

Constraint Solving

René Thiemann Fabian Mitterwallner and based on a previous course by Aart Middeldorp

Definition (Equality Logic)

terms are restricted to variables, no quantifiers:

$$\varphi ::= \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \neg \varphi \mid t = t$$

t ::= x

T-solver for conjunction φ of equality logic literals over set of variables *V*

Definition

equality graph is undirected graph $G_{=}(\varphi) = (V, E_{=}, E_{\neq})$ with

- $E_{=}$ edges corresponding to positive (equality) literals in φ
- E_{\neq} edges corresponding to negative (inequality) literals in φ

Lemma

 φ is satisfiable \iff

 $G_{=}(\varphi)$ contains no simple contradictory cycles (with exactly one E_{\neq} edge)

Outline

- 1. Summary of Previous Lecture
- 2. Difference Logic
- 3. Simplex Algorithm
- 4. Support of Strict Inequalities
- 5. Further Reading

Quantifier-Free Fragment of Equality Logic with Uninterpreted Functions (EUF)

$$\varphi ::= \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \mid \neg \varphi \mid t = t \qquad \qquad t ::= f(t, \dots, t)$$

$$t ::= f(t,\ldots,t)$$

T-Solver for Conjunctive Fragment via Congruence Closure

set *E* of ground equations and ground equation $s \approx t$

output: valid $(E \models_T s = t)$ or invalid $(E \not\models_T s = t)$

- build congruence classes
 - (a) put different subterms of terms in $E \cup \{s = t\}$ in separate sets
 - **(b)** merge sets $\{\ldots, t_1, \ldots\}$ and $\{\ldots, t_2, \ldots\}$ for all $t_1 = t_2$ in E
 - (c) repeatedly merge sets

$$\{\ldots, f(s_1, \ldots, s_n), \ldots\}$$
 and $\{\ldots, f(t_1, \ldots, t_n), \ldots\}$

if s_i and t_i belong to same set for all $1 \le i \le n$

2 if s and t belong to same set then return valid else return invalid

Outline

1. Summary of Previous Lecture

2. Difference Logic

- 3. Simplex Algorithm
- 4. Support of Strict Inequalities
- 5. Further Reading

SS 2024 Constraint Solving lecture 6

Difference Logic

atoms are constraints of the form

- $x y \leq c$
- x y < c

where *x* and *y* are variables and *c* is some constant of \mathbb{Z} or \mathbb{Q}

Remarks

- difference logic is fragment of linear arithmetic; advantage: faster decision procedure
- domains: \mathbb{Z} or \mathbb{Q} (*T*-solver in polynomial time)
- $x y = c \iff x y \leqslant c \land y x \leqslant -c$
- $x y \geqslant c \iff y x \leqslant -c$
- $x y > c \iff y x < -c$
- $x < c \iff x x_0 < c$ where x_0 is fresh variable that must be assigned 0

Example Job-Shop Scheduling

- m machines (M_1, \ldots, M_m) and n jobs (J_1, \ldots, J_n)
- each job J_i is sequence $(M_1^i, d_1^i), \dots, (M_n^i, d_n^i)$ of operations consisting of machine and duration (rational number; $\tau(M, d) = d$)
- O is multiset of all operations from all jobs
- schedule is function S that defines for each operation $v \in O$ its starting time S(v) on machine specified by v
- schedule S is feasible if

 $S(v) \geqslant 0$

for all $v \in O$

 $S(v_i) + \tau(v_i) \leqslant S(v_i)$

for all consecutive v_i, v_j in same job

 $S(v_i) + \tau(v_i) \leqslant S(v_i) \vee S(v_i) + \tau(v_i) \leqslant S(v_i)$

for every pair of different operations v_i , v_i scheduled on same machine

• aim: minimize global duration gd; add constraints $S(v) + \tau(v) \le gd$ for each $v \in O$

Definition Inequality Graph

conjunction φ of nonstrict difference constraints

• inequality graph of φ contains edge from x to y with weight c for every constraint $x - y \le c$ in φ

Theorem

conjunction φ of nonstrict difference constraints is satisfiable inequality graph of φ has no negative cycle

Example

$$x-y \leqslant 2$$

satisfiable

Theorem

conjunction φ of nonstrict difference constraints is satisfiable inequality graph of φ has no negative cycle

\longrightarrow

Proof

- ⇒ negative cycle
- $X_1 \xrightarrow{k_1} X_2 \xrightarrow{k_2} X_2 \longrightarrow \cdots \longrightarrow X_n \xrightarrow{k_n} X_1$

in inequality graph of φ corresponds to conjuction

$$x_1 - x_2 \leqslant k_1 \wedge x_2 - x_3 \leqslant k_2 \wedge \cdots \wedge x_n - x_1 \leqslant k_n$$

adding these literals gives

$$0 \leqslant k_1 + k_2 + \cdots + k_n$$

with
$$k_1 + k_2 + \cdots + k_n < 0$$

SS 2024 Constraint Solving lecture 6

Theorem

conjunction φ of nonstrict difference constraints is satisfiable inequality graph of φ has no negative cycle

Proof

- \Leftarrow assume inequality graph of φ has no negative cycle construct satisfying assignment for φ as follows
 - add additional starting node s in graph, add edges $s \to x$ with weight 0 for all variables x
 - define v(x) = -distance(s, x); well-defined, since there are no negative cycles
 - v satisfies φ

Example

$$v(x) = 1, v(y) = 0, v(z) = 3$$

SS 2024 Constraint Solving lecture 6

Algorithms for Distance Computation and Negative Cycle Detection

- Dijkstra
 - computes distances from a single source to all other nodes
 - complexity: $\mathcal{O}(|V| \cdot log(|V|) + |E|)$
 - restriction: no negative cycles allowed
- Bellman–Ford
 - computes distances from a single source to all other nodes
 - complexity: $\mathcal{O}(|V| \cdot |E|)$
 - can also detect negative cycles
- Floyd–Warshall
- computes distances between all nodes
- complexity: $\mathcal{O}(|V|^3)$
- can also detect negative cycles
- ⇒ use Bellman–Ford algorithm for difference logic

Bellman-Ford Algorithm for Inequality Graphs

Input inequality graph (V, E, w) with fresh starting node s

Output " \exists negative cycle" or distances to node s

1 distance[v] := 0 for all nodes $v \in V$

(this step is special for inequality graphs)

2 repeat |V| - 1 times

for all $(u, v) \in E$ do

if distance[v] > distance[u] + w(u, v) then

distance[v] := distance[u] + w(u, v)

predecessor[v] := u

if distance[v] > distance[u] + w(u, v) then

return "∃ negative cycle"

which can be reconstructed using predecessor array

4 return distance array, shortest paths available via predecessor array

Example Bellman-Ford in Action

teration	а	b	С	d	е	f	g	h
0	0	0	0	0	0	0	0	0
1	0	0	0	-5	-8	-7	0	0
2	-1	0	-4	-5	-8	-7	0	-4
3	-2	0	-4	-5	-8	-11	0	-4
4	-2	0	-4	-5	-10	-11	0	-4
5	-2	0	-4	-5	-10	-11	-1	-6
. 2 more iterations, then negative cycle is detect								

SS 2024 Constraint Solving lecture 6

Outline

- 1. Summary of Previous Lecture
- 2. Difference Logic
- 3. Simplex Algorithm
- 4. Support of Strict Inequalities
- 5. Further Reading

SS 2024 Constraint Solving lecture 6

Relevance of Linear Arithmetic

• component configuration problems

planning problems

scheduling problems

LRA and LIA admit more natural and succinct encodings of

Definition (Theory of Linear Arithmetic over *D***)**

• for variables x_1, \ldots, x_n , built quantifier-free formulas according to grammar

$$\varphi ::= \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid t < t \mid t \le t$$

$$t ::= a_1 x_1 + \dots + a_n x_n + b$$

s = t is encoded as $s < t \land t < s$ for $a_1, \ldots, a_n, b \in \text{in domain } D$

• **solution** assigns values in D to x_1, \ldots, x_n

Definitions

- Linear Real Arithmetic (LRA) uses domain $D = \mathbb{R}$
- Linear Integer Arithmetic (LIA) uses domain $D = \mathbb{Z}$

Example

- $x + y + z = 2 \land z > y \land y > -1$ is satisfiable in LRA and LIA, e.g. with v(x) = v(y) = 0 and v(z) = 2
- $x < 3 \land 2x > 4$ is unsatisfiable in LIA but satisfiable in LRA, e.g. with v(x) = 2.5

SS 2024 Constraint Solving lecture 6 3. Simplex Algorithm

15/30

• ...

everything with cardinality constraints: n-queens, Sudoku, Minesweeper, . . .

T-Solver for Conjunctions of Linear Arithmetic Inequalities

• integers (LIA): **NP-complete**

reals or rationals (LRA): polynomial Simplex algorithm

exponential worst-case complexity

Some History

1947 Danzig proposed Simplex algorithm to solve **optimization** problem:

maximize
$$c(\vec{x})$$
 such that $A\vec{x} \leq b$ and $\vec{x} \geq 0$

for linear objective function c, matrix A, vector b, and vector of variables \vec{x}

- also known as linear programming
- **1979 Khachiyan** proposed polynomial version based on ellipsoid method
- 1984 Karmakar proposed polynomial version based on interior points method
- **2000-** T-solver version of simplex algorithm to solve satisfiability problem

$$A\vec{x} \leq b$$

SS 2024 Constraint Solving lecture 6

17/30

19/30

Problem Input (General Form)

m equalities

 $a_1x_1+\cdots+a_nx_n=0$

slack variables

• (optional) lower and upper bounds on variables

$I_i < x_i < u_i$

Lemma

any conjunctive LRA problem without < can be turned into equisatisfiable general form

Example

$$x - y \ge -1$$
 $-x + y - s_1 = 0$ $s_1 \le 1$

$$y \leq 4$$
 $y - s_2 = 0$ $s_2 \leq 4$

$$x + y \ge 6$$
 $-x - y - s_3 = 0$ $s_3 \le -6$

- $3x y \le 7$ $3x - y - s_4 = 0$ $s_4 < 7$
- s_1, s_2, s_3, s_4 are slack variables x, y are problem variables

SS 2024 Constraint Solving lecture 6

Representation

represent equalities

$$-x+y-s_1=0$$

$$y - s_2 = 0$$

$$-x - y - s_3 = 0$$

$$3x - y - s_4 = 0$$

via $m \times n$ matrix presentation

← **nonbasic** variables

basic variables \rightarrow

Notation

- matrix is tableau
- B is set of **basic variables** (in tableau listed vertically)
- N is set of nonbasic variables (in tableau listed horizontally)

Simplex Algorithm as T-solver

Input: conjunction of LRA atoms φ without <satisfiable assignment or unsatisfiable Output:

- 1 transform φ into general form and construct tableau
- 2 fix order on variables and assign 0 to each variable
- 3 if all basic variables satisfy their bounds then return current (satisfying) assignment
- let $x_i \in B$ be variable that violates its bounds
- search for suitable variable $x_i \in N$ for pivoting with x_i
- return **unsatisfiable** if search unsuccessful
- perform **pivot** operation on x_i and x_i
- 9 update assignment
- 10 go to step 3

Simplex, Visually

x - y > -1constraints

$$x + y \ge 6$$
$$3x - y \le 7$$

- solution space
- Simplex solution search

SS 2024 Constraint Solving lecture 6

3. Simplex Algorithm

21/30

nonbasic \vec{x}_N

Example

tableau bounds

assignment

$$s_2$$
 s_1

$$\begin{array}{ccc}
s_3 \\
x \\
y \\
\end{array}
\left(
\begin{array}{ccc}
-2 & 1 \\
1 & -1 \\
0 & s_2 \leqslant 4 \\
s_3 \leqslant -3 \\
\end{array}
\right)$$

3 Iteration 3

- s₁ violates its bounds
- decreasing s_1 requires to decrease s_2 or s_3 (both suitable since they have no lower bound)

• pivot
$$s_1$$
 with s_3 :

$$s_3 = s_1 - 2s_2$$

 $v = s_2$

$$x = -s_1 + s_2 s_4 = -3s_1 + 2s_2$$

update assignment

$$s_1 := 1$$

 $s_3 := -7$

$$s_2 = 4$$

 $x := 3$

$$y := 4$$
 $s_4 := 5$

Simplex Algorithm as T-solver

$$A\vec{x}_N = \vec{x}_B \tag{1}$$

$-\infty \le I_i \le x_i \le u_i \le +\infty$ (2)

Invariant

• (1) is satisfied and (2) holds for all nonbasic variables

Pivoting

• swap basic x_i and nonbasic x_i , so $i \in B$ and $j \in N$

$$x_i = \sum_{k \in N} A_{ik} x_k \implies x_j = \frac{1}{A_{ij}} \left(x_i - \sum_{k \in N - \{j\}} A_{ik} x_k \right)$$
 (*

• new tableau A' consists of (*) and $A_{B-\{i\}}\vec{x}_N = \vec{x}_{B-\{i\}}$ with (*) substituted

Update

- assignment of x_i is updated to previously violated bound l_i or u_i ,
- assignment of x_k is recomputed using A' for all $k \in B \{i\} \cup \{j\}$

Simplex Algorithm as T-solver

$$A\vec{X}_N = \vec{X}_B \tag{1}$$

$$\forall i \in \mathbb{N}. \ -\infty \le I_i \le x_i \le u_i \le +\infty \tag{2}$$

Suitability

- basic variable x_i violates lower or upper bound
- pick nonbasic variable x_i such that
 - if $u_i < l_i$: problem is trivially unsatisfiable and no suitable x_i exists
 - if $x_i < l_i$: $A_{ii} > 0$ and $x_i < u_i$ or $A_{ii} < 0$ and $x_i > l_i$
 - if $x_i > u_i$: $A_{ii} > 0$ and $x_i > I_i$ or $A_{ii} < 0$ and $x_i < u_i$

Observation

• problem is unsatisfiable if no suitable pivot exists

Outline

- 1. Summary of Previous Lecture
- 2. Difference Logic
- 3. Simplex Algorithm
- 4. Support of Strict Inequalities
- 5. Further Reading

SS 2024 Constraint Solving lecture 6

Motivation

strict inequalities naturally arise, e.g., as negated non-strict inequalities in DPLL(T)

$$\neg(x+3\leq 5y) \leftrightarrow x+3>5y$$

How to Treat Strict Inequalities

replace in conjunction of inequalities C every strict inequality

$$a_1x_1 + \cdots + a_nx_n > b$$

$$a_1x_1 + \cdots + a_nx_n < b$$

by non-strict inequality

$$a_1x_1 + \cdots + a_nx_n \ge b + \delta$$
 $a_1x_1 + \cdots + a_nx_n \le b - \delta$

$$1x_1 + \cdots + a_n x_n < b - \delta$$

to obtain constraints C_{δ} in LRA without > and <, and treat δ symbolically during simplex (δ represents small positive rational number) algorithm

Lemma

C is satisfiable

 \iff \exists rational number $\delta > 0$ such that C_{δ} is satisfiable

SS 2024 Constraint Solving

4. Support of Strict Inequalities

Symbolical computation with δ

- δ represents small positive rational number, i.e., smaller than every concrete rational number that occurs during the computations of the simplex algorithm
- treat δ symbolically: $\mathbb{Q}_{\delta} = \{(c, k) \mid c, k \in \mathbb{Q}\}$ with (c, k) representing $c + k\delta$
- operations for all $a, c_1, k_1, c_2, k_2 \in \mathbb{Q}$
 - addition: $(c_1, k_1) + (c_2, k_2) = (c_1 + c_2, k_1 + k_2)$
 - multiplication: $a \cdot (c_1, k_1) = (ac_1, ak_1)$
 - $(c_1, k_1) = (c_2, k_2) \leftrightarrow c_1 = c_2 \land k_1 = k_2$ equality:
 - $(c_1, k_1) < (c_2, k_2) \quad \leftrightarrow \quad c_1 < c_2 \lor c_1 = c_2 \land k_1 < k_2$ comparison: $(c_1, k_1) \leq (c_2, k_2) \quad \leftrightarrow \quad c_1 < c_2 \lor c_1 = c_2 \land k_1 \leq k_2$
- multiplication of two \mathbb{Q}_{δ} -numbers is not defined, but also not required for the simplex algorithm
- coefficients in the tableau stay in ①
- only bounds and assignment require \mathbb{O}_{δ}

Example

tableau

constraints

assignment

$$s_1$$
 y

$$\frac{x}{(2,1)}$$
 $\frac{y}{(0,1)}$

$$\frac{s_2}{1}$$
 $\frac{s_3}{(4,2)}$ $\frac{s_3}{(-2,-1)}$

$$s_3 \setminus -1 \quad 3 / \quad (1,0) \leqslant s$$

• pivot
$$s_1$$
 with $x \implies x = s_1 - y$

$$s_2 = 2(s_1 - y) - y = 2s_1 - 3y$$

$$s_3 = -(s_1 - y) + 2y = -s_1 + 3y$$

Outline

- 1. Summary of Previous Lecture
- 2. Difference Logic
- 3. Simplex Algorithm
- 4. Support of Strict Inequalities
- 5. Further Reading

SS 2024 Constraint Solving lecture 6

Kröning and Strichmann

• Sections 5.1, 5.2 and 5.7

Further Reading

Bruno Dutertre and Leonardo de Moura. A Fast Linear-Arithmetic Solver for DPLL(T)

In Proc. of International Conference on Computer Aided Verification, pp. 81–94, 2006.

Important Concepts

basic and nonbasic variables

Bellman–Ford algorithm

ullet \mathbb{Q}_{δ}

pivoting

difference logic

simplex algorithm

linear arithmetic (LRA and LIA)

suitable pair of variables

negative cycles

tableau

SS 2024 Constraint Solving lecture 6