

SS 2024 lecture 6

Constraint Solving

René Thiemann and Fabian Mitterwallner based on a previous course by Aart Middeldorp

Outline

- 1. Summary of Previous Lecture
- 2. Difference Logic
- 3. Simplex Algorithm
- 4. Support of Strict Inequalities
- 5. Further Reading

Definition (Equality Logic)

terms are restricted to variables, no quantifiers:

$$\varphi ::= \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \neg \varphi \mid t = t \qquad t ::= x$$

T-solver for conjunction φ of equality logic literals over set of variables V

Definition

equality graph is undirected graph $G_{=}(\varphi) = (V, E_{=}, E_{\neq})$ with

- $E_{=}$ edges corresponding to positive (equality) literals in φ
- E_{\neq} edges corresponding to negative (inequality) literals in φ

Lemma

 φ is satisfiable \iff $G_{=}(\varphi)$ contains no simple contradictory cycles (with exactly one E_{\neq} edge) Quantifier-Free Fragment of Equality Logic with Uninterpreted Functions (EUF)

$$\varphi ::= \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \neg \varphi \mid t = t \qquad t ::= f(t, \dots, t)$$

*T***-Solver for Conjunctive Fragment via Congruence Closure**

input: set *E* of ground equations and ground equation $s \approx t$ output: valid ($E \vDash_T s = t$) or invalid ($E \nvDash_T s = t$)

build congruence classes

- (a) put different subterms of terms in $E \cup \{s = t\}$ in separate sets
- (b) merge sets $\{\ldots, t_1, \ldots\}$ and $\{\ldots, t_2, \ldots\}$ for all $t_1 = t_2$ in E

(c) repeatedly merge sets

 $\{\ldots, f(s_1, \ldots, s_n), \ldots\}$ and $\{\ldots, f(t_1, \ldots, t_n), \ldots\}$

if s_i and t_i belong to same set for all $1 \leq i \leq n$

2 if *s* and *t* belong to same set then return valid else return invalid

Outline

1. Summary of Previous Lecture

2. Difference Logic

- 3. Simplex Algorithm
- 4. Support of Strict Inequalities
- 5. Further Reading

Difference Logic

atoms are constraints of the form

- x − y ≤ c
- *x*−*y* < *c*

where x and y are variables and c is some constant of $\mathbb Z$ or $\mathbb Q$

Remarks

- difference logic is fragment of linear arithmetic; advantage: faster decision procedure
- domains: \mathbb{Z} or \mathbb{Q} (*T*-solver in polynomial time)
- x y = c \iff $x y \leqslant c \land y x \leqslant -c$
- $x y \ge c \iff y x \le -c$
- $x y > c \iff y x < -c$
- $x < c \iff x x_0 < c$ where x_0 is fresh variable that must be assigned 0

Example Job-Shop Scheduling

- m machines (M_1, \ldots, M_m) and n jobs (J_1, \ldots, J_n)
- each job J_i is sequence $(M_1^i, d_1^i), \ldots, (M_{n_i}^i, d_{n_i}^i)$ of operations consisting of machine and duration (rational number; $\tau(M, d) = d$)
- O is multiset of all operations from all jobs
- schedule is function S that defines for each operation $v \in O$ its starting time S(v) on machine specified by v
- schedule *S* is feasible if

 $S(v) \geqslant 0$ for all $v \in O$

 $S(v_i) + \tau(v_i) \leqslant S(v_j)$ for all consecutive v_i, v_j in same job

 $S(\mathbf{v}_i) + \tau(\mathbf{v}_i) \leqslant S(\mathbf{v}_j) \lor S(\mathbf{v}_j) + \tau(\mathbf{v}_j) \leqslant S(\mathbf{v}_i)$

for every pair of different operations v_i , v_j scheduled on same machine

• aim: minimize global duration gd; add constraints $S(v) + \tau(v) \le gd$ for each $v \in O$

Definition Inequality Graph

conjunction φ of nonstrict difference constraints

• inequality graph of φ contains edge from x to y with weight c for every constraint $x - y \leq c$ in φ

Theorem

conjunction φ of nonstrict difference constraints is satisfiable inequality graph of φ has no negative cycle

Example

Theorem

conjunction φ of nonstrict difference constraints is satisfiable inequality graph of φ has no negative cycle

Proof

negative cycle $x_1 \xrightarrow{k_1} x_2 \xrightarrow{k_2} x_3 \longrightarrow \cdots \longrightarrow x_n \xrightarrow{k_n} x_1$

in inequality graph of φ corresponds to conjuction

$$x_1 - x_2 \leqslant k_1 \land x_2 - x_3 \leqslant k_2 \land \cdots \land x_n - x_1 \leqslant k_n$$

adding these literals gives

$$0\leqslant k_1+k_2+\cdots+k_n$$

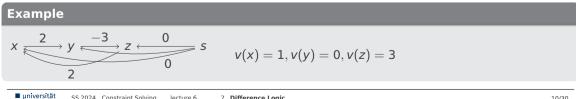
with $k_1 + k_2 + \cdots + k_n < 0$

Theorem

conjunction φ of nonstrict difference constraints is satisfiable inequality graph of φ has no negative cycle

Proof

- assume inequality graph of φ has no negative cycle construct satisfying assignment for φ as follows
 - add additional starting node s in graph, add edges $s \to x$ with weight 0 for all variables x
 - define v(x) = -distance(s, x); well-defined, since there are no negative cycles
 - v satisfies φ



Algorithms for Distance Computation and Negative Cycle Detection

Dijkstra

- computes distances from a single source to all other nodes
- complexity: $O(|V| \cdot log(|V|) + |E|)$
- restriction: no negative cycles allowed
- Bellman–Ford
 - computes distances from a single source to all other nodes
 - complexity: $\mathcal{O}(|V| \cdot |E|)$
 - can also detect negative cycles
- Floyd–Warshall
 - computes distances between all nodes
 - complexity: $\mathcal{O}(|V|^3)$
 - can also detect negative cycles
- \Rightarrow use Bellman–Ford algorithm for difference logic

Bellman–Ford Algorithm for Inequality Graphs

```
Input inequality graph (V, E, w) with fresh starting node s
```

```
Output "\exists negative cycle" or distances to node s
```

```
1 distance[v] := 0 for all nodes v \in V
```

(this step is special for inequality graphs)

```
Provide the image of the second state of
```

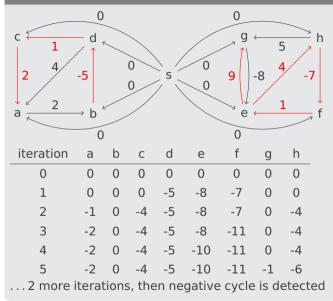
3 for all $(u, v) \in E$ do

if distance[v] > distance[u] + w(u, v) then return " \exists negative cycle "

which can be reconstructed using predecessor array

return distance array, shortest paths available via predecessor array

Example Bellman–Ford in Action



Outline

- **1. Summary of Previous Lecture**
- 2. Difference Logic

3. Simplex Algorithm

- 4. Support of Strict Inequalities
- 5. Further Reading

Definition (Theory of Linear Arithmetic over D)

• for variables x_1, \ldots, x_n , built quantifier-free formulas according to grammar

 $\varphi ::= \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid t < t \mid t \leq t$

 $t:=a_1x_1+\cdots+a_nx_n+b$

s = t is encoded as $s \le t \land t \le s$

for $a_1, \ldots, a_n, b \in in$ domain D

• **solution** assigns values in **D** to x_1, \ldots, x_n

Definitions

- Linear Real Arithmetic (LRA) uses domain $D = \mathbb{R}$
- Linear Integer Arithmetic (LIA) uses domain $D = \mathbb{Z}$

Example

- $x + y + z = 2 \land z > y \land y > -1$ is satisfiable in LRA and LIA, e.g. with v(x) = v(y) = 0 and v(z) = 2
- $x < 3 \land 2x > 4$

is unsatisfiable in LIA but satisfiable in LRA, e.g. with v(x) = 2.5

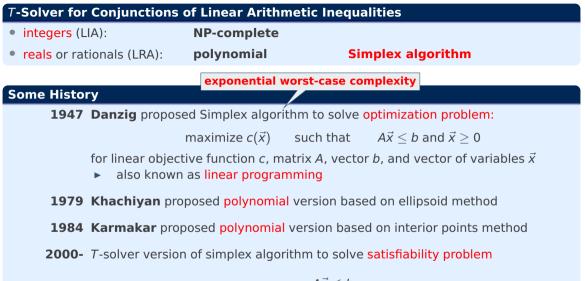
Relevance of Linear Arithmetic

LRA and LIA admit more natural and succinct encodings of

- everything with cardinality constraints: n-queens, Sudoku, Minesweeper, ...
- planning problems

• . . .

- scheduling problems
- component configuration problems



$$A\vec{x} \leq b$$

Problem Input (General Form)

- *m* equalities
- (optional) lower and upper bounds on variables

 $a_1x_1 + \dots + a_nx_n = 0$ $I_i \le x_i \le u_i$

Lemma

any conjunctive LRA problem without < can be turned into equisatisfiable general form

Example

$$x - y \ge -1$$
$$y \le 4$$
$$x + y \ge 6$$
$$3x - y \le 7$$

$$-x + y - s_1 = 0 \quad s_1 \le 1$$
$$y - s_2 = 0 \quad s_2 \le 4$$
$$-x - y - s_3 = 0 \quad s_3 \le -6$$
$$3x - y - s_4 = 0 \quad s_4 \le 7$$

slack variables

- *s*₁, *s*₂, *s*₃, *s*₄ are slack variables
- *x*, *y* are problem variables

Representation

represent equalities $-x + y - s_{1} = 0$ $y - s_{2} = 0$ $-x - y - s_{3} = 0$ $3x - y - s_{4} = 0$ via $m \times n$ matrix presentation $x \quad y \quad \leftarrow \text{ nonbasic variables}$ $s_{1} \begin{pmatrix} -1 & 1 \\ 0 & 1 \\ -1 - 1 \\ s_{4} \end{pmatrix} \leftarrow \text{ nonbasic variables}$

Notation

- matrix is tableau
- *B* is set of **basic variables** (in tableau listed vertically)
- N is set of **nonbasic variables** (in tableau listed horizontally)

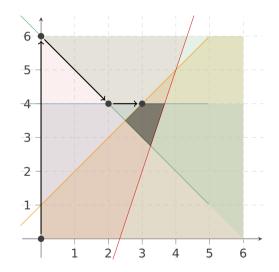
Simplex Algorithm as *T*-solver

- **Input:** conjunction of LRA atoms φ without <
- Output: satisfiable assignment or unsatisfiable
 - 1 transform φ into general form and construct tableau
 - 2 fix order on variables and assign 0 to each variable
 - 3 if all basic variables satisfy their bounds then return current (satisfying) assignment
 - 4 let $x_i \in B$ be variable that violates its bounds
 - search for suitable variable $x_i \in N$ for pivoting with x_i
 - 6 return unsatisfiable if search unsuccessful
 - 7 perform **pivot** operation on x_i and x_j
 - 9 update assignment
 - 10 go to step 3

Simplex, Visually

• constraints
$$\begin{array}{c} x-y \geq -1\\ y \leq 4\\ x+y \geq 6\\ 3x-y \leq 7\end{array}$$

- solution space
- Simplex solution search



Example

	tabl	eau	bounds	assignment					
	<i>S</i> ₂	S_1							
<i>S</i> ₃	$\begin{pmatrix} -2 \\ 1 \end{pmatrix}$	1	$s_1 \leqslant 1$	x	У	s_1	<i>s</i> ₂	s 3	<i>S</i> 4
х У		_1 0	$egin{array}{llllllllllllllllllllllllllllllllllll$	3	4	1	4	-7	5
S_4	2	-3 /	$s_4 \leqslant 7$						

3 Iteration 3

- *s*₁ violates its bounds
- decreasing s₁ requires to decrease s₂ or s₃ (both suitable since they have no lower bound)

Simplex Algorithm as *T*-solver

$$A\vec{x}_N = \vec{x}_B \tag{1}$$

$$-\infty \leq l_i \leq x_i \leq u_i \leq +\infty$$
 (2)

Invariant

• (1) is satisfied and (2) holds for all nonbasic variables

Pivoting

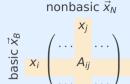
• swap basic x_i and nonbasic x_j , so $i \in B$ and $j \in N$

$$x_i = \sum_{k \in N} A_{ik} x_k \implies x_j = \frac{1}{A_{ij}} \left(x_i - \sum_{k \in N - \{j\}} A_{ik} x_k \right)$$

• new tableau A' consists of (*) and $A_{B-\{i\}}\vec{x}_N = \vec{x}_{B-\{i\}}$ with (*) substituted

Update

- assignment of x_i is updated to previously violated bound I_i or u_i,
- assignment of x_k is recomputed using A' for all $k \in B \{i\} \cup \{j\}$



23/30

Simplex Algorithm as *T*-solver

$$A\vec{x}_N = \vec{x}_B \tag{1}$$

$$\forall i \in \mathbf{N}. \ -\infty \le I_i \le \mathbf{x}_i \le u_i \le +\infty \tag{2}$$

Suitability

- basic variable x_i violates lower or upper bound
- pick nonbasic variable x_j such that
 - if $u_i < l_i$: problem is trivially unsatisfiable and no suitable x_j exists
 - if $x_i < l_i$: $A_{ij} > 0$ and $x_j < u_j$ or $A_{ij} < 0$ and $x_j > l_j$
 - if $x_i > u_i$: $A_{ij} > 0$ and $x_j > l_j$ or $A_{ij} < 0$ and $x_j < u_j$

Observation

problem is unsatisfiable if no suitable pivot exists

Outline

- **1. Summary of Previous Lecture**
- 2. Difference Logic
- 3. Simplex Algorithm
- 4. Support of Strict Inequalities
- 5. Further Reading

Motivation

strict inequalities naturally arise, e.g., as negated non-strict inequalities in DPLL(T)

$$\neg(x+3\leq 5y) \quad \leftrightarrow \quad x+3>5y$$

How to Treat Strict Inequalities

replace in conjunction of inequalities C every strict inequality

 $a_1x_1 + \cdots + a_nx_n > b$ $a_1x_1 + \cdots + a_nx_n < b$

by non-strict inequality

$$a_1x_1 + \cdots + a_nx_n \ge b + \delta$$
 $a_1x_1 + \cdots + a_nx_n \le b - \delta$

to obtain constraints C_{δ} in LRA without > and <, and treat δ symbolically during simplex algorithm (δ represents small positive rational number)

Lemma

universität innsbruck

Symbolical computation with δ

- δ represents small positive rational number, i.e., smaller than every concrete rational number that occurs during the computations of the simplex algorithm
- treat δ symbolically: $\mathbb{Q}_{\delta} = \{(c,k) \mid c,k \in \mathbb{Q}\}$ with (c,k) representing $c + k\delta$
- operations for all $a, c_1, k_1, c_2, k_2 \in \mathbb{Q}$
 - addition: $(c_1, k_1) + (c_2, k_2) = (c_1 + c_2, k_1 + k_2)$
 - multiplication: $a \cdot (c_1, k_1) = (ac_1, ak_1)$
 - equality:
- $(c_1, k_1) = (c_2, k_2) \quad \leftrightarrow \quad c_1 = c_2 \wedge k_1 = k_2$
- comparison: $(c_1,k_1) < (c_2,k_2) \quad \leftrightarrow \quad c_1 < c_2 \lor c_1 = c_2 \land k_1 < k_2$ $(c_1,k_1) \le (c_2,k_2) \quad \leftrightarrow \quad c_1 < c_2 \lor c_1 = c_2 \land k_1 \le k_2$
- multiplication of two $\mathbb{Q}_{\delta}\text{-numbers}$ is not defined, but also not required for the simplex algorithm
 - coefficients in the tableau stay in ${\mathbb Q}$
 - only bounds and assignment require \mathbb{Q}_{δ}

Example

tableau	constraints	assignment						
$\begin{array}{ccc} & s_1 & y \\ x & \left(\begin{array}{cc} 1 & -1 \\ s_2 & 2 & -3 \\ s_3 & -1 & 3 \end{array}\right)$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\frac{x y s_1 s_2 s_3}{(2,1) (0,0) (2,1) (4,2) (-2,-1)}$						
• pivot s_1 with $x \implies x = s_1 - y$ $s_2 = 2(s_1 - y) - y = 2s_1 - 3y$ $s_3 = -(s_1 - y) + 2y = -s_1 + 3y$								

Outline

- **1. Summary of Previous Lecture**
- 2. Difference Logic
- 3. Simplex Algorithm
- 4. Support of Strict Inequalities

5. Further Reading

Kröning and Strichmann

Sections 5.1, 5.2 and 5.7

Further Reading

Bruno Dutertre and Leonardo de Moura. A Fast Linear-Arithmetic Solver for DPLL(T) In Proc. of International Conference on Computer Aided Verification, pp. 81–94, 2006.

Important Concepts

- basic and nonbasic variables
- Bellman–Ford algorithm
- difference logic
- linear arithmetic (LRA and LIA)
- negative cycles

- pivoting
- simplex algorithm
- suitable pair of variables
- tableau