
SS 2024 lecture 7

Constraint Solving

René Thiemann and Fabian Mitterwallner

based on a previous course by Aart Middeldorp

http://cl-informatik.uibk.ac.at/teaching/ss24/cs
http://cl-informatik.uibk.ac.at/~thiemann
http://cl-informatik.uibk.ac.at/members/fmitterwallner/

Outline

1. Summary of Previous Lecture

2. Complexity of Simplex Algorithm

3. Unsatisfiable Cores and Farkas’ Lemma

4. Simplex Algorithm for DPLL(T)

5. Further Reading

SS 2024 Constraint Solving lecture 7 2/32

Difference Logic

conjunction of constraints of the form x− y ⩽ c or x− y < c

Definition Inequality Graph

conjunction φ of nonstrict difference constraints

• inequality graph of φ contains edge from x
c−→ y for every constraint x− y ⩽ c in φ

Theorem

conjunction φ of nonstrict difference constraints is satisfiable ⇐⇒
inequality graph of φ has no negative cycle

Bellman-Ford Algorithm

computes distances in graphs from single source; detects negative cycles

SS 2024 Constraint Solving lecture 7 1. Summary of Previous Lecture 3/32

Simplex – Representation

• represent m inequalities using m slack variables si and bounds si ≤ / ≥ c

−x+ y≤ 1

y≤ 4

−x− y≤ −6

3x− y≤ 7

=⇒

−1 1

0 1

−1 −1

3 −1

s1 ≤ 1

s2 ≤ 4

s3 ≤ −6

s4 ≤ 7

• matrix presentation
x y ← nonbasic variables

basic variables→
s1

s2

s3

s4

−1 1

0 1
−1 −1

3 −1

 meaning of rows:

equalities, e.g.,

s4 = 3x− 1y

Notation

• matrix is tableau, stored in combination with bounds x ≤ / ≥ c and assignment

• B is set of basic variables (in tableau listed vertically)

• N is set of nonbasic variables (in tableau listed horizontally)

SS 2024 Constraint Solving lecture 7 1. Summary of Previous Lecture 4/32

DPLL(T) Simplex Algorithm

Input: conjunction of LRA atoms φ without <
Output: satisfiable assignment or unsatisfiable

1 transform φ into tableau and bounds

2 assign 0 to each variable

3 if all basic variables satisfy their bounds then return current (satisfying) assignment

4 let xi ∈ B be variable that violates its bounds

5 search for suitable variable xj ∈ N for pivoting with xi

6 return unsatisfiable if search unsuccessful

7 perform pivot operation on xi and xj

9 update assignment

10 go to step 3

SS 2024 Constraint Solving lecture 7 1. Summary of Previous Lecture 5/32

DPLL(T) Simplex Algorithm

Ax⃗N = x⃗B (1)

−∞ ≤ li ≤ xi ≤ ui ≤ +∞ (2)
xj

xi

Aij

.

nonbasic x⃗N

b
a
si

c
x⃗
B

Invariant
• (1) is satisfied and (2) holds for all nonbasic variables

Suitability
• for xi ∈ B violating lower or upper bound, find suitable non-basic variable xj such that

increase (or decrease) of xj is possible w.r.t. bounds of xj and helps to solve violation of xi

Pivoting
• swap basic xi and nonbasic xj, so i ∈ B and j ∈ N

• reorder row i in tableau to obtain form xj = . . . (⋆), and substitute (⋆) in remaining tableau

• result afterwards: tableau A′ where j ∈ B and i ∈ N

Update
• assignment of xi is updated to previously violated bound li or ui,

• assignment of each xk ∈ B is recomputed using A′

SS 2024 Constraint Solving lecture 7 1. Summary of Previous Lecture 6/32

Qδ: δ-Rationals

• δ-rationals are used for supporting strict inequalities in LRA and difference logic

replace expr < c by expr ≤ c− δ

• δ represents some small positive rational number

• computation on Qδ is done symbolically, e.g., in simplex algorithm

• after solution for Qδ is detected, a concrete δ can be computed (exercise)

SS 2024 Constraint Solving lecture 7 1. Summary of Previous Lecture 7/32

Outline

1. Summary of Previous Lecture

2. Complexity of Simplex Algorithm

3. Unsatisfiable Cores and Farkas’ Lemma

4. Simplex Algorithm for DPLL(T)

5. Further Reading

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 8/32

Complexity of DPLL(T) Simplex Algorithm

• input: m inequalities using n problem variables

• switch to general form: m basic variables, n nonbasic variables

• number of different tableaux:
(m+n

n

)
• number of different configurations:

(m+n
n

)
· 3n

(each nonbasic variable gets assigned 0, lower bound, or upper bound)

• consequences

• bad news 1: assuming termination, obtain exponential worst-case complexity
• bad news 2: simplex algorithm does not terminate in general
• good news 1: simplex algorithm terminates using Bland’s rule
• good news 2: worst-case complexity rarely observed, often only O(m) many iterations

Bland’s Rule

• in pivoting pick lexicographically smallest (xi, xj) ∈ B× N such that xi and xj are suitable;
assumes some fixed order on variables

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 9/32

Complexity of DPLL(T) Simplex Algorithm

• input: m inequalities using n problem variables

• switch to general form: m basic variables, n nonbasic variables

• number of different tableaux:
(m+n

n

)
• number of different configurations:

(m+n
n

)
· 3n

(each nonbasic variable gets assigned 0, lower bound, or upper bound)

• consequences

• bad news 1: assuming termination, obtain exponential worst-case complexity
• bad news 2: simplex algorithm does not terminate in general
• good news 1: simplex algorithm terminates using Bland’s rule
• good news 2: worst-case complexity rarely observed, often only O(m) many iterations

Bland’s Rule

• in pivoting pick lexicographically smallest (xi, xj) ∈ B× N such that xi and xj are suitable;
assumes some fixed order on variables

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 9/32

Complexity of DPLL(T) Simplex Algorithm

• input: m inequalities using n problem variables

• switch to general form: m basic variables, n nonbasic variables

• number of different tableaux:
(m+n

n

)

• number of different configurations:
(m+n

n

)
· 3n

(each nonbasic variable gets assigned 0, lower bound, or upper bound)

• consequences

• bad news 1: assuming termination, obtain exponential worst-case complexity
• bad news 2: simplex algorithm does not terminate in general
• good news 1: simplex algorithm terminates using Bland’s rule
• good news 2: worst-case complexity rarely observed, often only O(m) many iterations

Bland’s Rule

• in pivoting pick lexicographically smallest (xi, xj) ∈ B× N such that xi and xj are suitable;
assumes some fixed order on variables

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 9/32

Complexity of DPLL(T) Simplex Algorithm

• input: m inequalities using n problem variables

• switch to general form: m basic variables, n nonbasic variables

• number of different tableaux:
(m+n

n

)
• number of different configurations:

(m+n
n

)
· 3n

(each nonbasic variable gets assigned 0, lower bound, or upper bound)

• consequences

• bad news 1: assuming termination, obtain exponential worst-case complexity
• bad news 2: simplex algorithm does not terminate in general
• good news 1: simplex algorithm terminates using Bland’s rule
• good news 2: worst-case complexity rarely observed, often only O(m) many iterations

Bland’s Rule

• in pivoting pick lexicographically smallest (xi, xj) ∈ B× N such that xi and xj are suitable;
assumes some fixed order on variables

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 9/32

Complexity of DPLL(T) Simplex Algorithm

• input: m inequalities using n problem variables

• switch to general form: m basic variables, n nonbasic variables

• number of different tableaux:
(m+n

n

)
• number of different configurations:

(m+n
n

)
· 3n

(each nonbasic variable gets assigned 0, lower bound, or upper bound)

• consequences

• bad news 1: assuming termination, obtain exponential worst-case complexity
• bad news 2: simplex algorithm does not terminate in general
• good news 1: simplex algorithm terminates using Bland’s rule
• good news 2: worst-case complexity rarely observed, often only O(m) many iterations

Bland’s Rule

• in pivoting pick lexicographically smallest (xi, xj) ∈ B× N such that xi and xj are suitable;
assumes some fixed order on variables

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 9/32

Complexity of DPLL(T) Simplex Algorithm

• input: m inequalities using n problem variables

• switch to general form: m basic variables, n nonbasic variables

• number of different tableaux:
(m+n

n

)
• number of different configurations:

(m+n
n

)
· 3n

(each nonbasic variable gets assigned 0, lower bound, or upper bound)

• consequences

• bad news 1: assuming termination, obtain exponential worst-case complexity

• bad news 2: simplex algorithm does not terminate in general
• good news 1: simplex algorithm terminates using Bland’s rule
• good news 2: worst-case complexity rarely observed, often only O(m) many iterations

Bland’s Rule

• in pivoting pick lexicographically smallest (xi, xj) ∈ B× N such that xi and xj are suitable;
assumes some fixed order on variables

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 9/32

Complexity of DPLL(T) Simplex Algorithm

• input: m inequalities using n problem variables

• switch to general form: m basic variables, n nonbasic variables

• number of different tableaux:
(m+n

n

)
• number of different configurations:

(m+n
n

)
· 3n

(each nonbasic variable gets assigned 0, lower bound, or upper bound)

• consequences

• bad news 1: assuming termination, obtain exponential worst-case complexity
• bad news 2: simplex algorithm does not terminate in general

• good news 1: simplex algorithm terminates using Bland’s rule
• good news 2: worst-case complexity rarely observed, often only O(m) many iterations

Bland’s Rule

• in pivoting pick lexicographically smallest (xi, xj) ∈ B× N such that xi and xj are suitable;
assumes some fixed order on variables

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 9/32

Complexity of DPLL(T) Simplex Algorithm

• input: m inequalities using n problem variables

• switch to general form: m basic variables, n nonbasic variables

• number of different tableaux:
(m+n

n

)
• number of different configurations:

(m+n
n

)
· 3n

(each nonbasic variable gets assigned 0, lower bound, or upper bound)

• consequences

• bad news 1: assuming termination, obtain exponential worst-case complexity
• bad news 2: simplex algorithm does not terminate in general
• good news 1: simplex algorithm terminates using Bland’s rule

• good news 2: worst-case complexity rarely observed, often only O(m) many iterations

Bland’s Rule

• in pivoting pick lexicographically smallest (xi, xj) ∈ B× N such that xi and xj are suitable;
assumes some fixed order on variables

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 9/32

Complexity of DPLL(T) Simplex Algorithm

• input: m inequalities using n problem variables

• switch to general form: m basic variables, n nonbasic variables

• number of different tableaux:
(m+n

n

)
• number of different configurations:

(m+n
n

)
· 3n

(each nonbasic variable gets assigned 0, lower bound, or upper bound)

• consequences

• bad news 1: assuming termination, obtain exponential worst-case complexity
• bad news 2: simplex algorithm does not terminate in general
• good news 1: simplex algorithm terminates using Bland’s rule
• good news 2: worst-case complexity rarely observed, often only O(m) many iterations

Bland’s Rule

• in pivoting pick lexicographically smallest (xi, xj) ∈ B× N such that xi and xj are suitable;
assumes some fixed order on variables

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 9/32

Complexity of DPLL(T) Simplex Algorithm

• input: m inequalities using n problem variables

• switch to general form: m basic variables, n nonbasic variables

• number of different tableaux:
(m+n

n

)
• number of different configurations:

(m+n
n

)
· 3n

(each nonbasic variable gets assigned 0, lower bound, or upper bound)

• consequences

• bad news 1: assuming termination, obtain exponential worst-case complexity
• bad news 2: simplex algorithm does not terminate in general
• good news 1: simplex algorithm terminates using Bland’s rule
• good news 2: worst-case complexity rarely observed, often only O(m) many iterations

Bland’s Rule

• in pivoting pick lexicographically smallest (xi, xj) ∈ B× N such that xi and xj are suitable;
assumes some fixed order on variables

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 9/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

)

x1 x2 x3 x4

0 0 0 0
x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8
x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −11

3 −5 1

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

−10
3 −

1
3 −4 −7

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7
x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 10/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8
x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −11

3 −5 1

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

−10
3 −

1
3 −4 −7

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7
x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 10/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8
x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −11

3 −5 1

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

−10
3 −

1
3 −4 −7

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7
x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 10/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −11

3 −5 1

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

−10
3 −

1
3 −4 −7

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7
x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 10/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −11

3 −5 1

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

−10
3 −

1
3 −4 −7

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7
x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 10/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −11

3 −5 1

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

−10
3 −

1
3 −4 −7

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7
x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 10/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −11

3 −5 1

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

−10
3 −

1
3 −4 −7

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7
x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 10/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −11

3 −5 1

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

−10
3 −

1
3 −4 −7

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 10/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −11

3 −5 1

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

−10
3 −

1
3 −4 −7

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7
x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 10/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −11

3 −5 1

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

−10
3 −

1
3 −4 −7

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7
x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 10/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8
x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −11

3 −5 1

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

−10
3 −

1
3 −4 −7

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7
x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 10/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

0 0 0 0
x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8
x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −11

3 −5 1

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

−10
3 −

1
3 −4 −7

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7
x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 10/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

0 0 0 0
x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8
x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −11

3 −5 1

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

−10
3 −

1
3 −4 −7

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7
x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 10/32

trajectory of assignments (x1, x2)

x
1
=

0

x2 = 0

x3 =−4

x
4
=
−

7

x
1
=

−
1

x2 =−4

x3 =−5

x
4
=

1

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 11/32

trajectory of assignments (x1, x2)

x
1
=

0

x2 = 0

x3 =−4

x
4
=
−

7

x
1
=

−
1

x2 =−4

x3 =−5

x
4
=

1

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 11/32

trajectory of assignments (x1, x2)

x
1
=

0

x2 = 0

x3 =−4

x
4
=
−

7

x
1
=

−
1

x2 =−4

x3 =−5

x
4
=

1

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 11/32

trajectory of assignments (x1, x2)

x
1
=

0

x2 = 0

x3 =−4

x
4
=
−

7

x
1
=

−
1

x2 =−4

x3 =−5

x
4
=

1

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 11/32

trajectory of assignments (x1, x2)

x
1
=

0

x2 = 0

x3 =−4

x
4
=
−

7

x
1
=

−
1

x2 =−4

x3 =−5

x
4
=

1

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 11/32

trajectory of assignments (x1, x2)

x
1
=

0

x2 = 0

x3 =−4

x
4
=
−

7

x
1
=

−
1

x2 =−4

x3 =−5

x
4
=

1

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 11/32

trajectory of assignments (x1, x2)

x
1
=

0

x2 = 0

x3 =−4

x
4
=
−

7

x
1
=

−
1

x2 =−4

x3 =−5

x
4
=

1

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 11/32

trajectory of assignments (x1, x2)

x
1
=

0

x2 = 0

x3 =−4

x
4
=
−

7

x
1
=

−
1

x2 =−4

x3 =−5

x
4
=

1

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 11/32

trajectory of assignments (x1, x2)

x
1
=

0

x2 = 0

x3 =−4

x
4
=
−

7

x
1
=

−
1

x2 =−4

x3 =−5

x
4
=

1

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 11/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8
violation of Bland’s rule

x1 x2 x3 x4

7
3 −11

3 −5 1

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

−10
3 −

1
3 −4 −7

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7
x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 12/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −11

3 −5 1

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

−10
3 −

1
3 −4 −7

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7
x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 12/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −11

3 −5 1

x2

x4

(x3 x1
1
2 −

1
2

1
2

3
2

) x1 x2 x3 x4

−1 −3
2 −4 −7

2

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7
x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 12/32

Example (Felgenhauer and Middeldorp)

−1 ⩽ x1 ⩽ 0 −4 ⩽ x2 ⩽ 0 −5 ⩽ x3 ⩽ −4 −7 ⩽ x4 ⩽ 1

x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

0 0 0 0

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

0 1 2 1

x1

x4

(x3 x2

1 −2
2 −3

) x1 x2 x3 x4

−4 0 −4 −8

x1

x2

(x3 x4

−1
3

2
3

2
3 −

1
3

) x1 x2 x3 x4

7
3 −11

3 −5 1

x2

x4

(x3 x1
1
2 −

1
2

1
2

3
2

) x1 x2 x3 x4

−1 −3
2 −4 −7

2

satisfying assignment

x1 x2 x3 x4

3 −4 −5 2

x3

x2

(x1 x4

−3 2
−2 1

) x1 x2 x3 x4

−1 −5 −11 −7
x3

x4

(x1 x2

1 2
2 1

) x1 x2 x3 x4

−1 −4 −9 −6

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 12/32

trajectory of assignments (x1, x2)

x
1
=

0

x2 = 0

x3 =−4

x
4
=
−

7

x
1
=

−
1

x2 =−4

x3 =−5

x
4
=

1

SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm 13/32

Outline

1. Summary of Previous Lecture

2. Complexity of Simplex Algorithm

3. Unsatisfiable Cores and Farkas’ Lemma

4. Simplex Algorithm for DPLL(T)

5. Further Reading

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 14/32

Unsatisfiable Cores for DPLL(T)
• recall: for DPLL(T) it is beneficial if theory solvers produce small unsatisfiable cores

• simplex algorithm can easily identify unsatisfiable cores
• in detail: consider that unsatisfiability is detected via basic variable xi

• w.l.o.g. we only consider the case v(xi) < li (the other case is symmetric)
• in this case tableau contains equation

xi =
∑
j∈Npos

Aijxj +
∑

k∈Nneg

Aikxk

such that Aij > 0 ∧ v(xj) = uj for all j ∈ Npos and Aik < 0 ∧ v(xk) = lk for all k ∈ Nneg

• then the set of (original) constraints (corresponding to)

xi ≥ li

xj ≤ uj for all j ∈ Npos

xk ≥ lk for all k ∈ Nneg

is an unsatisfiable core
• this core is minimal w.r.t. the subset-relation

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 15/32

Unsatisfiable Cores for DPLL(T)
• recall: for DPLL(T) it is beneficial if theory solvers produce small unsatisfiable cores
• simplex algorithm can easily identify unsatisfiable cores

• in detail: consider that unsatisfiability is detected via basic variable xi

• w.l.o.g. we only consider the case v(xi) < li (the other case is symmetric)
• in this case tableau contains equation

xi =
∑
j∈Npos

Aijxj +
∑

k∈Nneg

Aikxk

such that Aij > 0 ∧ v(xj) = uj for all j ∈ Npos and Aik < 0 ∧ v(xk) = lk for all k ∈ Nneg

• then the set of (original) constraints (corresponding to)

xi ≥ li

xj ≤ uj for all j ∈ Npos

xk ≥ lk for all k ∈ Nneg

is an unsatisfiable core
• this core is minimal w.r.t. the subset-relation

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 15/32

Unsatisfiable Cores for DPLL(T)
• recall: for DPLL(T) it is beneficial if theory solvers produce small unsatisfiable cores
• simplex algorithm can easily identify unsatisfiable cores
• in detail: consider that unsatisfiability is detected via basic variable xi

• w.l.o.g. we only consider the case v(xi) < li (the other case is symmetric)
• in this case tableau contains equation

xi =
∑
j∈Npos

Aijxj +
∑

k∈Nneg

Aikxk

such that Aij > 0 ∧ v(xj) = uj for all j ∈ Npos and Aik < 0 ∧ v(xk) = lk for all k ∈ Nneg

• then the set of (original) constraints (corresponding to)

xi ≥ li

xj ≤ uj for all j ∈ Npos

xk ≥ lk for all k ∈ Nneg

is an unsatisfiable core
• this core is minimal w.r.t. the subset-relation

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 15/32

Unsatisfiable Cores for DPLL(T)
• recall: for DPLL(T) it is beneficial if theory solvers produce small unsatisfiable cores
• simplex algorithm can easily identify unsatisfiable cores
• in detail: consider that unsatisfiability is detected via basic variable xi
• w.l.o.g. we only consider the case v(xi) < li (the other case is symmetric)

• in this case tableau contains equation

xi =
∑
j∈Npos

Aijxj +
∑

k∈Nneg

Aikxk

such that Aij > 0 ∧ v(xj) = uj for all j ∈ Npos and Aik < 0 ∧ v(xk) = lk for all k ∈ Nneg

• then the set of (original) constraints (corresponding to)

xi ≥ li

xj ≤ uj for all j ∈ Npos

xk ≥ lk for all k ∈ Nneg

is an unsatisfiable core
• this core is minimal w.r.t. the subset-relation

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 15/32

Unsatisfiable Cores for DPLL(T)
• recall: for DPLL(T) it is beneficial if theory solvers produce small unsatisfiable cores
• simplex algorithm can easily identify unsatisfiable cores
• in detail: consider that unsatisfiability is detected via basic variable xi
• w.l.o.g. we only consider the case v(xi) < li (the other case is symmetric)
• in this case tableau contains equation

xi =
∑
j∈Npos

Aijxj +
∑

k∈Nneg

Aikxk

such that Aij > 0 ∧ v(xj) = uj for all j ∈ Npos and Aik < 0 ∧ v(xk) = lk for all k ∈ Nneg

• then the set of (original) constraints (corresponding to)

xi ≥ li

xj ≤ uj for all j ∈ Npos

xk ≥ lk for all k ∈ Nneg

is an unsatisfiable core
• this core is minimal w.r.t. the subset-relation

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 15/32

Unsatisfiable Cores for DPLL(T)
• recall: for DPLL(T) it is beneficial if theory solvers produce small unsatisfiable cores
• simplex algorithm can easily identify unsatisfiable cores
• in detail: consider that unsatisfiability is detected via basic variable xi
• w.l.o.g. we only consider the case v(xi) < li (the other case is symmetric)
• in this case tableau contains equation

xi =
∑
j∈Npos

Aijxj +
∑

k∈Nneg

Aikxk

such that Aij > 0 ∧ v(xj) = uj for all j ∈ Npos and Aik < 0 ∧ v(xk) = lk for all k ∈ Nneg

• then the set of (original) constraints (corresponding to)

xi ≥ li

xj ≤ uj for all j ∈ Npos

xk ≥ lk for all k ∈ Nneg

is an unsatisfiable core

• this core is minimal w.r.t. the subset-relation

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 15/32

Unsatisfiable Cores for DPLL(T)
• recall: for DPLL(T) it is beneficial if theory solvers produce small unsatisfiable cores
• simplex algorithm can easily identify unsatisfiable cores
• in detail: consider that unsatisfiability is detected via basic variable xi
• w.l.o.g. we only consider the case v(xi) < li (the other case is symmetric)
• in this case tableau contains equation

xi =
∑
j∈Npos

Aijxj +
∑

k∈Nneg

Aikxk

such that Aij > 0 ∧ v(xj) = uj for all j ∈ Npos and Aik < 0 ∧ v(xk) = lk for all k ∈ Nneg

• then the set of (original) constraints (corresponding to)

xi ≥ li

xj ≤ uj for all j ∈ Npos

xk ≥ lk for all k ∈ Nneg

is an unsatisfiable core
• this core is minimal w.r.t. the subset-relation

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 15/32

Farkas’ Lemma
• consider ≤-constraints −x ≤ −5︸ ︷︷ ︸

ℓ1≤r1

∧2x+ y ≤ 12︸ ︷︷ ︸
ℓ2≤r2

∧−y ≤ −3︸ ︷︷ ︸
ℓ3≤r3

∧ x− 3y ≤ 2︸ ︷︷ ︸
ℓ4≤r4

• alternative way to prove unsatisfiability of constraints ℓ1 ≤ r1, ℓ2 ≤ r2, . . .

• find Farkas’ coefficients, i.e., non-negative coefficients c1, c2, . . . such that

Q ∋
∑
i

ciℓi >
∑
i

ciri ∈ Q

• example: choose c1 = 2, c2 = c3 = 1, c4 = 0

2 · (−x) + 1 · (2x+ y) + 1 · (−y) + 0 · (x− 3y) = 0 > −1 = 2 · (−5) + 1 · 12 + 1 · (−3) + 0 · 2

• Farkas’ Lemma: finite set of ≤-constraints is unsatisfiable iff Farkas’ coefficients exists

• soundness: existence of Farkas’ coefficients obviously shows unsatisfiability
• completeness: if constraints are unsatisfiable, then simplex will detect this; whenever

unsatisfiability is detected in simplex algorithm, one can extract Farkas’ coefficients from the
tableau equation (similar to the detection of unsatisfiable cores, but with finer analysis)

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 16/32

Farkas’ Lemma
• consider ≤-constraints −x ≤ −5︸ ︷︷ ︸

ℓ1≤r1

∧2x+ y ≤ 12︸ ︷︷ ︸
ℓ2≤r2

∧−y ≤ −3︸ ︷︷ ︸
ℓ3≤r3

∧ x− 3y ≤ 2︸ ︷︷ ︸
ℓ4≤r4

• alternative way to prove unsatisfiability of constraints ℓ1 ≤ r1, ℓ2 ≤ r2, . . .
• find Farkas’ coefficients, i.e., non-negative coefficients c1, c2, . . . such that

Q ∋
∑
i

ciℓi >
∑
i

ciri ∈ Q

• example: choose c1 = 2, c2 = c3 = 1, c4 = 0

2 · (−x) + 1 · (2x+ y) + 1 · (−y) + 0 · (x− 3y) = 0 > −1 = 2 · (−5) + 1 · 12 + 1 · (−3) + 0 · 2

• Farkas’ Lemma: finite set of ≤-constraints is unsatisfiable iff Farkas’ coefficients exists

• soundness: existence of Farkas’ coefficients obviously shows unsatisfiability
• completeness: if constraints are unsatisfiable, then simplex will detect this; whenever

unsatisfiability is detected in simplex algorithm, one can extract Farkas’ coefficients from the
tableau equation (similar to the detection of unsatisfiable cores, but with finer analysis)

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 16/32

Farkas’ Lemma
• consider ≤-constraints −x ≤ −5︸ ︷︷ ︸

ℓ1≤r1

∧2x+ y ≤ 12︸ ︷︷ ︸
ℓ2≤r2

∧−y ≤ −3︸ ︷︷ ︸
ℓ3≤r3

∧ x− 3y ≤ 2︸ ︷︷ ︸
ℓ4≤r4

• alternative way to prove unsatisfiability of constraints ℓ1 ≤ r1, ℓ2 ≤ r2, . . .
• find Farkas’ coefficients, i.e., non-negative coefficients c1, c2, . . . such that

Q ∋
∑
i

ciℓi >
∑
i

ciri ∈ Q

• example: choose c1 = 2, c2 = c3 = 1, c4 = 0

2 · (−x) + 1 · (2x+ y) + 1 · (−y) + 0 · (x− 3y) = 0 > −1 = 2 · (−5) + 1 · 12 + 1 · (−3) + 0 · 2

• Farkas’ Lemma: finite set of ≤-constraints is unsatisfiable iff Farkas’ coefficients exists

• soundness: existence of Farkas’ coefficients obviously shows unsatisfiability
• completeness: if constraints are unsatisfiable, then simplex will detect this; whenever

unsatisfiability is detected in simplex algorithm, one can extract Farkas’ coefficients from the
tableau equation (similar to the detection of unsatisfiable cores, but with finer analysis)

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 16/32

Farkas’ Lemma
• consider ≤-constraints −x ≤ −5︸ ︷︷ ︸

ℓ1≤r1

∧2x+ y ≤ 12︸ ︷︷ ︸
ℓ2≤r2

∧−y ≤ −3︸ ︷︷ ︸
ℓ3≤r3

∧ x− 3y ≤ 2︸ ︷︷ ︸
ℓ4≤r4

• alternative way to prove unsatisfiability of constraints ℓ1 ≤ r1, ℓ2 ≤ r2, . . .
• find Farkas’ coefficients, i.e., non-negative coefficients c1, c2, . . . such that

Q ∋
∑
i

ciℓi >
∑
i

ciri ∈ Q

• example: choose c1 = 2, c2 = c3 = 1, c4 = 0

2 · (−x) + 1 · (2x+ y) + 1 · (−y) + 0 · (x− 3y) = 0 > −1 = 2 · (−5) + 1 · 12 + 1 · (−3) + 0 · 2

• Farkas’ Lemma: finite set of ≤-constraints is unsatisfiable iff Farkas’ coefficients exists

• soundness: existence of Farkas’ coefficients obviously shows unsatisfiability
• completeness: if constraints are unsatisfiable, then simplex will detect this; whenever

unsatisfiability is detected in simplex algorithm, one can extract Farkas’ coefficients from the
tableau equation (similar to the detection of unsatisfiable cores, but with finer analysis)

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 16/32

Farkas’ Lemma
• consider ≤-constraints −x ≤ −5︸ ︷︷ ︸

ℓ1≤r1

∧2x+ y ≤ 12︸ ︷︷ ︸
ℓ2≤r2

∧−y ≤ −3︸ ︷︷ ︸
ℓ3≤r3

∧ x− 3y ≤ 2︸ ︷︷ ︸
ℓ4≤r4

• alternative way to prove unsatisfiability of constraints ℓ1 ≤ r1, ℓ2 ≤ r2, . . .
• find Farkas’ coefficients, i.e., non-negative coefficients c1, c2, . . . such that

Q ∋
∑
i

ciℓi >
∑
i

ciri ∈ Q

• example: choose c1 = 2, c2 = c3 = 1, c4 = 0

2 · (−x) + 1 · (2x+ y) + 1 · (−y) + 0 · (x− 3y) = 0 > −1 = 2 · (−5) + 1 · 12 + 1 · (−3) + 0 · 2

• Farkas’ Lemma: finite set of ≤-constraints is unsatisfiable iff Farkas’ coefficients exists
• soundness: existence of Farkas’ coefficients obviously shows unsatisfiability

• completeness: if constraints are unsatisfiable, then simplex will detect this; whenever
unsatisfiability is detected in simplex algorithm, one can extract Farkas’ coefficients from the
tableau equation (similar to the detection of unsatisfiable cores, but with finer analysis)

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 16/32

Farkas’ Lemma
• consider ≤-constraints −x ≤ −5︸ ︷︷ ︸

ℓ1≤r1

∧2x+ y ≤ 12︸ ︷︷ ︸
ℓ2≤r2

∧−y ≤ −3︸ ︷︷ ︸
ℓ3≤r3

∧ x− 3y ≤ 2︸ ︷︷ ︸
ℓ4≤r4

• alternative way to prove unsatisfiability of constraints ℓ1 ≤ r1, ℓ2 ≤ r2, . . .
• find Farkas’ coefficients, i.e., non-negative coefficients c1, c2, . . . such that

Q ∋
∑
i

ciℓi >
∑
i

ciri ∈ Q

• example: choose c1 = 2, c2 = c3 = 1, c4 = 0

2 · (−x) + 1 · (2x+ y) + 1 · (−y) + 0 · (x− 3y) = 0 > −1 = 2 · (−5) + 1 · 12 + 1 · (−3) + 0 · 2

• Farkas’ Lemma: finite set of ≤-constraints is unsatisfiable iff Farkas’ coefficients exists
• soundness: existence of Farkas’ coefficients obviously shows unsatisfiability
• completeness: if constraints are unsatisfiable, then simplex will detect this; whenever

unsatisfiability is detected in simplex algorithm, one can extract Farkas’ coefficients from the
tableau equation (similar to the detection of unsatisfiable cores, but with finer analysis)

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 16/32

Example (Application of Linear Arithmetic: Termination Proving)

• consider program

factorial(n) {

i = 1;

r = 1;

while (i <= n) {

r = r * i;

i = i + 1; }

return r; }

• φ describes one iteration of loop (primed variables store values after iteration)

φ := i ≤ n ∧ i′ = i+ 1 ∧ r′ = r · i ∧ n′ = n

• proving termination: find linear ranking function, i.e., linear expression e(i,n, r),
decrease factor d with 0 < d ∈ Q, and bound f ∈ Q such that
• φ→ e(i,n, r) ≥ e(i′,n′, r′) + d (expression decreases in every iteration by at least d)
• φ→ e(i,n, r) ≥ f (expression is bounded from below by f)

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 17/32

Example (Application of Linear Arithmetic: Termination Proving)

• consider program

factorial(n) {

i = 1;

r = 1;

while (i <= n) {

r = r * i;

i = i + 1; }

return r; }

• φ describes one iteration of loop (primed variables store values after iteration)

φ := i ≤ n ∧ i′ = i+ 1 ∧ r′ = r · i ∧ n′ = n

• proving termination: find linear ranking function, i.e., linear expression e(i,n, r),
decrease factor d with 0 < d ∈ Q, and bound f ∈ Q such that
• φ→ e(i,n, r) ≥ e(i′,n′, r′) + d (expression decreases in every iteration by at least d)
• φ→ e(i,n, r) ≥ f (expression is bounded from below by f)

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 17/32

Example (Application of Linear Arithmetic: Termination Proving)

• consider program

factorial(n) {

i = 1;

r = 1;

while (i <= n) {

r = r * i;

i = i + 1; }

return r; }

• φ describes one iteration of loop (primed variables store values after iteration)

φ := i ≤ n ∧ i′ = i+ 1 ∧ r′ = r · i ∧ n′ = n

• proving termination: find linear ranking function, i.e., linear expression e(i,n, r),
decrease factor d with 0 < d ∈ Q, and bound f ∈ Q such that
• φ→ e(i,n, r) ≥ e(i′,n′, r′) + d (expression decreases in every iteration by at least d)
• φ→ e(i,n, r) ≥ f (expression is bounded from below by f)

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 17/32

Example (Termination Proof Continued)

• loop iteration φ := i ≤ n ∧ i′ = i+ 1 ∧ r′ = r · i ∧ n′ = n
• proving termination by validity of formulas

φ→ e(i,n, r) ≥ e(i′,n′, r′) + d φ→ e(i,n, r) ≥ f

• is equivalent to unsatisfiability of negated formulas

φ ∧ e(i,n, r) < e(i′,n′, r′) + d φ ∧ e(i,n, r) < f

• choose linear ranking function e(i,n, r) := n− i and d := 1 and f = −1,
and drop all non-linear constraints to get two linear problems:
• i < n ∧ i′ = i+ 1 ∧ n′ = n ∧ n− i < n′ − i′ + 1 (violate decrease)
• i < n ∧ i′ = i+ 1 ∧ n′ = n ∧ n− i < −1 (violate boundedness)

both problems are unsatisfiable over Q (just run simplex), so termination is proved

• problem: how to find linear expression e(i,n, r) and constants d and f?
• solution: combined search for e(i,n, r), d and f and Farkas’ coefficients

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 18/32

Example (Termination Proof Continued)

• loop iteration φ := i ≤ n ∧ i′ = i+ 1 ∧ r′ = r · i ∧ n′ = n
• proving termination by validity of formulas

φ→ e(i,n, r) ≥ e(i′,n′, r′) + d φ→ e(i,n, r) ≥ f

• is equivalent to unsatisfiability of negated formulas

φ ∧ e(i,n, r) < e(i′,n′, r′) + d φ ∧ e(i,n, r) < f

• choose linear ranking function e(i,n, r) := n− i and d := 1 and f = −1,
and drop all non-linear constraints to get two linear problems:
• i < n ∧ i′ = i+ 1 ∧ n′ = n ∧ n− i < n′ − i′ + 1 (violate decrease)
• i < n ∧ i′ = i+ 1 ∧ n′ = n ∧ n− i < −1 (violate boundedness)

both problems are unsatisfiable over Q (just run simplex), so termination is proved

• problem: how to find linear expression e(i,n, r) and constants d and f?
• solution: combined search for e(i,n, r), d and f and Farkas’ coefficients

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 18/32

Example (Termination Proof Continued)

• loop iteration φ := i ≤ n ∧ i′ = i+ 1 ∧ r′ = r · i ∧ n′ = n
• proving termination by validity of formulas

φ→ e(i,n, r) ≥ e(i′,n′, r′) + d φ→ e(i,n, r) ≥ f

• is equivalent to unsatisfiability of negated formulas

φ ∧ e(i,n, r) < e(i′,n′, r′) + d φ ∧ e(i,n, r) < f

• choose linear ranking function e(i,n, r) := n− i and d := 1 and f = −1,
and drop all non-linear constraints to get two linear problems:
• i < n ∧ i′ = i+ 1 ∧ n′ = n ∧ n− i < n′ − i′ + 1 (violate decrease)
• i < n ∧ i′ = i+ 1 ∧ n′ = n ∧ n− i < −1 (violate boundedness)

both problems are unsatisfiable over Q (just run simplex), so termination is proved
• problem: how to find linear expression e(i,n, r) and constants d and f?
• solution: combined search for e(i,n, r), d and f and Farkas’ coefficients

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 18/32

Example (Termination Proof Continued)

• loop iteration φ := i ≤ n ∧ i′ = i+ 1 ∧ r′ = r · i ∧ n′ = n
• proving termination by validity of formulas

φ→ e(i,n, r) ≥ e(i′,n′, r′) + d φ→ e(i,n, r) ≥ f

• is equivalent to unsatisfiability of negated formulas

φ ∧ e(i,n, r) < e(i′,n′, r′) + d φ ∧ e(i,n, r) < f

• choose linear ranking function e(i,n, r) := n− i and d := 1 and f = −1,
and drop all non-linear constraints to get two linear problems:
• i < n ∧ i′ = i+ 1 ∧ n′ = n ∧ n− i < n′ − i′ + 1 (violate decrease)
• i < n ∧ i′ = i+ 1 ∧ n′ = n ∧ n− i < −1 (violate boundedness)

both problems are unsatisfiable over Q (just run simplex), so termination is proved

• problem: how to find linear expression e(i,n, r) and constants d and f?
• solution: combined search for e(i,n, r), d and f and Farkas’ coefficients

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 18/32

Example (Termination Proof Continued)

• loop iteration φ := i ≤ n ∧ i′ = i+ 1 ∧ r′ = r · i ∧ n′ = n
• proving termination by validity of formulas

φ→ e(i,n, r) ≥ e(i′,n′, r′) + d φ→ e(i,n, r) ≥ f

• is equivalent to unsatisfiability of negated formulas

φ ∧ e(i,n, r) < e(i′,n′, r′) + d φ ∧ e(i,n, r) < f

• choose linear ranking function e(i,n, r) := n− i and d := 1 and f = −1,
and drop all non-linear constraints to get two linear problems:
• i < n ∧ i′ = i+ 1 ∧ n′ = n ∧ n− i < n′ − i′ + 1 (violate decrease)
• i < n ∧ i′ = i+ 1 ∧ n′ = n ∧ n− i < −1 (violate boundedness)

both problems are unsatisfiable over Q (just run simplex), so termination is proved
• problem: how to find linear expression e(i,n, r) and constants d and f?

• solution: combined search for e(i,n, r), d and f and Farkas’ coefficients

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 18/32

Example (Termination Proof Continued)

• loop iteration φ := i ≤ n ∧ i′ = i+ 1 ∧ r′ = r · i ∧ n′ = n
• proving termination by validity of formulas

φ→ e(i,n, r) ≥ e(i′,n′, r′) + d φ→ e(i,n, r) ≥ f

• is equivalent to unsatisfiability of negated formulas

φ ∧ e(i,n, r) < e(i′,n′, r′) + d φ ∧ e(i,n, r) < f

• choose linear ranking function e(i,n, r) := n− i and d := 1 and f = −1,
and drop all non-linear constraints to get two linear problems:
• i < n ∧ i′ = i+ 1 ∧ n′ = n ∧ n− i < n′ − i′ + 1 (violate decrease)
• i < n ∧ i′ = i+ 1 ∧ n′ = n ∧ n− i < −1 (violate boundedness)

both problems are unsatisfiable over Q (just run simplex), so termination is proved
• problem: how to find linear expression e(i,n, r) and constants d and f?
• solution: combined search for e(i,n, r), d and f and Farkas’ coefficients

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 18/32

Towards Algorithm to Synthesize Linear Ranking Function

• assume loop is given as transition formula in the form of linear inequalities
Ax⃗+ A′x⃗′ ≤ b⃗ between primed and unprimed variables

• example
1 −1

0 1

0 −1

1 0

−1 0

︸ ︷︷ ︸

A

·

(
i

n

)
+

0 0

0 −1

0 1

−1 0

1 0

︸ ︷︷ ︸

A′

·

(
i′

n′

)
≤

0

0

0

−1

1

︸ ︷︷ ︸

b⃗

encodes transition formula i ≤ n ∧ n′ = n ∧ i′ = i+ 1
(formula φ after removal of non-linear part)

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 19/32

Towards Algorithm to Synthesize Linear Ranking Function

• assume loop is given as transition formula in the form of linear inequalities
Ax⃗+ A′x⃗′ ≤ b⃗ between primed and unprimed variables
• example

1 −1

0 1

0 −1

1 0

−1 0

︸ ︷︷ ︸

A

·

(
i

n

)
+

0 0

0 −1

0 1

−1 0

1 0

︸ ︷︷ ︸

A′

·

(
i′

n′

)
≤

0

0

0

−1

1

︸ ︷︷ ︸

b⃗

encodes transition formula i ≤ n ∧ n′ = n ∧ i′ = i+ 1
(formula φ after removal of non-linear part)

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 19/32

Algorithm to Synthesize Linear Ranking Function [Podelski, Rybalschenko]

• assume loop is given as transition formula in the form of linear inequalities
Ax⃗+ A′x⃗′ ≤ b⃗ between primed and unprimed variables
• idea: find parameters of ranking function and Farkas’ coefficients in one go

• algorithm: encode the following constraints for row vectors c⃗1, c⃗2 of variables

• c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗
• c⃗1A′ = 0
• c⃗1A = c⃗2A
• c⃗2A = −c⃗2A′

• c⃗2b⃗ < 0

and return "linear ranking function exists" iff constraints are satisfiable
• completeness is based on Farkas’ lemma (assumes satisfiable transition formula)
• soundness: extract parameters of ranking function from concrete solution c⃗1, c⃗2

e(x⃗) = c⃗2A
′x⃗ d = −c⃗2b⃗ f = −c⃗1b⃗

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 20/32

Algorithm to Synthesize Linear Ranking Function [Podelski, Rybalschenko]

• assume loop is given as transition formula in the form of linear inequalities
Ax⃗+ A′x⃗′ ≤ b⃗ between primed and unprimed variables
• idea: find parameters of ranking function and Farkas’ coefficients in one go
• algorithm: encode the following constraints for row vectors c⃗1, c⃗2 of variables
• c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗
• c⃗1A′ = 0
• c⃗1A = c⃗2A
• c⃗2A = −c⃗2A′

• c⃗2b⃗ < 0

and return "linear ranking function exists" iff constraints are satisfiable

• completeness is based on Farkas’ lemma (assumes satisfiable transition formula)
• soundness: extract parameters of ranking function from concrete solution c⃗1, c⃗2

e(x⃗) = c⃗2A
′x⃗ d = −c⃗2b⃗ f = −c⃗1b⃗

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 20/32

Algorithm to Synthesize Linear Ranking Function [Podelski, Rybalschenko]

• assume loop is given as transition formula in the form of linear inequalities
Ax⃗+ A′x⃗′ ≤ b⃗ between primed and unprimed variables
• idea: find parameters of ranking function and Farkas’ coefficients in one go
• algorithm: encode the following constraints for row vectors c⃗1, c⃗2 of variables
• c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗
• c⃗1A′ = 0
• c⃗1A = c⃗2A
• c⃗2A = −c⃗2A′

• c⃗2b⃗ < 0

and return "linear ranking function exists" iff constraints are satisfiable

• completeness is based on Farkas’ lemma (assumes satisfiable transition formula)
• soundness: extract parameters of ranking function from concrete solution c⃗1, c⃗2

e(x⃗) = c⃗2A
′x⃗ d = −c⃗2b⃗ f = −c⃗1b⃗

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 20/32

Algorithm to Synthesize Linear Ranking Function [Podelski, Rybalschenko]

• assume loop is given as transition formula in the form of linear inequalities
Ax⃗+ A′x⃗′ ≤ b⃗ between primed and unprimed variables
• idea: find parameters of ranking function and Farkas’ coefficients in one go
• algorithm: encode the following constraints for row vectors c⃗1, c⃗2 of variables
• c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗
• c⃗1A′ = 0
• c⃗1A = c⃗2A
• c⃗2A = −c⃗2A′

• c⃗2b⃗ < 0

and return "linear ranking function exists" iff constraints are satisfiable
• completeness is based on Farkas’ lemma (assumes satisfiable transition formula)

• soundness: extract parameters of ranking function from concrete solution c⃗1, c⃗2

e(x⃗) = c⃗2A
′x⃗ d = −c⃗2b⃗ f = −c⃗1b⃗

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 20/32

Algorithm to Synthesize Linear Ranking Function [Podelski, Rybalschenko]

• assume loop is given as transition formula in the form of linear inequalities
Ax⃗+ A′x⃗′ ≤ b⃗ between primed and unprimed variables
• idea: find parameters of ranking function and Farkas’ coefficients in one go
• algorithm: encode the following constraints for row vectors c⃗1, c⃗2 of variables
• c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗
• c⃗1A′ = 0
• c⃗1A = c⃗2A
• c⃗2A = −c⃗2A′

• c⃗2b⃗ < 0

and return "linear ranking function exists" iff constraints are satisfiable
• completeness is based on Farkas’ lemma (assumes satisfiable transition formula)
• soundness: extract parameters of ranking function from concrete solution c⃗1, c⃗2

e(x⃗) = c⃗2A
′x⃗ d = −c⃗2b⃗ f = −c⃗1b⃗

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 20/32

Example Application (Continue in Termination Proof)

•
(
c1 c2 c3 c4 c5

)
≥
(

0 0 0 0 0
)

,
(
c6 c7 c8 c9 c10

)
≥
(

0 . . . 0
)

•
(
−c4 + c5 −c2 + c3

)
=
(

0 0
)

•
(
c1 + c4 − c5 −c1 + c2 − c3

)
=
(
c6 + c9 − c10 −c6 + c7 − c8

)
•
(
c6 + c9 − c10 −c6 + c7 − c8

)
= −

(
−c9 + c10 −c7 + c8

)
• c10 − c9 < 0

• find solution c1 = c8 = c9 = 1, ci = 0 for i /∈ {1,8,9}
• extract ranking function parameters

• e(i,n) =
(

0 0 1 1 0
)
A′

(
i

n

)
= n− i

• d = −
(

0 0 1 1 0
)
b⃗ = 1

• f = −
(

1 0 0 0 0
)
b⃗ = 0

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 21/32

Example Application (Continue in Termination Proof)

•
(
c1 c2 c3 c4 c5

)
≥
(

0 0 0 0 0
)

,
(
c6 c7 c8 c9 c10

)
≥
(

0 . . . 0
)

•
(
−c4 + c5 −c2 + c3

)
=
(

0 0
)

•
(
c1 + c4 − c5 −c1 + c2 − c3

)
=
(
c6 + c9 − c10 −c6 + c7 − c8

)
•
(
c6 + c9 − c10 −c6 + c7 − c8

)
= −

(
−c9 + c10 −c7 + c8

)
• c10 − c9 < 0
• find solution c1 = c8 = c9 = 1, ci = 0 for i /∈ {1,8,9}

• extract ranking function parameters

• e(i,n) =
(

0 0 1 1 0
)
A′

(
i

n

)
= n− i

• d = −
(

0 0 1 1 0
)
b⃗ = 1

• f = −
(

1 0 0 0 0
)
b⃗ = 0

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 21/32

Example Application (Continue in Termination Proof)

•
(
c1 c2 c3 c4 c5

)
≥
(

0 0 0 0 0
)

,
(
c6 c7 c8 c9 c10

)
≥
(

0 . . . 0
)

•
(
−c4 + c5 −c2 + c3

)
=
(

0 0
)

•
(
c1 + c4 − c5 −c1 + c2 − c3

)
=
(
c6 + c9 − c10 −c6 + c7 − c8

)
•
(
c6 + c9 − c10 −c6 + c7 − c8

)
= −

(
−c9 + c10 −c7 + c8

)
• c10 − c9 < 0
• find solution c1 = c8 = c9 = 1, ci = 0 for i /∈ {1,8,9}
• extract ranking function parameters

• e(i,n) =
(

0 0 1 1 0
)
A′

(
i

n

)
= n− i

• d = −
(

0 0 1 1 0
)
b⃗ = 1

• f = −
(

1 0 0 0 0
)
b⃗ = 0

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 21/32

Soundness Proof: Details

• loop transition formula: Ax⃗+ A′x⃗′ ≤ b⃗

• constraints: c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗, c⃗1A′ = 0, c⃗1A = c⃗2A, c⃗2A = −c⃗2A′, and c⃗2b⃗ < 0

• ranking function parameters: e(x⃗) = c⃗2A′x⃗, d = −c⃗2b⃗, and f = −c⃗1b⃗

• choice of d: d = −c⃗2b⃗ > 0

• boundedness

• assume x⃗ and x⃗′ satisfy loop transition formula
• hence c⃗1(Ax⃗+ A′x⃗′) ≤ c⃗1b⃗
• hence c⃗1Ax⃗+ c⃗1A′x⃗′ ≤ c⃗1b⃗
• hence c⃗1Ax⃗ ≤ c⃗1b⃗
• hence c⃗2Ax⃗ ≤ c⃗1b⃗
• hence −c⃗2A′x⃗ ≤ c⃗1b⃗
• hence −e(x⃗) ≤ −f
• hence e(x⃗) ≥ f

• decrease e(x⃗) ≥ e(x⃗′) + d: similar to boundedness

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 22/32

Soundness Proof: Details

• loop transition formula: Ax⃗+ A′x⃗′ ≤ b⃗

• constraints: c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗, c⃗1A′ = 0, c⃗1A = c⃗2A, c⃗2A = −c⃗2A′, and c⃗2b⃗ < 0

• ranking function parameters: e(x⃗) = c⃗2A′x⃗, d = −c⃗2b⃗, and f = −c⃗1b⃗

• choice of d: d = −c⃗2b⃗ > 0

• boundedness

• assume x⃗ and x⃗′ satisfy loop transition formula
• hence c⃗1(Ax⃗+ A′x⃗′) ≤ c⃗1b⃗
• hence c⃗1Ax⃗+ c⃗1A′x⃗′ ≤ c⃗1b⃗
• hence c⃗1Ax⃗ ≤ c⃗1b⃗
• hence c⃗2Ax⃗ ≤ c⃗1b⃗
• hence −c⃗2A′x⃗ ≤ c⃗1b⃗
• hence −e(x⃗) ≤ −f
• hence e(x⃗) ≥ f

• decrease e(x⃗) ≥ e(x⃗′) + d: similar to boundedness

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 22/32

Soundness Proof: Details

• loop transition formula: Ax⃗+ A′x⃗′ ≤ b⃗

• constraints: c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗, c⃗1A′ = 0, c⃗1A = c⃗2A, c⃗2A = −c⃗2A′, and c⃗2b⃗ < 0

• ranking function parameters: e(x⃗) = c⃗2A′x⃗, d = −c⃗2b⃗, and f = −c⃗1b⃗

• choice of d: d = −c⃗2b⃗ > 0

• boundedness

• assume x⃗ and x⃗′ satisfy loop transition formula
• hence c⃗1(Ax⃗+ A′x⃗′) ≤ c⃗1b⃗
• hence c⃗1Ax⃗+ c⃗1A′x⃗′ ≤ c⃗1b⃗
• hence c⃗1Ax⃗ ≤ c⃗1b⃗
• hence c⃗2Ax⃗ ≤ c⃗1b⃗
• hence −c⃗2A′x⃗ ≤ c⃗1b⃗
• hence −e(x⃗) ≤ −f
• hence e(x⃗) ≥ f

• decrease e(x⃗) ≥ e(x⃗′) + d: similar to boundedness

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 22/32

Soundness Proof: Details

• loop transition formula: Ax⃗+ A′x⃗′ ≤ b⃗

• constraints: c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗, c⃗1A′ = 0, c⃗1A = c⃗2A, c⃗2A = −c⃗2A′, and c⃗2b⃗ < 0

• ranking function parameters: e(x⃗) = c⃗2A′x⃗, d = −c⃗2b⃗, and f = −c⃗1b⃗

• choice of d: d = −c⃗2b⃗ > 0

• boundedness

• assume x⃗ and x⃗′ satisfy loop transition formula

• hence c⃗1(Ax⃗+ A′x⃗′) ≤ c⃗1b⃗
• hence c⃗1Ax⃗+ c⃗1A′x⃗′ ≤ c⃗1b⃗
• hence c⃗1Ax⃗ ≤ c⃗1b⃗
• hence c⃗2Ax⃗ ≤ c⃗1b⃗
• hence −c⃗2A′x⃗ ≤ c⃗1b⃗
• hence −e(x⃗) ≤ −f
• hence e(x⃗) ≥ f

• decrease e(x⃗) ≥ e(x⃗′) + d: similar to boundedness

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 22/32

Soundness Proof: Details

• loop transition formula: Ax⃗+ A′x⃗′ ≤ b⃗

• constraints: c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗, c⃗1A′ = 0, c⃗1A = c⃗2A, c⃗2A = −c⃗2A′, and c⃗2b⃗ < 0

• ranking function parameters: e(x⃗) = c⃗2A′x⃗, d = −c⃗2b⃗, and f = −c⃗1b⃗

• choice of d: d = −c⃗2b⃗ > 0

• boundedness

• assume x⃗ and x⃗′ satisfy loop transition formula
• hence c⃗1(Ax⃗+ A′x⃗′) ≤ c⃗1b⃗

• hence c⃗1Ax⃗+ c⃗1A′x⃗′ ≤ c⃗1b⃗
• hence c⃗1Ax⃗ ≤ c⃗1b⃗
• hence c⃗2Ax⃗ ≤ c⃗1b⃗
• hence −c⃗2A′x⃗ ≤ c⃗1b⃗
• hence −e(x⃗) ≤ −f
• hence e(x⃗) ≥ f

• decrease e(x⃗) ≥ e(x⃗′) + d: similar to boundedness

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 22/32

Soundness Proof: Details

• loop transition formula: Ax⃗+ A′x⃗′ ≤ b⃗

• constraints: c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗, c⃗1A′ = 0, c⃗1A = c⃗2A, c⃗2A = −c⃗2A′, and c⃗2b⃗ < 0

• ranking function parameters: e(x⃗) = c⃗2A′x⃗, d = −c⃗2b⃗, and f = −c⃗1b⃗

• choice of d: d = −c⃗2b⃗ > 0

• boundedness

• assume x⃗ and x⃗′ satisfy loop transition formula
• hence c⃗1(Ax⃗+ A′x⃗′) ≤ c⃗1b⃗
• hence c⃗1Ax⃗+ c⃗1A′x⃗′ ≤ c⃗1b⃗

• hence c⃗1Ax⃗ ≤ c⃗1b⃗
• hence c⃗2Ax⃗ ≤ c⃗1b⃗
• hence −c⃗2A′x⃗ ≤ c⃗1b⃗
• hence −e(x⃗) ≤ −f
• hence e(x⃗) ≥ f

• decrease e(x⃗) ≥ e(x⃗′) + d: similar to boundedness

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 22/32

Soundness Proof: Details

• loop transition formula: Ax⃗+ A′x⃗′ ≤ b⃗

• constraints: c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗, c⃗1A′ = 0, c⃗1A = c⃗2A, c⃗2A = −c⃗2A′, and c⃗2b⃗ < 0

• ranking function parameters: e(x⃗) = c⃗2A′x⃗, d = −c⃗2b⃗, and f = −c⃗1b⃗

• choice of d: d = −c⃗2b⃗ > 0

• boundedness

• assume x⃗ and x⃗′ satisfy loop transition formula
• hence c⃗1(Ax⃗+ A′x⃗′) ≤ c⃗1b⃗
• hence c⃗1Ax⃗+ c⃗1A′x⃗′ ≤ c⃗1b⃗
• hence c⃗1Ax⃗ ≤ c⃗1b⃗

• hence c⃗2Ax⃗ ≤ c⃗1b⃗
• hence −c⃗2A′x⃗ ≤ c⃗1b⃗
• hence −e(x⃗) ≤ −f
• hence e(x⃗) ≥ f

• decrease e(x⃗) ≥ e(x⃗′) + d: similar to boundedness

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 22/32

Soundness Proof: Details

• loop transition formula: Ax⃗+ A′x⃗′ ≤ b⃗

• constraints: c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗, c⃗1A′ = 0, c⃗1A = c⃗2A, c⃗2A = −c⃗2A′, and c⃗2b⃗ < 0

• ranking function parameters: e(x⃗) = c⃗2A′x⃗, d = −c⃗2b⃗, and f = −c⃗1b⃗

• choice of d: d = −c⃗2b⃗ > 0

• boundedness

• assume x⃗ and x⃗′ satisfy loop transition formula
• hence c⃗1(Ax⃗+ A′x⃗′) ≤ c⃗1b⃗
• hence c⃗1Ax⃗+ c⃗1A′x⃗′ ≤ c⃗1b⃗
• hence c⃗1Ax⃗ ≤ c⃗1b⃗
• hence c⃗2Ax⃗ ≤ c⃗1b⃗

• hence −c⃗2A′x⃗ ≤ c⃗1b⃗
• hence −e(x⃗) ≤ −f
• hence e(x⃗) ≥ f

• decrease e(x⃗) ≥ e(x⃗′) + d: similar to boundedness

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 22/32

Soundness Proof: Details

• loop transition formula: Ax⃗+ A′x⃗′ ≤ b⃗

• constraints: c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗, c⃗1A′ = 0, c⃗1A = c⃗2A, c⃗2A = −c⃗2A′, and c⃗2b⃗ < 0

• ranking function parameters: e(x⃗) = c⃗2A′x⃗, d = −c⃗2b⃗, and f = −c⃗1b⃗

• choice of d: d = −c⃗2b⃗ > 0

• boundedness

• assume x⃗ and x⃗′ satisfy loop transition formula
• hence c⃗1(Ax⃗+ A′x⃗′) ≤ c⃗1b⃗
• hence c⃗1Ax⃗+ c⃗1A′x⃗′ ≤ c⃗1b⃗
• hence c⃗1Ax⃗ ≤ c⃗1b⃗
• hence c⃗2Ax⃗ ≤ c⃗1b⃗
• hence −c⃗2A′x⃗ ≤ c⃗1b⃗

• hence −e(x⃗) ≤ −f
• hence e(x⃗) ≥ f

• decrease e(x⃗) ≥ e(x⃗′) + d: similar to boundedness

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 22/32

Soundness Proof: Details

• loop transition formula: Ax⃗+ A′x⃗′ ≤ b⃗

• constraints: c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗, c⃗1A′ = 0, c⃗1A = c⃗2A, c⃗2A = −c⃗2A′, and c⃗2b⃗ < 0

• ranking function parameters: e(x⃗) = c⃗2A′x⃗, d = −c⃗2b⃗, and f = −c⃗1b⃗

• choice of d: d = −c⃗2b⃗ > 0

• boundedness

• assume x⃗ and x⃗′ satisfy loop transition formula
• hence c⃗1(Ax⃗+ A′x⃗′) ≤ c⃗1b⃗
• hence c⃗1Ax⃗+ c⃗1A′x⃗′ ≤ c⃗1b⃗
• hence c⃗1Ax⃗ ≤ c⃗1b⃗
• hence c⃗2Ax⃗ ≤ c⃗1b⃗
• hence −c⃗2A′x⃗ ≤ c⃗1b⃗
• hence −e(x⃗) ≤ −f

• hence e(x⃗) ≥ f

• decrease e(x⃗) ≥ e(x⃗′) + d: similar to boundedness

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 22/32

Soundness Proof: Details

• loop transition formula: Ax⃗+ A′x⃗′ ≤ b⃗

• constraints: c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗, c⃗1A′ = 0, c⃗1A = c⃗2A, c⃗2A = −c⃗2A′, and c⃗2b⃗ < 0

• ranking function parameters: e(x⃗) = c⃗2A′x⃗, d = −c⃗2b⃗, and f = −c⃗1b⃗

• choice of d: d = −c⃗2b⃗ > 0

• boundedness

• assume x⃗ and x⃗′ satisfy loop transition formula
• hence c⃗1(Ax⃗+ A′x⃗′) ≤ c⃗1b⃗
• hence c⃗1Ax⃗+ c⃗1A′x⃗′ ≤ c⃗1b⃗
• hence c⃗1Ax⃗ ≤ c⃗1b⃗
• hence c⃗2Ax⃗ ≤ c⃗1b⃗
• hence −c⃗2A′x⃗ ≤ c⃗1b⃗
• hence −e(x⃗) ≤ −f
• hence e(x⃗) ≥ f

• decrease e(x⃗) ≥ e(x⃗′) + d: similar to boundedness

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 22/32

Soundness Proof: Details

• loop transition formula: Ax⃗+ A′x⃗′ ≤ b⃗

• constraints: c⃗1 ≥ 0⃗, c⃗2 ≥ 0⃗, c⃗1A′ = 0, c⃗1A = c⃗2A, c⃗2A = −c⃗2A′, and c⃗2b⃗ < 0

• ranking function parameters: e(x⃗) = c⃗2A′x⃗, d = −c⃗2b⃗, and f = −c⃗1b⃗

• choice of d: d = −c⃗2b⃗ > 0

• boundedness

• assume x⃗ and x⃗′ satisfy loop transition formula
• hence c⃗1(Ax⃗+ A′x⃗′) ≤ c⃗1b⃗
• hence c⃗1Ax⃗+ c⃗1A′x⃗′ ≤ c⃗1b⃗
• hence c⃗1Ax⃗ ≤ c⃗1b⃗
• hence c⃗2Ax⃗ ≤ c⃗1b⃗
• hence −c⃗2A′x⃗ ≤ c⃗1b⃗
• hence −e(x⃗) ≤ −f
• hence e(x⃗) ≥ f

• decrease e(x⃗) ≥ e(x⃗′) + d: similar to boundedness

SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas’ Lemma 22/32

Outline

1. Summary of Previous Lecture

2. Complexity of Simplex Algorithm

3. Unsatisfiable Cores and Farkas’ Lemma

4. Simplex Algorithm for DPLL(T)

5. Further Reading

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 23/32

Why use simplex algorithm for LRA?

• situation

• solving LRA problems is in P (interior point method, . . .)
• simplex algorithm has exponential worst-case time complexity

• simplex algorithm is still popular

• exponential behaviour rarely triggered, only on artificial examples
• simplex can be used incrementally

• incrementality

• simplex can be used as theory solver for DPLL(T),
where often constraints are activated and deactivated

• simplex can be used as backend for LIA solver (next lecture),
where new constraints are added on-the-fly

• aim: do not restart simplex from scratch when slightly modifying constraints

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 24/32

Why use simplex algorithm for LRA?

• situation
• solving LRA problems is in P (interior point method, . . .)

• simplex algorithm has exponential worst-case time complexity
• simplex algorithm is still popular

• exponential behaviour rarely triggered, only on artificial examples
• simplex can be used incrementally

• incrementality

• simplex can be used as theory solver for DPLL(T),
where often constraints are activated and deactivated

• simplex can be used as backend for LIA solver (next lecture),
where new constraints are added on-the-fly

• aim: do not restart simplex from scratch when slightly modifying constraints

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 24/32

Why use simplex algorithm for LRA?

• situation
• solving LRA problems is in P (interior point method, . . .)
• simplex algorithm has exponential worst-case time complexity

• simplex algorithm is still popular

• exponential behaviour rarely triggered, only on artificial examples
• simplex can be used incrementally

• incrementality

• simplex can be used as theory solver for DPLL(T),
where often constraints are activated and deactivated

• simplex can be used as backend for LIA solver (next lecture),
where new constraints are added on-the-fly

• aim: do not restart simplex from scratch when slightly modifying constraints

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 24/32

Why use simplex algorithm for LRA?

• situation
• solving LRA problems is in P (interior point method, . . .)
• simplex algorithm has exponential worst-case time complexity

• simplex algorithm is still popular

• exponential behaviour rarely triggered, only on artificial examples
• simplex can be used incrementally

• incrementality

• simplex can be used as theory solver for DPLL(T),
where often constraints are activated and deactivated

• simplex can be used as backend for LIA solver (next lecture),
where new constraints are added on-the-fly

• aim: do not restart simplex from scratch when slightly modifying constraints

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 24/32

Why use simplex algorithm for LRA?

• situation
• solving LRA problems is in P (interior point method, . . .)
• simplex algorithm has exponential worst-case time complexity

• simplex algorithm is still popular
• exponential behaviour rarely triggered, only on artificial examples

• simplex can be used incrementally
• incrementality

• simplex can be used as theory solver for DPLL(T),
where often constraints are activated and deactivated

• simplex can be used as backend for LIA solver (next lecture),
where new constraints are added on-the-fly

• aim: do not restart simplex from scratch when slightly modifying constraints

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 24/32

Why use simplex algorithm for LRA?

• situation
• solving LRA problems is in P (interior point method, . . .)
• simplex algorithm has exponential worst-case time complexity

• simplex algorithm is still popular
• exponential behaviour rarely triggered, only on artificial examples
• simplex can be used incrementally

• incrementality

• simplex can be used as theory solver for DPLL(T),
where often constraints are activated and deactivated

• simplex can be used as backend for LIA solver (next lecture),
where new constraints are added on-the-fly

• aim: do not restart simplex from scratch when slightly modifying constraints

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 24/32

Why use simplex algorithm for LRA?

• situation
• solving LRA problems is in P (interior point method, . . .)
• simplex algorithm has exponential worst-case time complexity

• simplex algorithm is still popular
• exponential behaviour rarely triggered, only on artificial examples
• simplex can be used incrementally

• incrementality

• simplex can be used as theory solver for DPLL(T),
where often constraints are activated and deactivated

• simplex can be used as backend for LIA solver (next lecture),
where new constraints are added on-the-fly

• aim: do not restart simplex from scratch when slightly modifying constraints

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 24/32

Why use simplex algorithm for LRA?

• situation
• solving LRA problems is in P (interior point method, . . .)
• simplex algorithm has exponential worst-case time complexity

• simplex algorithm is still popular
• exponential behaviour rarely triggered, only on artificial examples
• simplex can be used incrementally

• incrementality
• simplex can be used as theory solver for DPLL(T),

where often constraints are activated and deactivated

• simplex can be used as backend for LIA solver (next lecture),
where new constraints are added on-the-fly

• aim: do not restart simplex from scratch when slightly modifying constraints

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 24/32

Why use simplex algorithm for LRA?

• situation
• solving LRA problems is in P (interior point method, . . .)
• simplex algorithm has exponential worst-case time complexity

• simplex algorithm is still popular
• exponential behaviour rarely triggered, only on artificial examples
• simplex can be used incrementally

• incrementality
• simplex can be used as theory solver for DPLL(T),

where often constraints are activated and deactivated
• simplex can be used as backend for LIA solver (next lecture),

where new constraints are added on-the-fly

• aim: do not restart simplex from scratch when slightly modifying constraints

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 24/32

Why use simplex algorithm for LRA?

• situation
• solving LRA problems is in P (interior point method, . . .)
• simplex algorithm has exponential worst-case time complexity

• simplex algorithm is still popular
• exponential behaviour rarely triggered, only on artificial examples
• simplex can be used incrementally

• incrementality
• simplex can be used as theory solver for DPLL(T),

where often constraints are activated and deactivated
• simplex can be used as backend for LIA solver (next lecture),

where new constraints are added on-the-fly
• aim: do not restart simplex from scratch when slightly modifying constraints

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 24/32

Incremental Interface for DPLL(T)
• make all constraints available to simplex at the beginning of the algorithm,

ignoring Boolean structure =⇒ obtain global tableau for all constraints

• modify simplex algorithm by adding active-flags for upper and lower bounds
• when executing simplex, all inactive bounds are ignored
• initially all bounds are inactive
• activation of a constraint

• activate corresponding lower or upper bound si ≤ c or c ≤ si for slack variable si
• if new bound gives rise to a conflict ui < li then report unsatisfiable
• otherwise, if si ∈ N and si violates bound, then update assignment of si to c

(at this point, invariants (1) and (2) are established for the active bounds)
• run simplex on current tableau and assignment to determine satisfiability

• deactivation of a constraint

• deactivate corresponding lower or upper bound
• usually occurs after a conflict has been detected
• tableau and assignment can be reused from before: they satisfy invariants (1) and (2)

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 25/32

Incremental Interface for DPLL(T)
• make all constraints available to simplex at the beginning of the algorithm,

ignoring Boolean structure =⇒ obtain global tableau for all constraints
• modify simplex algorithm by adding active-flags for upper and lower bounds

• when executing simplex, all inactive bounds are ignored
• initially all bounds are inactive
• activation of a constraint

• activate corresponding lower or upper bound si ≤ c or c ≤ si for slack variable si
• if new bound gives rise to a conflict ui < li then report unsatisfiable
• otherwise, if si ∈ N and si violates bound, then update assignment of si to c

(at this point, invariants (1) and (2) are established for the active bounds)
• run simplex on current tableau and assignment to determine satisfiability

• deactivation of a constraint

• deactivate corresponding lower or upper bound
• usually occurs after a conflict has been detected
• tableau and assignment can be reused from before: they satisfy invariants (1) and (2)

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 25/32

Incremental Interface for DPLL(T)
• make all constraints available to simplex at the beginning of the algorithm,

ignoring Boolean structure =⇒ obtain global tableau for all constraints
• modify simplex algorithm by adding active-flags for upper and lower bounds
• when executing simplex, all inactive bounds are ignored

• initially all bounds are inactive
• activation of a constraint

• activate corresponding lower or upper bound si ≤ c or c ≤ si for slack variable si
• if new bound gives rise to a conflict ui < li then report unsatisfiable
• otherwise, if si ∈ N and si violates bound, then update assignment of si to c

(at this point, invariants (1) and (2) are established for the active bounds)
• run simplex on current tableau and assignment to determine satisfiability

• deactivation of a constraint

• deactivate corresponding lower or upper bound
• usually occurs after a conflict has been detected
• tableau and assignment can be reused from before: they satisfy invariants (1) and (2)

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 25/32

Incremental Interface for DPLL(T)
• make all constraints available to simplex at the beginning of the algorithm,

ignoring Boolean structure =⇒ obtain global tableau for all constraints
• modify simplex algorithm by adding active-flags for upper and lower bounds
• when executing simplex, all inactive bounds are ignored
• initially all bounds are inactive

• activation of a constraint

• activate corresponding lower or upper bound si ≤ c or c ≤ si for slack variable si
• if new bound gives rise to a conflict ui < li then report unsatisfiable
• otherwise, if si ∈ N and si violates bound, then update assignment of si to c

(at this point, invariants (1) and (2) are established for the active bounds)
• run simplex on current tableau and assignment to determine satisfiability

• deactivation of a constraint

• deactivate corresponding lower or upper bound
• usually occurs after a conflict has been detected
• tableau and assignment can be reused from before: they satisfy invariants (1) and (2)

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 25/32

Incremental Interface for DPLL(T)
• make all constraints available to simplex at the beginning of the algorithm,

ignoring Boolean structure =⇒ obtain global tableau for all constraints
• modify simplex algorithm by adding active-flags for upper and lower bounds
• when executing simplex, all inactive bounds are ignored
• initially all bounds are inactive
• activation of a constraint

• activate corresponding lower or upper bound si ≤ c or c ≤ si for slack variable si
• if new bound gives rise to a conflict ui < li then report unsatisfiable
• otherwise, if si ∈ N and si violates bound, then update assignment of si to c

(at this point, invariants (1) and (2) are established for the active bounds)
• run simplex on current tableau and assignment to determine satisfiability

• deactivation of a constraint

• deactivate corresponding lower or upper bound
• usually occurs after a conflict has been detected
• tableau and assignment can be reused from before: they satisfy invariants (1) and (2)

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 25/32

Incremental Interface for DPLL(T)
• make all constraints available to simplex at the beginning of the algorithm,

ignoring Boolean structure =⇒ obtain global tableau for all constraints
• modify simplex algorithm by adding active-flags for upper and lower bounds
• when executing simplex, all inactive bounds are ignored
• initially all bounds are inactive
• activation of a constraint
• activate corresponding lower or upper bound si ≤ c or c ≤ si for slack variable si

• if new bound gives rise to a conflict ui < li then report unsatisfiable
• otherwise, if si ∈ N and si violates bound, then update assignment of si to c

(at this point, invariants (1) and (2) are established for the active bounds)
• run simplex on current tableau and assignment to determine satisfiability

• deactivation of a constraint

• deactivate corresponding lower or upper bound
• usually occurs after a conflict has been detected
• tableau and assignment can be reused from before: they satisfy invariants (1) and (2)

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 25/32

Incremental Interface for DPLL(T)
• make all constraints available to simplex at the beginning of the algorithm,

ignoring Boolean structure =⇒ obtain global tableau for all constraints
• modify simplex algorithm by adding active-flags for upper and lower bounds
• when executing simplex, all inactive bounds are ignored
• initially all bounds are inactive
• activation of a constraint
• activate corresponding lower or upper bound si ≤ c or c ≤ si for slack variable si
• if new bound gives rise to a conflict ui < li then report unsatisfiable

• otherwise, if si ∈ N and si violates bound, then update assignment of si to c
(at this point, invariants (1) and (2) are established for the active bounds)

• run simplex on current tableau and assignment to determine satisfiability
• deactivation of a constraint

• deactivate corresponding lower or upper bound
• usually occurs after a conflict has been detected
• tableau and assignment can be reused from before: they satisfy invariants (1) and (2)

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 25/32

Incremental Interface for DPLL(T)
• make all constraints available to simplex at the beginning of the algorithm,

ignoring Boolean structure =⇒ obtain global tableau for all constraints
• modify simplex algorithm by adding active-flags for upper and lower bounds
• when executing simplex, all inactive bounds are ignored
• initially all bounds are inactive
• activation of a constraint
• activate corresponding lower or upper bound si ≤ c or c ≤ si for slack variable si
• if new bound gives rise to a conflict ui < li then report unsatisfiable
• otherwise, if si ∈ N and si violates bound, then update assignment of si to c

(at this point, invariants (1) and (2) are established for the active bounds)

• run simplex on current tableau and assignment to determine satisfiability
• deactivation of a constraint

• deactivate corresponding lower or upper bound
• usually occurs after a conflict has been detected
• tableau and assignment can be reused from before: they satisfy invariants (1) and (2)

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 25/32

Incremental Interface for DPLL(T)
• make all constraints available to simplex at the beginning of the algorithm,

ignoring Boolean structure =⇒ obtain global tableau for all constraints
• modify simplex algorithm by adding active-flags for upper and lower bounds
• when executing simplex, all inactive bounds are ignored
• initially all bounds are inactive
• activation of a constraint
• activate corresponding lower or upper bound si ≤ c or c ≤ si for slack variable si
• if new bound gives rise to a conflict ui < li then report unsatisfiable
• otherwise, if si ∈ N and si violates bound, then update assignment of si to c

(at this point, invariants (1) and (2) are established for the active bounds)
• run simplex on current tableau and assignment to determine satisfiability

• deactivation of a constraint

• deactivate corresponding lower or upper bound
• usually occurs after a conflict has been detected
• tableau and assignment can be reused from before: they satisfy invariants (1) and (2)

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 25/32

Incremental Interface for DPLL(T)
• make all constraints available to simplex at the beginning of the algorithm,

ignoring Boolean structure =⇒ obtain global tableau for all constraints
• modify simplex algorithm by adding active-flags for upper and lower bounds
• when executing simplex, all inactive bounds are ignored
• initially all bounds are inactive
• activation of a constraint
• activate corresponding lower or upper bound si ≤ c or c ≤ si for slack variable si
• if new bound gives rise to a conflict ui < li then report unsatisfiable
• otherwise, if si ∈ N and si violates bound, then update assignment of si to c

(at this point, invariants (1) and (2) are established for the active bounds)
• run simplex on current tableau and assignment to determine satisfiability

• deactivation of a constraint

• deactivate corresponding lower or upper bound
• usually occurs after a conflict has been detected
• tableau and assignment can be reused from before: they satisfy invariants (1) and (2)

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 25/32

Incremental Interface for DPLL(T)
• make all constraints available to simplex at the beginning of the algorithm,

ignoring Boolean structure =⇒ obtain global tableau for all constraints
• modify simplex algorithm by adding active-flags for upper and lower bounds
• when executing simplex, all inactive bounds are ignored
• initially all bounds are inactive
• activation of a constraint
• activate corresponding lower or upper bound si ≤ c or c ≤ si for slack variable si
• if new bound gives rise to a conflict ui < li then report unsatisfiable
• otherwise, if si ∈ N and si violates bound, then update assignment of si to c

(at this point, invariants (1) and (2) are established for the active bounds)
• run simplex on current tableau and assignment to determine satisfiability

• deactivation of a constraint
• deactivate corresponding lower or upper bound

• usually occurs after a conflict has been detected
• tableau and assignment can be reused from before: they satisfy invariants (1) and (2)

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 25/32

Incremental Interface for DPLL(T)
• make all constraints available to simplex at the beginning of the algorithm,

ignoring Boolean structure =⇒ obtain global tableau for all constraints
• modify simplex algorithm by adding active-flags for upper and lower bounds
• when executing simplex, all inactive bounds are ignored
• initially all bounds are inactive
• activation of a constraint
• activate corresponding lower or upper bound si ≤ c or c ≤ si for slack variable si
• if new bound gives rise to a conflict ui < li then report unsatisfiable
• otherwise, if si ∈ N and si violates bound, then update assignment of si to c

(at this point, invariants (1) and (2) are established for the active bounds)
• run simplex on current tableau and assignment to determine satisfiability

• deactivation of a constraint
• deactivate corresponding lower or upper bound
• usually occurs after a conflict has been detected

• tableau and assignment can be reused from before: they satisfy invariants (1) and (2)

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 25/32

Incremental Interface for DPLL(T)
• make all constraints available to simplex at the beginning of the algorithm,

ignoring Boolean structure =⇒ obtain global tableau for all constraints
• modify simplex algorithm by adding active-flags for upper and lower bounds
• when executing simplex, all inactive bounds are ignored
• initially all bounds are inactive
• activation of a constraint
• activate corresponding lower or upper bound si ≤ c or c ≤ si for slack variable si
• if new bound gives rise to a conflict ui < li then report unsatisfiable
• otherwise, if si ∈ N and si violates bound, then update assignment of si to c

(at this point, invariants (1) and (2) are established for the active bounds)
• run simplex on current tableau and assignment to determine satisfiability

• deactivation of a constraint
• deactivate corresponding lower or upper bound
• usually occurs after a conflict has been detected
• tableau and assignment can be reused from before: they satisfy invariants (1) and (2)

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 25/32

Example (Simplex as DPLL(T) Theory Solver)

• input is formula φ

(c1 ∨ c5) ∧ (c6 ∨ ¬c3) ∧ (c4 ∨ c5) ∧ (c2 ∨ c7 ∨ ¬c8) ∧ . . .

x ≥ 5︸ ︷︷ ︸
c1

2x+ y ≤ 12︸ ︷︷ ︸
c2

y < 3︸ ︷︷ ︸
c3

x− 3y ≤ 2︸ ︷︷ ︸
c4

. . .

• example execution (without theory propagation)
• start simplex with tableau for all atoms and negated atoms within φ,

but no activated bounds (obtain tableau T0, assignment v0(x) = 0)

• assume partial Boolean assignment c1,¬c3, c4 from Boolean solver
=⇒ activate the bounds, execute simplex on T0 and v0 to obtain T1 and v1

• all bounds are satisfied, so detect LRA-consistency

• extend to c1,¬c3, c4, c2, activate bound, execute simplex on T1 and v1 to obtain T2 and v2

• detect unsatisfiable core c1,¬c3, c2, so learn ¬c1 ∨ c3 ∨ ¬c2

• . . . next simplex invocation starting from T2 and v2 . . .

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 26/32

Example (Simplex as DPLL(T) Theory Solver)

• input is formula φ

(c1 ∨ c5) ∧ (c6 ∨ ¬c3) ∧ (c4 ∨ c5) ∧ (c2 ∨ c7 ∨ ¬c8) ∧ . . .

x ≥ 5︸ ︷︷ ︸
c1

2x+ y ≤ 12︸ ︷︷ ︸
c2

y < 3︸ ︷︷ ︸
c3

x− 3y ≤ 2︸ ︷︷ ︸
c4

. . .

• example execution (without theory propagation)
• start simplex with tableau for all atoms and negated atoms within φ,

but no activated bounds (obtain tableau T0, assignment v0(x) = 0)

• assume partial Boolean assignment c1,¬c3, c4 from Boolean solver
=⇒ activate the bounds, execute simplex on T0 and v0 to obtain T1 and v1

• all bounds are satisfied, so detect LRA-consistency

• extend to c1,¬c3, c4, c2, activate bound, execute simplex on T1 and v1 to obtain T2 and v2

• detect unsatisfiable core c1,¬c3, c2, so learn ¬c1 ∨ c3 ∨ ¬c2

• . . . next simplex invocation starting from T2 and v2 . . .

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 26/32

Example (Simplex as DPLL(T) Theory Solver)

• input is formula φ

(c1 ∨ c5) ∧ (c6 ∨ ¬c3) ∧ (c4 ∨ c5) ∧ (c2 ∨ c7 ∨ ¬c8) ∧ . . .

x ≥ 5︸ ︷︷ ︸
c1

2x+ y ≤ 12︸ ︷︷ ︸
c2

y < 3︸ ︷︷ ︸
c3

x− 3y ≤ 2︸ ︷︷ ︸
c4

. . .

• example execution (without theory propagation)
• start simplex with tableau for all atoms and negated atoms within φ,

but no activated bounds (obtain tableau T0, assignment v0(x) = 0)

• assume partial Boolean assignment c1,¬c3, c4 from Boolean solver
=⇒ activate the bounds, execute simplex on T0 and v0 to obtain T1 and v1

• all bounds are satisfied, so detect LRA-consistency

• extend to c1,¬c3, c4, c2, activate bound, execute simplex on T1 and v1 to obtain T2 and v2

• detect unsatisfiable core c1,¬c3, c2, so learn ¬c1 ∨ c3 ∨ ¬c2

• . . . next simplex invocation starting from T2 and v2 . . .

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 26/32

Example (Simplex as DPLL(T) Theory Solver)

• input is formula φ

(c1 ∨ c5) ∧ (c6 ∨ ¬c3) ∧ (c4 ∨ c5) ∧ (c2 ∨ c7 ∨ ¬c8) ∧ . . .

x ≥ 5︸ ︷︷ ︸
c1

2x+ y ≤ 12︸ ︷︷ ︸
c2

y < 3︸ ︷︷ ︸
c3

x− 3y ≤ 2︸ ︷︷ ︸
c4

. . .

• example execution (without theory propagation)
• start simplex with tableau for all atoms and negated atoms within φ,

but no activated bounds (obtain tableau T0, assignment v0(x) = 0)

• assume partial Boolean assignment c1,¬c3, c4 from Boolean solver
=⇒ activate the bounds, execute simplex on T0 and v0 to obtain T1 and v1

• all bounds are satisfied, so detect LRA-consistency

• extend to c1,¬c3, c4, c2, activate bound, execute simplex on T1 and v1 to obtain T2 and v2

• detect unsatisfiable core c1,¬c3, c2, so learn ¬c1 ∨ c3 ∨ ¬c2

• . . . next simplex invocation starting from T2 and v2 . . .

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 26/32

Example (Simplex as DPLL(T) Theory Solver)

• input is formula φ

(c1 ∨ c5) ∧ (c6 ∨ ¬c3) ∧ (c4 ∨ c5) ∧ (c2 ∨ c7 ∨ ¬c8) ∧ . . .

x ≥ 5︸ ︷︷ ︸
c1

2x+ y ≤ 12︸ ︷︷ ︸
c2

y < 3︸ ︷︷ ︸
c3

x− 3y ≤ 2︸ ︷︷ ︸
c4

. . .

• example execution (without theory propagation)
• start simplex with tableau for all atoms and negated atoms within φ,

but no activated bounds (obtain tableau T0, assignment v0(x) = 0)

• assume partial Boolean assignment c1,¬c3, c4 from Boolean solver
=⇒ activate the bounds, execute simplex on T0 and v0 to obtain T1 and v1

• all bounds are satisfied, so detect LRA-consistency

• extend to c1,¬c3, c4, c2, activate bound, execute simplex on T1 and v1 to obtain T2 and v2

• detect unsatisfiable core c1,¬c3, c2, so learn ¬c1 ∨ c3 ∨ ¬c2

• . . . next simplex invocation starting from T2 and v2 . . .

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 26/32

Example (Simplex as DPLL(T) Theory Solver)

• input is formula φ

(c1 ∨ c5) ∧ (c6 ∨ ¬c3) ∧ (c4 ∨ c5) ∧ (c2 ∨ c7 ∨ ¬c8) ∧ . . .

x ≥ 5︸ ︷︷ ︸
c1

2x+ y ≤ 12︸ ︷︷ ︸
c2

y < 3︸ ︷︷ ︸
c3

x− 3y ≤ 2︸ ︷︷ ︸
c4

. . .

• example execution (without theory propagation)
• start simplex with tableau for all atoms and negated atoms within φ,

but no activated bounds (obtain tableau T0, assignment v0(x) = 0)

• assume partial Boolean assignment c1,¬c3, c4 from Boolean solver
=⇒ activate the bounds, execute simplex on T0 and v0 to obtain T1 and v1

• all bounds are satisfied, so detect LRA-consistency

• extend to c1,¬c3, c4, c2, activate bound, execute simplex on T1 and v1 to obtain T2 and v2

• detect unsatisfiable core c1,¬c3, c2, so learn ¬c1 ∨ c3 ∨ ¬c2

• . . . next simplex invocation starting from T2 and v2 . . .

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 26/32

Incremental Simplex Algorithm – Interface

• initSimplex: takes list of indexed constraints, initially all inactive

• assert i: activates constraint with index i, may detect unsat core
• check: check if currently activated constraints are satisfiable, may detect unsat core
• solution: after successful check, deliver satisfying assignment
• checkpoint: after successful check, get checkpoint information to return to this state
• backtrack cp: return to previous checkpoint cp, where subset of constraints has

been asserted

Haskell Implementation

• available under
http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

• SimplexInternals.hs – verified simplex implementation
• SimplexCommon.hs – common interface to access verified types
• SimplexInterface.hs – wrapper for non-incremental simplex algorithm + example
• SimplexIOInterface.hs – wrapper for incremental simplex algorithm + example

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 27/32

http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

Incremental Simplex Algorithm – Interface

• initSimplex: takes list of indexed constraints, initially all inactive
• assert i: activates constraint with index i, may detect unsat core

• check: check if currently activated constraints are satisfiable, may detect unsat core
• solution: after successful check, deliver satisfying assignment
• checkpoint: after successful check, get checkpoint information to return to this state
• backtrack cp: return to previous checkpoint cp, where subset of constraints has

been asserted

Haskell Implementation

• available under
http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

• SimplexInternals.hs – verified simplex implementation
• SimplexCommon.hs – common interface to access verified types
• SimplexInterface.hs – wrapper for non-incremental simplex algorithm + example
• SimplexIOInterface.hs – wrapper for incremental simplex algorithm + example

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 27/32

http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

Incremental Simplex Algorithm – Interface

• initSimplex: takes list of indexed constraints, initially all inactive
• assert i: activates constraint with index i, may detect unsat core
• check: check if currently activated constraints are satisfiable, may detect unsat core

• solution: after successful check, deliver satisfying assignment
• checkpoint: after successful check, get checkpoint information to return to this state
• backtrack cp: return to previous checkpoint cp, where subset of constraints has

been asserted

Haskell Implementation

• available under
http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

• SimplexInternals.hs – verified simplex implementation
• SimplexCommon.hs – common interface to access verified types
• SimplexInterface.hs – wrapper for non-incremental simplex algorithm + example
• SimplexIOInterface.hs – wrapper for incremental simplex algorithm + example

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 27/32

http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

Incremental Simplex Algorithm – Interface

• initSimplex: takes list of indexed constraints, initially all inactive
• assert i: activates constraint with index i, may detect unsat core
• check: check if currently activated constraints are satisfiable, may detect unsat core
• solution: after successful check, deliver satisfying assignment

• checkpoint: after successful check, get checkpoint information to return to this state
• backtrack cp: return to previous checkpoint cp, where subset of constraints has

been asserted

Haskell Implementation

• available under
http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

• SimplexInternals.hs – verified simplex implementation
• SimplexCommon.hs – common interface to access verified types
• SimplexInterface.hs – wrapper for non-incremental simplex algorithm + example
• SimplexIOInterface.hs – wrapper for incremental simplex algorithm + example

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 27/32

http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

Incremental Simplex Algorithm – Interface

• initSimplex: takes list of indexed constraints, initially all inactive
• assert i: activates constraint with index i, may detect unsat core
• check: check if currently activated constraints are satisfiable, may detect unsat core
• solution: after successful check, deliver satisfying assignment
• checkpoint: after successful check, get checkpoint information to return to this state

• backtrack cp: return to previous checkpoint cp, where subset of constraints has
been asserted

Haskell Implementation

• available under
http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

• SimplexInternals.hs – verified simplex implementation
• SimplexCommon.hs – common interface to access verified types
• SimplexInterface.hs – wrapper for non-incremental simplex algorithm + example
• SimplexIOInterface.hs – wrapper for incremental simplex algorithm + example

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 27/32

http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

Incremental Simplex Algorithm – Interface

• initSimplex: takes list of indexed constraints, initially all inactive
• assert i: activates constraint with index i, may detect unsat core
• check: check if currently activated constraints are satisfiable, may detect unsat core
• solution: after successful check, deliver satisfying assignment
• checkpoint: after successful check, get checkpoint information to return to this state
• backtrack cp: return to previous checkpoint cp, where subset of constraints has

been asserted

Haskell Implementation

• available under
http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

• SimplexInternals.hs – verified simplex implementation
• SimplexCommon.hs – common interface to access verified types
• SimplexInterface.hs – wrapper for non-incremental simplex algorithm + example
• SimplexIOInterface.hs – wrapper for incremental simplex algorithm + example

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 27/32

http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

Incremental Simplex Algorithm – Interface

• initSimplex: takes list of indexed constraints, initially all inactive
• assert i: activates constraint with index i, may detect unsat core
• check: check if currently activated constraints are satisfiable, may detect unsat core
• solution: after successful check, deliver satisfying assignment
• checkpoint: after successful check, get checkpoint information to return to this state
• backtrack cp: return to previous checkpoint cp, where subset of constraints has

been asserted

Haskell Implementation

• available under
http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

• SimplexInternals.hs – verified simplex implementation
• SimplexCommon.hs – common interface to access verified types
• SimplexInterface.hs – wrapper for non-incremental simplex algorithm + example
• SimplexIOInterface.hs – wrapper for incremental simplex algorithm + example

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 27/32

http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

Incremental Simplex Algorithm – Interface

• initSimplex: takes list of indexed constraints, initially all inactive
• assert i: activates constraint with index i, may detect unsat core
• check: check if currently activated constraints are satisfiable, may detect unsat core
• solution: after successful check, deliver satisfying assignment
• checkpoint: after successful check, get checkpoint information to return to this state
• backtrack cp: return to previous checkpoint cp, where subset of constraints has

been asserted

Haskell Implementation

• available under
http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

• SimplexInternals.hs – verified simplex implementation

• SimplexCommon.hs – common interface to access verified types
• SimplexInterface.hs – wrapper for non-incremental simplex algorithm + example
• SimplexIOInterface.hs – wrapper for incremental simplex algorithm + example

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 27/32

http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

Incremental Simplex Algorithm – Interface

• initSimplex: takes list of indexed constraints, initially all inactive
• assert i: activates constraint with index i, may detect unsat core
• check: check if currently activated constraints are satisfiable, may detect unsat core
• solution: after successful check, deliver satisfying assignment
• checkpoint: after successful check, get checkpoint information to return to this state
• backtrack cp: return to previous checkpoint cp, where subset of constraints has

been asserted

Haskell Implementation

• available under
http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

• SimplexInternals.hs – verified simplex implementation
• SimplexCommon.hs – common interface to access verified types

• SimplexInterface.hs – wrapper for non-incremental simplex algorithm + example
• SimplexIOInterface.hs – wrapper for incremental simplex algorithm + example

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 27/32

http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

Incremental Simplex Algorithm – Interface

• initSimplex: takes list of indexed constraints, initially all inactive
• assert i: activates constraint with index i, may detect unsat core
• check: check if currently activated constraints are satisfiable, may detect unsat core
• solution: after successful check, deliver satisfying assignment
• checkpoint: after successful check, get checkpoint information to return to this state
• backtrack cp: return to previous checkpoint cp, where subset of constraints has

been asserted

Haskell Implementation

• available under
http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

• SimplexInternals.hs – verified simplex implementation
• SimplexCommon.hs – common interface to access verified types
• SimplexInterface.hs – wrapper for non-incremental simplex algorithm + example

• SimplexIOInterface.hs – wrapper for incremental simplex algorithm + example

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 27/32

http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

Incremental Simplex Algorithm – Interface

• initSimplex: takes list of indexed constraints, initially all inactive
• assert i: activates constraint with index i, may detect unsat core
• check: check if currently activated constraints are satisfiable, may detect unsat core
• solution: after successful check, deliver satisfying assignment
• checkpoint: after successful check, get checkpoint information to return to this state
• backtrack cp: return to previous checkpoint cp, where subset of constraints has

been asserted

Haskell Implementation

• available under
http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

• SimplexInternals.hs – verified simplex implementation
• SimplexCommon.hs – common interface to access verified types
• SimplexInterface.hs – wrapper for non-incremental simplex algorithm + example
• SimplexIOInterface.hs – wrapper for incremental simplex algorithm + example

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 27/32

http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz

ghci SimplexIOInterface.hs

ghci> initSimplex exampleSlidesInput

Okay <state 0, asserted: []>

ghci> assert 1

Okay <state 1, asserted: [1]>

ghci> assert (-3)

Okay <state 2, asserted: [-3,1]>

ghci> assert 4

Okay <state 3, asserted: [4,-3,1]>

ghci> check

Okay <state 4, asserted: [4,-3,1]>

ghci> checkpoint

checkpoint "cp5" created

Okay <state 5, asserted: [4,-3,1]>

ghci> assert 2

Okay <state 6, asserted: [2,4,-3,1]>

ghci> check

unsat-core [2,1,-3] detected, use backtrack to one of ["cp5"]

ghci> backtrack "cp5"

Okay <state 7, asserted: [4,-3,1]>

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 28/32

ghci SimplexIOInterface.hs

ghci>

initSimplex exampleSlidesInput

Okay <state 0, asserted: []>

ghci> assert 1

Okay <state 1, asserted: [1]>

ghci> assert (-3)

Okay <state 2, asserted: [-3,1]>

ghci> assert 4

Okay <state 3, asserted: [4,-3,1]>

ghci> check

Okay <state 4, asserted: [4,-3,1]>

ghci> checkpoint

checkpoint "cp5" created

Okay <state 5, asserted: [4,-3,1]>

ghci> assert 2

Okay <state 6, asserted: [2,4,-3,1]>

ghci> check

unsat-core [2,1,-3] detected, use backtrack to one of ["cp5"]

ghci> backtrack "cp5"

Okay <state 7, asserted: [4,-3,1]>

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 28/32

ghci SimplexIOInterface.hs

ghci> initSimplex exampleSlidesInput

Okay <state 0, asserted: []>

ghci> assert 1

Okay <state 1, asserted: [1]>

ghci> assert (-3)

Okay <state 2, asserted: [-3,1]>

ghci> assert 4

Okay <state 3, asserted: [4,-3,1]>

ghci> check

Okay <state 4, asserted: [4,-3,1]>

ghci> checkpoint

checkpoint "cp5" created

Okay <state 5, asserted: [4,-3,1]>

ghci> assert 2

Okay <state 6, asserted: [2,4,-3,1]>

ghci> check

unsat-core [2,1,-3] detected, use backtrack to one of ["cp5"]

ghci> backtrack "cp5"

Okay <state 7, asserted: [4,-3,1]>

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 28/32

ghci SimplexIOInterface.hs

ghci> initSimplex exampleSlidesInput

Okay <state 0, asserted: []>

ghci>

assert 1

Okay <state 1, asserted: [1]>

ghci> assert (-3)

Okay <state 2, asserted: [-3,1]>

ghci> assert 4

Okay <state 3, asserted: [4,-3,1]>

ghci> check

Okay <state 4, asserted: [4,-3,1]>

ghci> checkpoint

checkpoint "cp5" created

Okay <state 5, asserted: [4,-3,1]>

ghci> assert 2

Okay <state 6, asserted: [2,4,-3,1]>

ghci> check

unsat-core [2,1,-3] detected, use backtrack to one of ["cp5"]

ghci> backtrack "cp5"

Okay <state 7, asserted: [4,-3,1]>

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 28/32

ghci SimplexIOInterface.hs

ghci> initSimplex exampleSlidesInput

Okay <state 0, asserted: []>

ghci> assert 1

Okay <state 1, asserted: [1]>

ghci>

assert (-3)

Okay <state 2, asserted: [-3,1]>

ghci> assert 4

Okay <state 3, asserted: [4,-3,1]>

ghci> check

Okay <state 4, asserted: [4,-3,1]>

ghci> checkpoint

checkpoint "cp5" created

Okay <state 5, asserted: [4,-3,1]>

ghci> assert 2

Okay <state 6, asserted: [2,4,-3,1]>

ghci> check

unsat-core [2,1,-3] detected, use backtrack to one of ["cp5"]

ghci> backtrack "cp5"

Okay <state 7, asserted: [4,-3,1]>

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 28/32

ghci SimplexIOInterface.hs

ghci> initSimplex exampleSlidesInput

Okay <state 0, asserted: []>

ghci> assert 1

Okay <state 1, asserted: [1]>

ghci> assert (-3)

Okay <state 2, asserted: [-3,1]>

ghci> assert 4

Okay <state 3, asserted: [4,-3,1]>

ghci>

check

Okay <state 4, asserted: [4,-3,1]>

ghci> checkpoint

checkpoint "cp5" created

Okay <state 5, asserted: [4,-3,1]>

ghci> assert 2

Okay <state 6, asserted: [2,4,-3,1]>

ghci> check

unsat-core [2,1,-3] detected, use backtrack to one of ["cp5"]

ghci> backtrack "cp5"

Okay <state 7, asserted: [4,-3,1]>

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 28/32

ghci SimplexIOInterface.hs

ghci> initSimplex exampleSlidesInput

Okay <state 0, asserted: []>

ghci> assert 1

Okay <state 1, asserted: [1]>

ghci> assert (-3)

Okay <state 2, asserted: [-3,1]>

ghci> assert 4

Okay <state 3, asserted: [4,-3,1]>

ghci> check

Okay <state 4, asserted: [4,-3,1]>

ghci>

checkpoint

checkpoint "cp5" created

Okay <state 5, asserted: [4,-3,1]>

ghci> assert 2

Okay <state 6, asserted: [2,4,-3,1]>

ghci> check

unsat-core [2,1,-3] detected, use backtrack to one of ["cp5"]

ghci> backtrack "cp5"

Okay <state 7, asserted: [4,-3,1]>

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 28/32

ghci SimplexIOInterface.hs

ghci> initSimplex exampleSlidesInput

Okay <state 0, asserted: []>

ghci> assert 1

Okay <state 1, asserted: [1]>

ghci> assert (-3)

Okay <state 2, asserted: [-3,1]>

ghci> assert 4

Okay <state 3, asserted: [4,-3,1]>

ghci> check

Okay <state 4, asserted: [4,-3,1]>

ghci> checkpoint

checkpoint "cp5" created

Okay <state 5, asserted: [4,-3,1]>

ghci>

assert 2

Okay <state 6, asserted: [2,4,-3,1]>

ghci> check

unsat-core [2,1,-3] detected, use backtrack to one of ["cp5"]

ghci> backtrack "cp5"

Okay <state 7, asserted: [4,-3,1]>

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 28/32

ghci SimplexIOInterface.hs

ghci> initSimplex exampleSlidesInput

Okay <state 0, asserted: []>

ghci> assert 1

Okay <state 1, asserted: [1]>

ghci> assert (-3)

Okay <state 2, asserted: [-3,1]>

ghci> assert 4

Okay <state 3, asserted: [4,-3,1]>

ghci> check

Okay <state 4, asserted: [4,-3,1]>

ghci> checkpoint

checkpoint "cp5" created

Okay <state 5, asserted: [4,-3,1]>

ghci> assert 2

Okay <state 6, asserted: [2,4,-3,1]>

ghci> check

unsat-core [2,1,-3] detected, use backtrack to one of ["cp5"]

ghci>

backtrack "cp5"

Okay <state 7, asserted: [4,-3,1]>

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 28/32

ghci SimplexIOInterface.hs

ghci> initSimplex exampleSlidesInput

Okay <state 0, asserted: []>

ghci> assert 1

Okay <state 1, asserted: [1]>

ghci> assert (-3)

Okay <state 2, asserted: [-3,1]>

ghci> assert 4

Okay <state 3, asserted: [4,-3,1]>

ghci> check

Okay <state 4, asserted: [4,-3,1]>

ghci> checkpoint

checkpoint "cp5" created

Okay <state 5, asserted: [4,-3,1]>

ghci> assert 2

Okay <state 6, asserted: [2,4,-3,1]>

ghci> check

unsat-core [2,1,-3] detected, use backtrack to one of ["cp5"]

ghci> backtrack "cp5"

Okay <state 7, asserted: [4,-3,1]>

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 28/32

Linear Programming

• linear programming: find solution in Q of linear constraints φ that maximizes linear
function f

• potential implementation

• perform standard setup for running simplex on φ
• add additional slack variable s with tableau equality s = f , then start simplex
• once solution v has been detected, compute f(v) and change bound of s to s ≥ f(v) + δ
• iterate to find better solution, or detect optimality if unsat is returned

• problem: algorithm does not terminate if f can be increased arbitrarily
• solution: use standard simplex algorithm for linear programming,a and not the

DPLL(T)-variant of simplex for decidability that was presented here

• at least one difference: solving Ax⃗ ≤ b⃗ is formulated via slack variables s⃗ ≥ 0⃗ as tableau
Ax⃗+ s⃗ = b⃗ so the tableau equations can have non-zero constants

aAlexander Schrijver, Theory of Linear and Integer Programming, Chapter 11

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 29/32

Linear Programming

• linear programming: find solution in Q of linear constraints φ that maximizes linear
function f
• potential implementation

• perform standard setup for running simplex on φ
• add additional slack variable s with tableau equality s = f , then start simplex
• once solution v has been detected, compute f(v) and change bound of s to s ≥ f(v) + δ
• iterate to find better solution, or detect optimality if unsat is returned

• problem: algorithm does not terminate if f can be increased arbitrarily
• solution: use standard simplex algorithm for linear programming,a and not the

DPLL(T)-variant of simplex for decidability that was presented here

• at least one difference: solving Ax⃗ ≤ b⃗ is formulated via slack variables s⃗ ≥ 0⃗ as tableau
Ax⃗+ s⃗ = b⃗ so the tableau equations can have non-zero constants

aAlexander Schrijver, Theory of Linear and Integer Programming, Chapter 11

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 29/32

Linear Programming

• linear programming: find solution in Q of linear constraints φ that maximizes linear
function f
• potential implementation
• perform standard setup for running simplex on φ

• add additional slack variable s with tableau equality s = f , then start simplex
• once solution v has been detected, compute f(v) and change bound of s to s ≥ f(v) + δ
• iterate to find better solution, or detect optimality if unsat is returned

• problem: algorithm does not terminate if f can be increased arbitrarily
• solution: use standard simplex algorithm for linear programming,a and not the

DPLL(T)-variant of simplex for decidability that was presented here

• at least one difference: solving Ax⃗ ≤ b⃗ is formulated via slack variables s⃗ ≥ 0⃗ as tableau
Ax⃗+ s⃗ = b⃗ so the tableau equations can have non-zero constants

aAlexander Schrijver, Theory of Linear and Integer Programming, Chapter 11

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 29/32

Linear Programming

• linear programming: find solution in Q of linear constraints φ that maximizes linear
function f
• potential implementation
• perform standard setup for running simplex on φ
• add additional slack variable s with tableau equality s = f , then start simplex

• once solution v has been detected, compute f(v) and change bound of s to s ≥ f(v) + δ
• iterate to find better solution, or detect optimality if unsat is returned

• problem: algorithm does not terminate if f can be increased arbitrarily
• solution: use standard simplex algorithm for linear programming,a and not the

DPLL(T)-variant of simplex for decidability that was presented here

• at least one difference: solving Ax⃗ ≤ b⃗ is formulated via slack variables s⃗ ≥ 0⃗ as tableau
Ax⃗+ s⃗ = b⃗ so the tableau equations can have non-zero constants

aAlexander Schrijver, Theory of Linear and Integer Programming, Chapter 11

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 29/32

Linear Programming

• linear programming: find solution in Q of linear constraints φ that maximizes linear
function f
• potential implementation
• perform standard setup for running simplex on φ
• add additional slack variable s with tableau equality s = f , then start simplex
• once solution v has been detected, compute f(v) and change bound of s to s ≥ f(v) + δ

• iterate to find better solution, or detect optimality if unsat is returned

• problem: algorithm does not terminate if f can be increased arbitrarily
• solution: use standard simplex algorithm for linear programming,a and not the

DPLL(T)-variant of simplex for decidability that was presented here

• at least one difference: solving Ax⃗ ≤ b⃗ is formulated via slack variables s⃗ ≥ 0⃗ as tableau
Ax⃗+ s⃗ = b⃗ so the tableau equations can have non-zero constants

aAlexander Schrijver, Theory of Linear and Integer Programming, Chapter 11

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 29/32

Linear Programming

• linear programming: find solution in Q of linear constraints φ that maximizes linear
function f
• potential implementation
• perform standard setup for running simplex on φ
• add additional slack variable s with tableau equality s = f , then start simplex
• once solution v has been detected, compute f(v) and change bound of s to s ≥ f(v) + δ
• iterate to find better solution, or detect optimality if unsat is returned

• problem: algorithm does not terminate if f can be increased arbitrarily
• solution: use standard simplex algorithm for linear programming,a and not the

DPLL(T)-variant of simplex for decidability that was presented here

• at least one difference: solving Ax⃗ ≤ b⃗ is formulated via slack variables s⃗ ≥ 0⃗ as tableau
Ax⃗+ s⃗ = b⃗ so the tableau equations can have non-zero constants

aAlexander Schrijver, Theory of Linear and Integer Programming, Chapter 11

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 29/32

Linear Programming

• linear programming: find solution in Q of linear constraints φ that maximizes linear
function f
• potential implementation
• perform standard setup for running simplex on φ
• add additional slack variable s with tableau equality s = f , then start simplex
• once solution v has been detected, compute f(v) and change bound of s to s ≥ f(v) + δ
• iterate to find better solution, or detect optimality if unsat is returned

• problem: algorithm does not terminate if f can be increased arbitrarily

• solution: use standard simplex algorithm for linear programming,a and not the
DPLL(T)-variant of simplex for decidability that was presented here

• at least one difference: solving Ax⃗ ≤ b⃗ is formulated via slack variables s⃗ ≥ 0⃗ as tableau
Ax⃗+ s⃗ = b⃗ so the tableau equations can have non-zero constants

aAlexander Schrijver, Theory of Linear and Integer Programming, Chapter 11

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 29/32

Linear Programming

• linear programming: find solution in Q of linear constraints φ that maximizes linear
function f
• potential implementation
• perform standard setup for running simplex on φ
• add additional slack variable s with tableau equality s = f , then start simplex
• once solution v has been detected, compute f(v) and change bound of s to s ≥ f(v) + δ
• iterate to find better solution, or detect optimality if unsat is returned

• problem: algorithm does not terminate if f can be increased arbitrarily
• solution: use standard simplex algorithm for linear programming,a and not the

DPLL(T)-variant of simplex for decidability that was presented here

• at least one difference: solving Ax⃗ ≤ b⃗ is formulated via slack variables s⃗ ≥ 0⃗ as tableau
Ax⃗+ s⃗ = b⃗ so the tableau equations can have non-zero constants

aAlexander Schrijver, Theory of Linear and Integer Programming, Chapter 11

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 29/32

Linear Programming

• linear programming: find solution in Q of linear constraints φ that maximizes linear
function f
• potential implementation
• perform standard setup for running simplex on φ
• add additional slack variable s with tableau equality s = f , then start simplex
• once solution v has been detected, compute f(v) and change bound of s to s ≥ f(v) + δ
• iterate to find better solution, or detect optimality if unsat is returned

• problem: algorithm does not terminate if f can be increased arbitrarily
• solution: use standard simplex algorithm for linear programming,a and not the

DPLL(T)-variant of simplex for decidability that was presented here
• at least one difference: solving Ax⃗ ≤ b⃗ is formulated via slack variables s⃗ ≥ 0⃗ as tableau
Ax⃗+ s⃗ = b⃗ so the tableau equations can have non-zero constants

aAlexander Schrijver, Theory of Linear and Integer Programming, Chapter 11

SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(T) 29/32

Outline

1. Summary of Previous Lecture

2. Complexity of Simplex Algorithm

3. Unsatisfiable Cores and Farkas’ Lemma

4. Simplex Algorithm for DPLL(T)

5. Further Reading

SS 2024 Constraint Solving lecture 7 5. Further Reading 30/32

Kröning and Strichmann

• Sections 5.1 and 5.2

Further Reading

Bruno Dutertre and Leonardo de Moura.
A Fast Linear-Arithmetic Solver for DPLL(T)
In Proc. CAV, LNCS 4144, pp. 81–94, 2006.

Bertram Felgenhauer and Aart Middeldorp
Constructing Cycles in the Simplex Method for DPLL(T)
Proc. 14th ICTAC, LNCS 10580, pp. 213 – 228, 2017

Andreas Podelski and Andrey Rybalchenko
A Complete Method for the Synthesis of Linear Ranking Functions
Proc. VMCAI 2004, LNCS 2937, pp. 239 – 251, 2004

Ralph Bottesch, Max W. Haslbeck, and René Thiemann
Verifying an Incremental Theory Solver for Linear Arithmetic in Isabelle/HOL
In Proc. FroCoS, LNAI 11715, pp. 223—239, 2019.

SS 2024 Constraint Solving lecture 7 5. Further Reading 31/32

https://link.springer.com/chapter/10.1007/11817963_11
https://link.springer.com/chapter/10.1007/11817963_11
https://link.springer.com/chapter/10.1007/11817963_11
http://dx.doi.org/10.1007/978-3-319-67729-3_13
http://dx.doi.org/10.1007/978-3-319-67729-3_13
http://dx.doi.org/10.1007/978-3-319-67729-3_13
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-030-29007-8_13
https://doi.org/10.1007/978-3-030-29007-8_13
https://doi.org/10.1007/978-3-030-29007-8_13

Important Concepts

• active and inactive bounds
• Bland’s selection rule
• Farkas’ coefficients
• Farkas’ lemma
• incremental simplex algorithm
• linear programming
• linear ranking function
• unsatisfiable core

SS 2024 Constraint Solving lecture 7 5. Further Reading 32/32

	lecture 7
	Summary of Previous Lecture
	Complexity of Simplex Algorithm
	Unsatisfiable Cores and Farkas' Lemma
	Simplex Algorithm for DPLL(T)
	Further Reading

