

Constraint Solving

René Thiemann and Fabian Mitterwallner

based on a previous course by Aart Middeldorp

Definition (Equality Logic)

terms are restricted to variables, no quantifiers:

$$
\varphi::=\varphi \wedge \varphi|\varphi \vee \varphi| \varphi \rightarrow \varphi|\neg \varphi| t=t
$$

$$
t::=x
$$

T-solver for conjunction φ of equality logic literals over set of variables V

Definition

equality graph is undirected graph $G_{=}(\varphi)=\left(V, E_{=}, E_{\neq}\right)$with

- $E_{=}$edges corresponding to positive (equality) literals in φ
- E_{\neq}edges corresponding to negative (inequality) literals in φ

Lemma

φ is satisfiable \Longleftrightarrow
$G_{=}(\varphi)$ contains no simple contradictory cycles (with exactly one E_{\neq}edge)

$$
\begin{array}{lllll}
\hline \text { Miniversitat } & \text { SS } 2024 & \text { Constraint Solving } & \text { lecture } 6 & \text { 1. Summary of Previous Lecture }
\end{array}
$$

1. Summary of Previous Lecture

2. Difference Logic
3. Simplex Algorithm
4. Support of Strict Inequalities
5. Further Reading

Quantifier-Free Fragment of Equality Logic with Uninterpreted Functions (EUF)

$$
\varphi::=\varphi \wedge \varphi|\varphi \vee \varphi| \varphi \rightarrow \varphi|\neg \varphi| t=t \quad t::=f(t, \ldots, t)
$$

T-Solver for Conjunctive Fragment via Congruence Closure

input: set E of ground equations and ground equation $s \approx t$
output: valid $\left(E \vDash_{T} s=t\right)$ or invalid $\left(E \nvdash_{T} s=t\right)$
(1) build congruence classes
(a) put different subterms of terms in $E \cup\{s=t\}$ in separate sets
(b) merge sets $\left\{\ldots, t_{1}, \ldots\right\}$ and $\left\{\ldots, t_{2}, \ldots\right\}$ for all $t_{1}=t_{2}$ in E
(c) repeatedly merge sets

$$
\left\{\ldots, f\left(s_{1}, \ldots, s_{n}\right), \ldots\right\} \text { and }\left\{\ldots, f\left(t_{1}, \ldots, t_{n}\right), \ldots\right\}
$$

if s_{i} and t_{i} belong to same set for all $1 \leqslant i \leqslant n$
(2) if s and t belong to same set then return valid else return invalid

Outline

1. Summary of Previous Lecture

2. Difference Logic

3. Simplex Algorithm
4. Support of Strict Inequalities
5. Further Reading

Difference Logic

atoms are constraints of the form

- $x-y \leqslant c$
- $x-y<c$
where x and y are variables and c is some constant of \mathbb{Z} or \mathbb{Q}

Remarks

- difference logic is fragment of linear arithmetic; advantage: faster decision procedure
- domains: \mathbb{Z} or $\mathbb{Q} \quad$ (T-solver in polynomial time)
- $x-y=c \quad \Longleftrightarrow \quad x-y \leqslant c \wedge y-x \leqslant-c$
- $x-y \geqslant c \quad \Longleftrightarrow \quad y-x \leqslant-c$
- $x-y>c \Longleftrightarrow y-x<-c$
- $x<c \Longleftrightarrow x-x_{0}<c$ where x_{0} is fresh variable that must be assigned 0

Euniversitat SS 2024 Constraint Solving lecture 6 \quad 2. Difference Logic ${ }^{6 / 30}$

Definition Inequality Graph

conjunction φ of nonstrict difference constraints

- inequality graph of φ contains edge from x to y with weight c for every constraint $x-y \leqslant c$ in φ

Theorem

conjunction φ of nonstrict difference constraints is satisfiable
inequality graph of φ has no negative cycle

Example

$$
\begin{aligned}
& x-y \leqslant 2 \\
& y-z \leqslant-3 \\
& z-x \leqslant 2
\end{aligned} \quad x \stackrel{2}{\longleftarrow} y \xrightarrow{-3} z
$$

- aim: minimize global duration $g d$; add constraints $S(v)+\tau(v) \leq g d$ for each $v \in O$

Theorem

conjunction φ of nonstrict difference constraints is satisfiable
inequality graph of φ has no negative cycle

Proof

\Rightarrow negative cycle $\quad x_{1} \xrightarrow{k_{1}} x_{2} \xrightarrow{k_{2}} x_{3} \longrightarrow \cdots \longrightarrow x_{n} \xrightarrow{k_{n}} x_{1}$
in inequality graph of φ corresponds to conjuction

$$
x_{1}-x_{2} \leqslant k_{1} \wedge x_{2}-x_{3} \leqslant k_{2} \wedge \cdots \wedge x_{n}-x_{1} \leqslant k_{n}
$$

adding these literals gives

$$
0 \leqslant k_{1}+k_{2}+\cdots+k_{n}
$$

with $k_{1}+k_{2}+\cdots+k_{n}<0$

Algorithms for Distance Computation and Negative Cycle Detection

- Dijkstra

- computes distances from a single source to all other nodes
- complexity: $\mathcal{O}(|V| \cdot \log (|V|)+|E|)$
- restriction: no negative cycles allowed
- Bellman-Ford
computes distances from a single source to all other nodes
- complexity: $\mathcal{O}(|V| \cdot|E|)$
- can also detect negative cycles
- Floyd-Warshall
- computes distances between all nodes
- complexity: $\mathcal{O}\left(|V|^{3}\right)$
- can also detect negative cycles
\Rightarrow use Bellman-Ford algorithm for difference logic

Theorem

conjunction φ of nonstrict difference constraints is satisfiable
inequality graph of φ has no negative cycle

Proof

\Leftarrow assume inequality graph of φ has no negative cycle construct satisfying assignment for φ as follows

- add additional starting node s in graph, add edges $s \rightarrow x$ with weight 0 for all variables x
- define $v(x)=$-distance (s, x); well-defined, since there are no negative cycles
- v satisfies φ

Example

Bellman-Ford Algorithm for Inequality Graphs

Input inequality graph (V, E, w) with fresh starting node s
Output " \exists negative cycle" or distances to node s
(1) distance $[v]:=0$ for all nodes $v \in V$
(this step is special for inequality graphs)
(2) repeat $|V|-1$ times
for all $(u, v) \in E$ do
if distance $[v]>$ distance $[u]+w(u, v)$ then distance $[v]:=$ distance $[u]+w(u, v)$ predecessor[$v]:=u$
(3) for all $(u, v) \in E$ do
if distance $[v]>$ distance $[u]+w(u, v)$ then
return " \exists negative cycle"
which can be reconstructed using predecessor array
(4) return distance array, shortest paths available via predecessor array

Outline

1. Summary of Previous Lecture
2. Difference Iogic
3. Simplex Algorithm
4. Support of Strict Inequalities
5. Further Reading

\author{

- universitat 552024 Constraint Solving lecture $6 \quad$ 3. Simplex Algorithm
}

Relevance of Linear Arithmetic

LRA and LIA admit more natural and succinct encodings of

- everything with cardinality constraints: n-queens, Sudoku, Minesweeper, ...
- planning problems
- scheduling problems
component configuration problems
- ...

Example

- $x+y+z=2 \wedge z>y \wedge y>-1$
is satisfiable in LRA and LIA, e.g. with $v(x)=v(y)=0$ and $v(z)=2$
- $x<3 \wedge 2 x>4$
is unsatisfiable in LIA but satisfiable in LRA, e.g. with $v(x)=2.5$

Euniveristat	S5 2024	Constraint Solving	lecture 6	3. Simplex Algorithm
innsburke				

E universitat
innsbruck SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm ${ }^{17 / 30}$

Representation	
- represent equalities	$-x+y-s_{1}=0$
$y-s_{2}=0$	
$-x-y-s_{3}=0$	
$3 x-y-s_{4}=0$	

via $m \times n$ matrix presentation

basic variables \rightarrow| |
| :---: |
| s_{1} |
| s_{2} |
| s_{3} |
| s_{4} |\(\left(\begin{array}{rr}-1 \& 1

0 \& 1

-1 \& -1

3 \& -1\end{array}\right)\)

Notation

- matrix is tableau
- B is set of basic variables (in tableau listed vertically)
- N is set of nonbasic variables (in tableau listed horizontally)

Problem Input (General Form)

- m equalities
- (optional) lower and upper bounds on variables
$l_{i} \leq x_{i} \leq u_{i}$

Lemma

any conjunctive LRA problem without < can be turned into equisatisfiable general form

Example

$$
\begin{aligned}
x-y & \geq-1 \\
y & \leq 4 \\
x+y & \geq 6 \\
3 x-y & \leq 7
\end{aligned} \quad \Longrightarrow \quad \begin{array}{rlr}
-x+y-s_{1} & =0 & s_{1} \leq 1 \\
y-s_{2} & =0 & s_{2} \leq 4 \\
-x-y-s_{3} & =0 & s_{3} \leq-6 \\
3 x-y-s_{4} & =0 & s_{4} \leq 7
\end{array} \quad \text { slack variables }
$$

- $s_{1}, s_{2}, s_{3}, s_{4}$ are slack variables
- x, y are problem variables

Hiniversitat
innsbruck SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm ${ }^{18 / 30}$

Simplex, Visually

$$
x-y \geq-1
$$

- constraints $\quad \begin{aligned} y & \leq 4 \\ x+y & \geq 6\end{aligned}$
$3 x-y \leq 7$
- solution space
- Simplex solution search

Huniveritita SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm
21/30

Simplex Algorithm as T-solver

$$
\begin{equation*}
A \vec{x}_{N}=\vec{x}_{B} \tag{1}
\end{equation*}
$$

$-\infty \leq I_{i} \leq x_{i} \leq u_{i} \leq+\infty$

Invariant

- (1) is satisfied and (2) holds for all nonbasic variables

Pivoting

- swap basic x_{i} and nonbasic x_{j}, so $i \in B$ and $j \in N$

$$
\begin{equation*}
x_{i}=\sum_{k \in N} A_{i k} x_{k} \quad \Longrightarrow \quad x_{j}=\frac{1}{A_{i j}}\left(x_{i}-\sum_{k \in N-\{j\}} A_{i k} x_{k}\right) \tag{*}
\end{equation*}
$$

- new tableau A^{\prime} consists of (\star) and $A_{B-\{i\}} \vec{x}_{N}=\vec{x}_{B-\{i\}}$ with (\star) substituted

Update

- assignment of x_{i} is updated to previously violated bound I_{i} or u_{i},
- assignment of x_{k} is recomputed using A^{\prime} for all $k \in B-\{i\} \cup\{j\}$

Example

	tableau	bounds	assignment					
	$s_{2} \quad s_{1}$							
	$\left(\begin{array}{cc}-2 & 1 \\ 1 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
x	1 -1	$s_{2} \leqslant 4$	3	4	1	4		5
y	10	$S_{3} \leqslant-6$						
	$\left(\begin{array}{ll}2 & -3\end{array}\right)$	$s_{4} \leqslant 7$						

Iteration 3

- s_{1} violates its bounds
- decreasing s_{1} requires to decrease s_{2} or s_{3} (both suitable since they have no lower bound)
- pivot s_{1} with $s_{3}: \quad s_{3}=s_{1}-2 s_{2} \quad x=-s_{1}+s_{2}$

$$
y=s_{2} \quad s_{4}=-3 s_{1}+2 s_{2}
$$

- update assignment

$$
\begin{array}{llll}
s_{1}:=1 & s_{2}=4 & \\
s_{3}:=-7 & x:=3 & y:=4 & s_{4}:=5
\end{array}
$$

- universitat SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm

Simplex Algorithm as T-solver

$$
\begin{gather*}
A \vec{x}_{N}=\vec{x}_{B} \tag{1}\\
\forall i \in N .-\infty \leq I_{i} \leq x_{i} \leq u_{i} \leq+\infty \tag{2}
\end{gather*}
$$

Suitability

- basic variable x_{i} violates lower or upper bound
- pick nonbasic variable x_{j} such that
- if $u_{i}<l_{i}$: problem is trivially unsatisfiable and no suitable x_{j} exists
- if $x_{i}<I_{i}: A_{i j}>0$ and $x_{j}<u_{j}$ or $A_{i j}<0$ and $x_{j}>I_{j}$
- if $x_{i}>u_{i}: A_{i j}>0$ and $x_{j}>I_{j}$ or $A_{i j}<0$ and $x_{j}<u_{j}$

Observation

- problem is unsatisfiable if no suitable pivot exists

Outline

1. Summary of Previous Lecture
2. Difference Logic
3. Simplex Algorithm

4. Support of Strict Inequalities

5. Further Reading
$\begin{array}{lllll}\text { \# univerititat } & \text { SS } 2024 \text { Constraint Solving } & \text { lecture } 6 & \text { 4. Support of Strict Inequalities } & 25 / 30\end{array}$

Symbolical computation with δ

- δ represents small positive rational number, i.e., smaller than every concrete rational number that occurs during the computations of the simplex algorithm
- treat δ symbolically: $\mathbb{Q}_{\delta}=\{(c, k) \mid c, k \in \mathbb{Q}\}$ with (c, k) representing $c+k \delta$
- operations for all $a, c_{1}, k_{1}, c_{2}, k_{2} \in \mathbb{Q}$
- addition:
$\left(c_{1}, k_{1}\right)+\left(c_{2}, k_{2}\right)=\left(c_{1}+c_{2}, k_{1}+k_{2}\right)$
- multiplication:
- equality: $a \cdot\left(c_{1}, k_{1}\right)=\left(a c_{1}, a k_{1}\right)$
- comparison:
$\left(c_{1}, k_{1}\right)=\left(c_{2}, k_{2}\right) \leftrightarrow \quad c_{1}=c_{2} \wedge k_{1}=k_{2}$
$\left(c_{1}, k_{1}\right)<\left(c_{2}, k_{2}\right) \leftrightarrow \quad c_{1}<c_{2} \vee c_{1}=c_{2} \wedge k_{1}<k_{2}$
$\left(c_{1}, k_{1}\right) \leq\left(c_{2}, k_{2}\right) \leftrightarrow \quad c_{1}<c_{2} \vee c_{1}=c_{2} \wedge k_{1} \leq k_{2}$
- multiplication of two \mathbb{Q}_{δ}-numbers is not defined, but also not required for the simplex algorithm
- coefficients in the tableau stay in \mathbb{Q}
- only bounds and assignment require \mathbb{Q}_{δ}

Motivation

strict inequalities naturally arise, e.g., as negated non-strict inequalities in DPLL(T)

$$
\neg(x+3 \leq 5 y) \quad \leftrightarrow \quad x+3>5 y
$$

How to Treat Strict Inequalities

replace in conjunction of inequalities C every strict inequality

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}>b
$$

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}<b
$$

by non-strict inequality

$$
a_{1} x_{1}+\cdots+a_{n} x_{n} \geq b+\delta \quad a_{1} x_{1}+\cdots+a_{n} x_{n} \leq b-\delta
$$

to obtain constraints C_{δ} in LRA without $>$ and $<$, and treat δ symbolically during simplex
algorithm
(δ represents small positive rational number)

Lemma

Example

	tableau	constraints	assignment				
	$s_{1} \quad y$						
x	$\left(\begin{array}{ll}1 & -1\end{array}\right)$	$(2,1)<s_{1}$	x	y	s_{1}	s_{2}	S_{3}
s_{2}	$\left(\begin{array}{cc}2 & -3\end{array}\right)$	$(0,0) \leqslant s_{2}$	$(2,1)$	$(0,0)$	$(2,1)$	$(4,2)$	$(-2,-1)$
	$\left(\begin{array}{ll}-1 & 3\end{array}\right)$	$(1,0) \leqslant s_{3}$					

- pivot s_{1} with $x \quad \Longrightarrow \quad x=s_{1}-y$

$$
s_{2}=2\left(s_{1}-y\right)-y=2 s_{1}-3 y
$$

$$
s_{3}=-\left(s_{1}-y\right)+2 y=-s_{1}+3 y
$$

Outline

1. Summary of Previous Lecture
2. Difference Logic
3. Simplex Algorithm
4. Support of Strict Inequalities
5. Further Reading

Kröning and Strichmann

- Sections 5.1, 5.2 and 5.7

Further Reading

E Bruno Dutertre and Leonardo de Moura.
A Fast Linear-Arithmetic Solver for DPLL(T)
In Proc. of International Conference on Computer Aided Verification, pp. 81-94, 2006.

Important Concepts

- basic and nonbasic variables
- pivoting
- Bellman-Ford algorithm
- difference logic
- linear arithmetic (LRA and LIA)
- negative cycles
© \mathbb{Q}_{δ}
- simplex algorithm
- suitable pair of variables
- tableau
\#universitit SS 2024 Constraint Solving lecture 6 5. Further Reading

