbasic variables

• Bellman–Ford algorithm

• difference logic

• linear arithmetic (LRA and LIA)

• negative cycles

• pivoting

• Qδ

• simplex algorithm

• suitable pair of variables

• tableau
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https://link.springer.com/chapter/10.1007/11817963_11
https://link.springer.com/chapter/10.1007/11817963_11
https://link.springer.com/chapter/10.1007/11817963_11
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