innsbruck

Constraint Solving

René Thiemann and Fabian Mitterwallner
based on a previous course by Aart Middeldorp

1. Summary of Previous Lecture
2. Complexity of Simplex Algorithm
3. Unsatisfiable Cores and Farkas' Lemma
4. Simplex Algorithm for $\operatorname{DPLL}(T)$
5. Further Reading

E univerititat
innsbruck SS 2024 Constraint Solving lecture 7 2/30

Simplex - Representation

- represent m inequalities using m slack variables s_{i} and bounds $s_{i} \leq / \geq c$

$$
\begin{aligned}
-x+y & \leq 1 \\
y & \leq 4 \\
-x-y & \leq-6 \\
3 x-y & \leq 7
\end{aligned} \quad \Longrightarrow \quad\left(\begin{array}{rr}
-1 & 1 \\
0 & 1 \\
-1 & -1 \\
3 & -1
\end{array}\right) \begin{aligned}
& s_{1} \leq 1 \\
& s_{2} \leq 4 \\
& s_{3} \leq-6 \\
& s_{4} \leq 7
\end{aligned}
$$

- matrix presentation

$$
\left.\begin{array}{c}
\\
\\
\text { basic variables } \rightarrow \\
s_{1} \\
s_{2} \\
s_{3} \\
s_{3}
\end{array}\left(\begin{array}{rr}
-1 & 1 \\
0 & 1 \\
s_{4}
\end{array}\right) \quad \begin{array}{c}
\leftarrow \text { nonbasic variables } \\
\text { meaning of rows: } \\
3
\end{array}\right)
$$

Notation

- matrix is tableau, stored in combination with bounds $x \leq / \geq c$ and assignment
- B is set of basic variables (in tableau listed vertically)
- N is set of nonbasic variables (in tableau listed horizontally)

Minivesitat	SS 2024	Constraint Solving	lecture 7
insbruck			

DPLL(T) Simplex Algorithm	
Input:	conjunction of LRA atoms φ without $<$
Output:	satisfiable assignment or unsatisfiable

Output: satisfiable assignment or unsatisfiable

DPLL(T) Simplex Algorithm

$$
\begin{equation*}
A \vec{x}_{N}=\vec{x}_{B} \tag{1}
\end{equation*}
$$

Invariant

- (1) is satisfied and (2) holds for all nonbasic variables

Suitability

- for $x_{i} \in B$ violating lower or upper bound, find suitable non-basic variable x_{j} such that
increase (or decrease) of x_{j} is possible w.r.t. bounds of x_{j} and helps to solve violation of x_{i}

Pivoting

- swap basic x_{i} and nonbasic x_{j}, so $i \in B$ and $j \in N$
- reorder row i in tableau to obtain form $x_{j}=\ldots(\star)$, and substitute (\star) in remaining tableau
- result afterwards: tableau A^{\prime} where $j \in B$ and $i \in N$

Update

- assignment of x_{i} is updated to previously violated bound I_{i} or u_{i},
- assignment of each $x_{k} \in B$ is recomputed using A^{\prime}
- universitat S5 2024 Constraint Solving lecture 7 1. Summary of Previous Lecture

Outline

2. Complexity of Simplex Algorithm

3. Unsatisfiable Cores and Farkas' Lemma
4. Simplex Algorithm for $\operatorname{DPLL}(T)$
5. Further Reading

\#universitat	SS 2024	Constraint Solving	lecture 7	2. Complexity of Simplex Algorithm
innbruck				

Complexity of DPLL(T) Simplex Algorithm

- input: m inequalities using n problem variables
- switch to general form: m basic variables, n nonbasic variables
- number of different tableaux: $\binom{m+n}{n}$
- number of different configurations: $\binom{m+n}{n} \cdot 3^{n}$
(each nonbasic variable gets assigned ${ }^{n}$, lower bound, or upper bound)
consequences
- bad news 1: assuming termination, obtain exponential worst-case complexity
- bad news 2: simplex algorithm does not terminate in general
- good news 1: simplex algorithm terminates using Bland's rule
- good news 2: worst-case complexity rarely observed, often only $\mathcal{O}(m)$ many iterations

Bland's Rule

- in pivoting pick lexicographically smallest $\left(x_{i}, x_{j}\right) \in B \times N$ such that x_{i} and x_{j} are suitable; assumes some fixed order on variables

$$
\begin{array}{|lllll}
\hline \text { Anivessitat } & \text { SS S } 2024 & \text { Constraint Solving } & \text { lecture 7 7 } & \text { 2. Complexity of Simplex Algorithm }
\end{array}
$$

Example (Felgenhauer and Middeldorp)

$$
-1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0
$$

$$
-5 \leqslant x_{3} \leqslant-4
$$

$$
-7 \leqslant x_{4} \leqslant 1
$$

$$
\left.\begin{array}{c}
\\
x_{3} \\
x_{4}
\end{array} \begin{array}{cc}
x_{1} & x_{2} \\
1 & 2 \\
2 & 1
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 0 & 0 & 0 & 0 \\
\downarrow
\end{array}
$$

$\begin{array}{ll}x_{3} & x_{2}\end{array}$
\(\left.$$
\begin{array}{c} \\
x_{1} \\
x_{4}\end{array}
$$ \begin{array}{cc}x_{3} \& x_{2}

1 \& -2

2 \& -3\end{array}\right) \quad\)| x_{1} | x_{2} | x_{3} | x_{4} |
| :---: | :---: | :---: | :---: |
| -4 | 0 | -4 | -8 |\quad violation of Bland's rule \downarrow

x_{2}
x_{4}\(\left(\begin{array}{cc}x_{3} \& x_{1}

\frac{1}{2} \& -\frac{1}{2}

\frac{1}{2} \& \frac{3}{2}\end{array}\right) \quad\)| x_{1} | x_{2} | x_{3} | x_{4} |
| :---: | :---: | :---: | :---: |
| -1 | $-\frac{3}{2}$ | -4 | $-\frac{7}{2}$ |\quad satisfying assignment

Example (Felgenhauer and Middeldorp)

$$
-1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0 \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1
$$

$$
\left.\begin{array}{l}
\\
x_{3} \\
x_{4}
\end{array}\left(\begin{array}{cc}
x_{1} & x_{2} \\
1 & 2 \\
2 & 1
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 0 & 0 & 0 & 0
\end{array} \leftarrow \begin{array}{ccccccc}
x_{1} & x_{4} \\
x_{3} \\
x_{2}
\end{array} \begin{array}{cc}
-3 & 2 \\
-2 & 1
\end{array}\right) \begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
\hline 0 & 1 & 2 \\
\hline
\end{array}
$$

$$
x_{3} \quad x_{2} \quad \downarrow
$$

$$
x_{2} x_{1} \uparrow
$$

$$
\left.\begin{array}{l}
\\
x_{1} \\
x_{4}
\end{array} \begin{array}{cc}
x_{3} & x_{2} \\
1 & -2 \\
2 & -3
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-4 & 0 & -4 & -8
\end{array}
$$

T

$$
\left.\begin{array}{l}
\\
x_{1} \\
x_{2}
\end{array} \quad \begin{array}{cc}
x_{3} & x_{4} \\
-\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right)
$$

\downarrow

$$
x_{3} \quad x_{2} \uparrow
$$

x_{1}
x_{2}\(\left(\begin{array}{cc}-\frac{1}{3} \& \frac{2}{3}

\frac{2}{3} \& -\frac{1}{3}\end{array}\right) \quad\)| x_{1} | x_{2} | x_{3} | x_{4} |
| :--- | :--- | :--- | :--- |
| $-\frac{10}{3}$ | $-\frac{1}{3}$ | -4 | -7 |

\downarrow

$$
\begin{aligned}
& x_{1} \\
& x_{4}
\end{aligned}\left(\begin{array}{cc}
x_{3} & x_{2} \\
2 & -2 \\
2 & -3
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 3 & -4 & -5 & 2
\end{array}
$$

$x_{1} \quad x_{2}$

$$
\left.\begin{array}{l}
\\
x_{3} \\
x_{2}
\end{array} \begin{array}{cc}
x_{1} & x_{4} \\
-3 & 2 \\
-2 & 1
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-1 & -5 & -11 & -7
\end{array} \rightarrow \begin{gathered}
x_{1} \\
x_{3} \\
x_{4}
\end{gathered}\left(\begin{array}{cc}
1 & 2 \\
2 & 1
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-1 & -4 & -9 & -6
\end{array}
$$

$\begin{array}{llll}\text { E. universitat } & \text { SS } 2024 & \text { Constraint Solving } & \text { lecture } 7\end{array}$ 2. Complexity of Simplex Algorithm

Outline

1. Summary of Previous Lecture
2. Complexity of Simplex Algorithm
3. Unsatisfiable Cores and Farkas' Lemma
4. Simplex Algorithm for DPLL(T)
5. Further Reading

Hiniversitat	SS 2024	Constraint Solving	lecture 7	3. Unsatisfiable Cores and Farkas' Lemma

Farkas' Lemma

- consider \leq-constraints $\underbrace{-x \leq-5}_{\ell_{1} \leq r_{1}} \wedge \underbrace{2 x+y \leq 12}_{\ell_{2} \leq r_{2}} \wedge \underbrace{-y \leq-3}_{\ell_{3} \leq r_{3}} \wedge \underbrace{x-3 y \leq 2}_{\ell_{4} \leq r_{4}}$
- alternative way to prove unsatisfiability of constraints $\ell_{1} \leq r_{1}, \ell_{2} \leq r_{2}$..
- find Farkas' coefficients, i.e., non-negative coefficients c_{1}, c_{2}, \ldots such that

$$
\mathbb{Q} \ni \sum_{i} c_{i} \ell_{i}>\sum_{i} c_{i} r_{i} \in \mathbb{Q}
$$

- example: choose $c_{1}=2, c_{2}=c_{3}=1, c_{4}=0$
$2 \cdot(-x)+1 \cdot(2 x+y)+1 \cdot(-y)+0 \cdot(x-3 y)=0>-1=2 \cdot(-5)+1 \cdot 12+1 \cdot(-3)+0 \cdot 2$
- Farkas' Lemma: finite set of \leq-constraints is unsatisfiable iff Farkas' coefficients exists - soundness: existence of Farkas' coefficients obviously shows unsatisfiability
- completeness: if constraints are unsatisfiable, then simplex will detect this; whenever unsatisfiability is detected in simplex algorithm, one can extract Farkas' coefficients from the tableau equation (similar to the detection of unsatisfiable cores, but with finer analysis)

Unsatisfiable Cores for DPLL(T)

- recall: for $\operatorname{DPLL}(T)$ it is beneficial if theory solvers produce small unsatisfiable cores
- simplex algorithm can easily identify unsatisfiable cores
- in detail: consider that unsatisfiability is detected via basic variable x_{i}
- w.l.o.g. we only consider the case $v\left(x_{i}\right)<I_{i}$ (the other case is symmetric)
- in this case tableau contains equation

$$
x_{i}=\sum_{j \in N_{\text {pos }}} A_{i j} x_{j}+\sum_{k \in N_{\text {neg }}} A_{i k} x_{k}
$$

such that $A_{i j}>0 \wedge v\left(x_{j}\right)=u_{j}$ for all $j \in N_{\text {pos }}$ and $A_{i k}<0 \wedge v\left(x_{k}\right)=I_{k}$ for all $k \in N_{\text {neg }}$

- then the set of (original) constraints (corresponding to)

$$
\begin{aligned}
x_{i} \geq I_{i} & \\
x_{j} \leq u_{j} & \text { for all } j \in N_{p o s} \\
x_{k} \geq I_{k} & \text { for all } k \in N_{n e g}
\end{aligned}
$$

is an unsatisfiable core

- this core is minimal w.r.t. the subset-relation
- universitiat SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas' Lemma

Example (Application of Linear Arithmetic: Termination Proving)

- consider program

```
factorial(n) {
    i = 1;
    r = 1;
    while (i <= n) {
        r = r * i;
        i = i + 1; }
    return r;
}
```

- φ describes one iteration of loop (primed variables store values after iteration)

$$
\varphi:=i \leq n \wedge i^{\prime}=i+1 \wedge r^{\prime}=r \cdot i \wedge n^{\prime}=n
$$

- proving termination: find linear ranking function, i.e., linear expression $e(i, n, r)$, decrease factor d with $0<d \in \mathbb{Q}$, and bound $f \in \mathbb{Q}$ such that
- $\varphi \rightarrow e(i, n, r) \geq e\left(i^{\prime}, n^{\prime}, r^{\prime}\right)+d \quad$ (expression decreases in every iteration by at least d)
- $\varphi \rightarrow e(i, n, r) \geq f$
(expression is bounded from below by f)

Example (Termination Proof Continued)

- loop iteration $\varphi:=i \leq n \wedge i^{\prime}=i+1 \wedge r^{\prime}=r \cdot i \wedge n^{\prime}=n$
- proving termination by validity of formulas

$$
\varphi \rightarrow e(i, n, r) \geq e\left(i^{\prime}, n^{\prime}, r^{\prime}\right)+d \quad \varphi \rightarrow e(i, n, r) \geq f
$$

- is equivalent to unsatisfiability of negated formulas

$$
\varphi \wedge e(i, n, r)<e\left(i^{\prime}, n^{\prime}, r^{\prime}\right)+d \quad \varphi \wedge e(i, n, r)<f
$$

- choose linear ranking function $e(i, n, r):=n-i$ and $d:=1$ and $f=-1$, and drop all non-linear constraints to get two linear problems:
- $i<n \wedge i^{\prime}=i+1 \wedge n^{\prime}=n \wedge n-i<n^{\prime}-i^{\prime}+1$ (violate decrease)
- $i<n \wedge i^{\prime}=i+1 \wedge n^{\prime}=n \wedge n-i<-1$ (violate boundedness)
both problems are unsatisfiable over \mathbb{Q} (just run simplex), so termination is proved
- problem: how to find linear expression $e(i, n, r)$ and constants d and f ?
- solution: combined search for $e(i, n, r), d$ and f and Farkas' coefficients

Algorithm to Synthesize Linear Ranking Function [Podelski, Rybalschenko]

- assume loop is given as transition formula in the form of linear inequalities $A \vec{x}+A^{\prime} \overrightarrow{x^{\prime}} \leq \vec{b}$ between primed and unprimed variables
- idea: find parameters of ranking function and Farkas' coefficients in one go
- algorithm: encode the following constraints for row vectors $\overrightarrow{c_{1}}, \overrightarrow{c_{2}}$ of variables
- $\overrightarrow{c_{1}} \geq \overrightarrow{0}, \overrightarrow{c_{2}} \geq \overrightarrow{0}$
- $\overrightarrow{c_{1} A^{\prime}}=0$
- $\overrightarrow{c_{1}} A=\overrightarrow{C_{2}} A$
- $\overrightarrow{C_{2}} A=-\overrightarrow{C_{2}} A^{\prime}$
- $\overrightarrow{C_{2}} \vec{b}<0$
and return "linear ranking function exists" iff constraints are satisfiable
- completeness is based on Farkas' lemma (assumes satisfiable transition formula)
- soundness: extract parameters of ranking function from concrete solution $\overrightarrow{c_{1}}, \overrightarrow{c_{2}}$

$$
e(\vec{x})=\overrightarrow{c_{2}} A^{\prime} \vec{x} \quad d=-\overrightarrow{c_{2}} \vec{b} \quad f=-\overrightarrow{c_{1}} \vec{b}
$$

Towards Algorithm to Synthesize Linear Ranking Function

- assume loop is given as transition formula in the form of linear inequalities $A \vec{x}+A^{\prime} \overrightarrow{x^{\prime}} \leq \vec{b}$ between primed and unprimed variables
- example

$$
\underbrace{\left(\begin{array}{cc}
1 & -1 \\
0 & 1 \\
0 & -1 \\
1 & 0 \\
-1 & 0
\end{array}\right)}_{A} \cdot\binom{i}{n}+\underbrace{\left(\begin{array}{cc}
0 & 0 \\
0 & -1 \\
0 & 1 \\
-1 & 0 \\
1 & 0
\end{array}\right)}_{A^{\prime}} \cdot\binom{i^{\prime}}{n^{\prime}} \leq \underbrace{\left(\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
1
\end{array}\right)}_{\vec{b}}
$$

encodes transition formula $i \leq n \wedge n^{\prime}=n \wedge i^{\prime}=i+1$
(formula φ after removal of non-linear part)
$\begin{array}{lllll}\text { E Iniverititat } & \text { SS 2024 } & \text { Constraint Solving } & \text { lecture } 7 & \text { 3. Unsatisfiable Cores and Farkas' Lemma }\end{array}$

Example Application (Continue in Termination Proof)

- $\left(\begin{array}{lllll}c_{1} & c_{2} & c_{3} & c_{4} & c_{5}\end{array}\right) \geq\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{lllll}c_{6} & c_{7} & c_{8} & c_{9} & c_{10}\end{array}\right) \geq\left(\begin{array}{lll}0 & \ldots & 0\end{array}\right)$
- $\left(-c_{4}+c_{5}-c_{2}+c_{3}\right)=\left(\begin{array}{ll}0 & 0\end{array}\right)$
- $\left(c_{1}+c_{4}-c_{5}-c_{1}+c_{2}-c_{3}\right)=\left(\begin{array}{cc}c_{6}+c_{9}-c_{10} & -c_{6}+c_{7}-c_{8}\end{array}\right)$
- $\left(c_{6}+c_{9}-c_{10}-c_{6}+c_{7}-c_{8}\right)=-\left(\begin{array}{ll}-c_{9}+c_{10} & -c_{7}+c_{8}\end{array}\right)$
- $C_{10}-C_{9}<0$
- find solution $c_{1}=c_{8}=c_{9}=1, c_{i}=0$ for $i \notin\{1,8,9\}$
- extract ranking function parameters
- $e(i, n)=\left(\begin{array}{lllll}0 & 0 & 1 & 1 & 0\end{array}\right) A^{\prime}\binom{i}{n}=n-i$
- $d=-\left(\begin{array}{lllll}0 & 0 & 1 & 1 & 0\end{array}\right) \vec{b}=1$
- $f=-\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}\right) \vec{b}=0$

Soundness Proof: Details

- loop transition formula: $A \vec{x}+A^{\prime} \overrightarrow{x^{\prime}} \leq \vec{b}$
- constraints: $\overrightarrow{c_{1}} \geq \overrightarrow{0}, \overrightarrow{c_{2}} \geq \overrightarrow{0}, \overrightarrow{c_{1} A^{\prime}}=0, \overrightarrow{c_{1}} A=\overrightarrow{c_{2}} A, \overrightarrow{c_{2}} A=-\overrightarrow{c_{2}} A^{\prime}$, and $\overrightarrow{c_{2}} \vec{b}<0$
- ranking function parameters: $e(\vec{x})=\overrightarrow{c_{2}} A^{\prime} \vec{x}, d=-\overrightarrow{c_{2}} \vec{b}$, and $f=-\overrightarrow{c_{1}} \vec{b}$
- choice of d : $d=-\overrightarrow{c_{2}} \vec{b}>0$
- boundedness
- assume \vec{x} and $\overrightarrow{x^{\prime}}$ satisfy loop transition formula
- hence $\overrightarrow{c_{1}}\left(A \vec{x}+A^{\prime} \overrightarrow{x^{\prime}}\right) \leq \overrightarrow{c_{1}} \vec{b}$
- hence $\overrightarrow{c_{1} A} \vec{x}+\overrightarrow{c_{1} A^{\prime} x^{\prime}} \leq \overrightarrow{c_{1}} \vec{b}$
- hence $\overrightarrow{c_{1}} A \vec{x} \leq \overrightarrow{c_{1}} \vec{b}$
- hence $\overrightarrow{c_{2}} A \vec{x} \leq \overrightarrow{c_{1} b}$
- hence $-\overrightarrow{c_{2}} A^{\prime} \vec{x} \leq \overrightarrow{c_{1}} \vec{b}$
- hence $-e(\vec{x}) \leq-f$
- hence $e(\vec{x}) \geq f$
- decrease $e(\vec{x}) \geq e\left(\overrightarrow{x^{\prime}}\right)+d$: similar to boundedness
$\begin{array}{llll}\text { Hiniveritita } & \text { SS } 2024 & \text { Constraint Solving } & \text { lecture } 7\end{array} \quad$ 3. Unsatisfiable Cores and Farkas' Lemma

Outline

1. Summary of Previous Lecture
2. Complexity of Simplex Algorithm
3. Unsatisfiable Cores and Farkas' Lemma
4. Simplex Algorithm for $\operatorname{DPLL}(T)$
5. Further Reading
$\begin{array}{lllll}\text { Heniversitite } & \text { SS 2024 } & \text { Constraint Solving } & \text { lecture 7 } & \text { 4. Simplex Algorithm for DPLL(T) }\end{array}$

Incremental Interface for DPLL(T)

- make all constraints available to simplex at the beginning of the algorithm, ignoring Boolean structure \Longrightarrow obtain global tableau for all constraints
- modify simplex algorithm by adding active-flags for upper and lower bounds
- when executing simplex, all inactive bounds are ignored
- initially all bounds are inactive
- activation of a constraint
- activate corresponding lower or upper bound $s_{i} \leq c$ or $c \leq s_{i}$ for slack variable s_{i}
- if new bound gives rise to a conflict $u_{i}<l_{i}$ then report unsatisfiable
- otherwise, if $s_{i} \in N$ and s_{i} violates bound, then update assignment of s_{i} to c
(at this point, invariants (1) and (2) are established for the active bounds)
- run simplex on current tableau and assignment to determine satisfiability
- deactivation of a constraint
- deactivate corresponding lower or upper bound
- usually occurs after a conflict has been detected
- tableau and assignment can be reused from before: they satisfy invariants (1) and (2)

Example (Simplex as DPLL(T) Theory Solver)

- input is formula φ

$$
\begin{aligned}
& \left(c_{1} \vee c_{5}\right) \wedge\left(c_{6} \vee \neg c_{3}\right) \wedge\left(c_{4} \vee c_{5}\right) \wedge\left(c_{2} \vee c_{7} \vee \neg c_{8}\right) \wedge \ldots \\
& \underbrace{x \geq 5}_{c_{1}} \underbrace{2 x+y \leq 12}_{c_{2}} \underbrace{y<3}_{c_{3}} \underbrace{x-3 y \leq 2}_{c_{4}} \quad \ldots
\end{aligned}
$$

- example execution (without theory propagation)
- start simplex with tableau for all atoms and negated atoms within φ, but no activated bounds (obtain tableau T_{0}, assignment $v_{0}(x)=0$)
- assume partial Boolean assignment $c_{1}, \neg C_{3}, c_{4}$ from Boolean solver \Longrightarrow activate the bounds, execute simplex on T_{0} and v_{0} to obtain T_{1} and v_{1}
- all bounds are satisfied, so detect LRA-consistency
- extend to $c_{1}, \neg c_{3}, c_{4}, c_{2}$, activate bound, execute simplex on T_{1} and v_{1} to obtain T_{2} and v_{2}
- detect unsatisfiable core $c_{1}, \neg C_{3}, c_{2}$, so learn $\neg C_{1} \vee c_{3} \vee \neg C_{2}$
- ...next simplex invocation starting from T_{2} and $v_{2} \ldots$
$\begin{array}{lllll}\text { \# univerisitat } & \text { SS 2024 } & \text { Constraint Solving } & \text { lecture 7 } & \text { 4. Simplex Algorithm for DPLL(T) }\end{array}$
ghci SimplexIOInterface.hs
ghci> initSimplex exampleSlidesInput
Okay <state 0, asserted: []>
ghci> assert 1
Okay <state 1, asserted: [1]>
ghci> assert (-3)
Okay <state 2, asserted: [-3,1]>
ghci> assert 4
Okay <state 3, asserted: [4,-3,1]>
ghci> check
Okay <state 4, asserted: [4,-3,1]>
hci> checkpoint
checkpoint "cp5" created
Kkay <state 5, asserted: [4,-3,1]>
ghci> assert 2
Okay <state 6, asserted: $[2,4,-3,1]>$
ghci> check
unsat-core [2,1,-3] detected, use backtrack to one of ["cp5"]
hci> backtrack "cp5"
Dkay <state 7, asserted: [4, -3,1]>

Incremental Simplex Algorithm - Interface

- initSimplex: takes list of indexed constraints, initially all inactive
- assert i: activates constraint with index i, may detect unsat core
- check: check if currently activated constraints are satisfiable, may detect unsat core
- solution: after successful check, deliver satisfying assignment
- checkpoint: after successful check, get checkpoint information to return to this state
- backtrack cp: return to previous checkpoint $c p$, where subset of constraints has been asserted

Haskell Implementation

- available under
http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz
- SimplexInternals.hs - verified simplex implementation
- SimplexCommon.hs - common interface to access verified types
- SimplexInterface.hs - wrapper for non-incremental simplex algorithm + example
- SimplexIOInterface.hs - wrapper for incremental simplex algorithm + example
$\begin{array}{lllll}\text { E univerititat } & \text { SS 2024 } & \text { Constraint Solving } & \text { lecture } 7 & \text { 4. Simplex Algorithm for DPLL(T) }\end{array}$

Linear Programming

- linear programming: find solution in \mathbb{Q} of linear constraints φ that maximizes linear function f
- potential implementation
- perform standard setup for running simplex on φ
- add additional slack variable s with tableau equality $s=f$, then start simplex
- once solution v has been detected, compute $f(v)$ and change bound of s to $s \geq f(v)+\delta$
- iterate to find better solution, or detect optimality if unsat is returned
- problem: algorithm does not terminate if f can be increased arbitrarily
- solution: use standard simplex algorithm for linear programming, ${ }^{a}$ and not the DPLL(T)-variant of simplex for decidability that was presented here
- at least one difference: solving $A \vec{x} \leq \vec{b}$ is formulated via slack variables $\vec{s} \geq \overrightarrow{0}$ as tableau $A \vec{x}+\vec{s}=\vec{b}$ so the tableau equations can have non-zero constants
${ }^{\text {a }}$ Alexander Schrijver, Theory of Linear and Integer Programming, Chapter 11

Outline

1. Summary of Previous Lecture
2. Complexity of Simplex Algorithm
3. Unsatisfiable Cores and Farkas' Lemma
4. Simplex Algorithm for DPLL(T)
5. Further Reading

\#niveritiat	SS 2024 Constraint Solving	lecture 7	5. Further Reading	$28 / 30$

Important Concepts

- active and inactive bounds
- Bland's selection rule
- Farkas' coefficients
- Farkas' lemma
- incremental simplex algorithm
- linear programming
- linear ranking function
- unsatisfiable core

Kröning and Strichmann

- Sections 5.1 and 5.2

Further Reading

Druno Dutertre and Leonardo de Moura A Fast Linear-Arithmetic Solver for DPLL(T) In Proc. CAV, LNCS 4144, pp. 81-94, 2006.
Bertram Felgenhauer and Aart Middeldorp Constructing Cycles in the Simplex Method for DPLL(T) Proc. 14th ICTAC, LNCS 10580, pp. 213-228, 2017
Andreas Podelski and Andrey Rybalchenko A Complete Method for the Synthesis of Linear Ranking Functions Proc. VMCAI 2004, LNCS 2937, pp. 239-251, 2004
R Ralph Bottesch, Max W. Haslbeck, and René Thiemann Verifying an Incremental Theory Solver for Linear Arithmetic in Isabelle/HOL in Proc. FroCoS, LNAI 11715, pp. 223-239, 2019.

H univesitit.
inssbrick SS 2024 Constraint Solving lecture 7 7 5. Further Reading

