

SS 2024 lecture 7

Constraint Solving

René Thiemann and Fabian Mitterwallner based on a previous course by Aart Middeldorp

Outline

- **1. Summary of Previous Lecture**
- 2. Complexity of Simplex Algorithm
- 3. Unsatisfiable Cores and Farkas' Lemma
- 4. Simplex Algorithm for DPLL(7)
- 5. Further Reading

universität SS 2024 Constraint Solving lecture 7

conjunction of constraints of the form $x - y \leq c$ or x - y < c

Definition Inequality Graph

conjunction φ of nonstrict difference constraints

• inequality graph of φ contains edge from $x \stackrel{c}{\longrightarrow} y$ for every constraint $x - y \leqslant c$ in φ

Theorem

conjunction φ of nonstrict difference constraints is satisfiable inequality graph of φ has no negative cycle

 \Leftrightarrow

3/30

Bellman-Ford Algorithm

computes distances in graphs from single source; detects negative cycles

universität SS 2024 Constraint Solving lecture 7 1. Summary of Previous Lecture

Simplex – Representation						
• represent <i>m</i> inequalities using <i>m</i> slack variables s_i and bounds $s_i \leq / \geq c$						
$-x + y \le 1$ $y \le 4$ $-x - y \le -6$ $3x - y \le 7$	$\implies \begin{pmatrix} -1 & 1 \\ 0 & 1 \\ -1 & -1 \\ 3 & -1 \end{pmatrix} \begin{array}{c} s_1 \leq 1 \\ s_2 \leq 4 \\ s_3 \leq -6 \\ s_4 \leq 7 \end{array}$					
 matrix presentation 	$x y \leftarrow $ nonbasic variables					
basic variables $ ightarrow$	$ \begin{array}{c} s_1 \\ s_2 \\ s_3 \\ s_4 \end{array} \begin{pmatrix} -1 & 1 \\ 0 & 1 \\ -1 & -1 \\ 3 & -1 \end{pmatrix} \qquad \begin{array}{c} \text{meaning of rows:} \\ \text{equalities, e.g.,} \\ s_4 = 3x - 1y \end{array} $					

Notation

- matrix is **tableau**, stored in combination with **bounds** $x \le / \ge c$ and **assignment**
- *B* is set of **basic variables** (in tableau listed vertically)
- *N* is set of **nonbasic variables** (in tableau listed horizontally)

$\mathbf{DPLL}(T)$ Simplex Algorithm

Input: Output:	conjunction of LRA atoms $arphi$ without $<$ satisfiable assignment or unsatisfiable				
1 transform φ into tableau and bounds					
2 assign 0 to each variable					
3 if all basic variables satisfy their bounds then return current (satisfying) assignment					
4 let $x_i \in B$ be variable that violates its bounds					
s search for suitable variable $x_j \in N$ for pivoting with x_i					
6 return unsatisfiable if search unsuccessful					
7 perform pivot operation on x_i and x_j					
9 update assignment					
10 go to step 3					
universität innsbruck	SS 2024 Constraint Solving lecture 7 1. Summary of Previous Lecture				

DPLL(T) Simplex Algorithm

$Aec{x}_N=ec{x}_B$	(1)
$-\infty \leq l_i \leq x_i \leq u_i \leq +\infty$	(2)

Invariant

• (1) is satisfied and (2) holds for all nonbasic variables

Suitability

 for x_i ∈ B violating lower or upper bound, find suitable non-basic variable x_j such that increase (or decrease) of x_i is possible w.r.t. bounds of x_i and helps to solve violation of x_i

Pivoting

- swap basic x_i and nonbasic x_j , so $i \in B$ and $j \in N$
- reorder row *i* in tableau to obtain form $x_i = \dots (\star)$, and substitute (\star) in remaining tableau
- result afterwards: tableau A' where $j \in B$ and $i \in N$

Update

- assignment of x_i is updated to previously violated bound l_i or u_i,
- assignment of each $x_k \in B$ is recomputed using A'
- universität SS 2024 Constraint Solving lecture 7 1. Summary of Previous Lecture

nonbasic \vec{x}_N

Xi

Aii

basic \vec{x}_B

Xi

Outline

- **1. Summary of Previous Lecture**
- 2. Complexity of Simplex Algorithm
- 3. Unsatisfiable Cores and Farkas' Lemma
- **4.** Simplex Algorithm for DPLL(*T*)
- 5. Further Reading

\mathbb{Q}_{δ} : δ -Rationals

• δ -rationals are used for supporting strict inequalities in LRA and difference logic

replace expr < c by $expr \leq c - \delta$

- δ represents some small positive rational number
- computation on \mathbb{Q}_δ is done symbolically, e.g., in simplex algorithm
- after solution for \mathbb{Q}_{δ} is detected, a concrete δ can be computed (exercise)

Complexity of DPLL(T) Simplex Algorithm

- input: *m* inequalities using *n* problem variables
- switch to general form: *m* basic variables, *n* nonbasic variables
- number of different tableaux: $\binom{m+n}{n}$
- number of different configurations: $\binom{m+n}{n} \cdot 3^n$ (each nonbasic variable gets assigned 0, lower bound, or upper bound)
- consequences
 - bad news 1: assuming termination, obtain exponential worst-case complexity
 - bad news 2: simplex algorithm does not terminate in general
 - good news 1: simplex algorithm terminates using Bland's rule
- good news 2: worst-case complexity rarely observed, often only $\mathcal{O}(m)$ many iterations

Bland's Rule

• in pivoting pick lexicographically smallest $(x_i, x_j) \in B \times N$ such that x_i and x_j are suitable; assumes some fixed order on variables

universität SS 2024 Constraint Solving lecture 7 2. Complexity of Simplex Algorithm

9/30

universität
 SS 2024 Constraint Solving lecture 7
 2. Complexity of Simplex Algoritheir Instruct

Outline

- **1. Summary of Previous Lecture**
- 2. Complexity of Simplex Algorithm
- 3. Unsatisfiable Cores and Farkas' Lemma
- 4. Simplex Algorithm for DPLL(7)

SS 2024 Constraint Solving lecture 7

5. Further Reading

Unsatisfiable Cores for DPLL(7)

- recall: for DPLL(*T*) it is beneficial if theory solvers produce small unsatisfiable cores
- simplex algorithm can easily identify unsatisfiable cores
- in detail: consider that unsatisfiability is detected via basic variable x_i
 - w.l.o.g. we only consider the case $v(x_i) < l_i$ (the other case is symmetric)
 - in this case tableau contains equation

$$x_i = \sum_{j \in N_{pos}} A_{ij} x_j + \sum_{k \in N_{neg}} A_{ik} x_k$$

such that $A_{ij} > 0 \land v(x_j) = u_j$ for all $j \in N_{pos}$ and $A_{ik} < 0 \land v(x_k) = I_k$ for all $k \in N_{neg}$ • then the set of (original) constraints (corresponding to)

$x_i \ge l_i$	
$x_j \leq u_j$	for all $j \in N_{pos}$
$x_k \geq l_k$	for all $k \in N_{neg}$

is an unsatisfiable core

• this core is minimal w.r.t. the subset-relation

universität	SS 2024	Constraint Solving	lecture 7	3. Unsatisfiable Cores and Farkas' Lemma
-------------	---------	--------------------	-----------	--

Farkas' Lemma

universität innsbruck

- consider \leq -constraints $\underbrace{-x \leq -5}_{\ell_1 \leq r_1} \land \underbrace{2x + y \leq 12}_{\ell_2 \leq r_2} \land \underbrace{-y \leq -3}_{\ell_3 < r_3} \land \underbrace{x 3y \leq 2}_{\ell_4 < r_4}$
- alternative way to prove unsatisfiability of constraints $\ell_1 \leq r_2$, $\ell_3 \leq r_3$, $\ell_4 \leq r_4$
 - find Farkas' coefficients, i.e., non-negative coefficients c_1, c_2, \ldots such that

$$\mathbb{Q} \ni \sum_{i} c_{i}\ell_{i} > \sum_{i} c_{i}r_{i} \in \mathbb{Q}$$

3. Unsatisfiable Cores and Farkas' Lemma

- example: choose $c_1 = 2$, $c_2 = c_3 = 1$, $c_4 = 0$
- $2 \cdot (-x) + 1 \cdot (2x + y) + 1 \cdot (-y) + 0 \cdot (x 3y) = 0 > -1 = 2 \cdot (-5) + 1 \cdot 12 + 1 \cdot (-3) + 0 \cdot 2$
- Farkas' Lemma: finite set of \leq -constraints is unsatisfiable iff Farkas' coefficients exists
 - soundness: existence of Farkas' coefficients obviously shows unsatisfiability
 - completeness: if constraints are unsatisfiable, then simplex will detect this; whenever unsatisfiability is detected in simplex algorithm, one can extract Farkas' coefficients from the tableau equation (similar to the detection of unsatisfiable cores, but with finer analysis)

12/30

Ŀ	xample (Application of Linear Arithmetic: Termination Proving)	
•	consider program	

factorial(n) {
 i = 1;
 r = 1;
 while (i <= n) {
 r = r * i;
 i = i + 1; }
 return r; }</pre>

• φ describes one iteration of loop (primed variables store values after iteration)

$$\varphi := i \le n \land i' = i + 1 \land r' = r \cdot i \land n' = n$$

• proving termination: find linear ranking function, i.e., linear expression e(i, n, r), decrease factor d with $0 < d \in \mathbb{Q}$, and bound $f \in \mathbb{Q}$ such that

•
$$\varphi \rightarrow e(i, n, r) \ge e(i', n', r') + d$$
 (expression decreases in every iteration by at least d)
• $\varphi \rightarrow e(i, n, r) \ge f$ (expression is bounded from below by f)

Example (Termination Proof Continued)

- loop iteration $\varphi := i \le n \land i' = i + 1 \land r' = r \cdot i \land n' = n$
- proving termination by validity of formulas

 $\varphi \to e(i, n, r) \ge e(i', n', r') + d$ $\varphi \to e(i, n, r) \ge f$

• is equivalent to unsatisfiability of negated formulas

 $\varphi \wedge e(i, n, r) < e(i', n', r') + d$ $\varphi \wedge e(i, n, r) < f$

- choose linear ranking function e(i, n, r) := n i and d := 1 and f = -1, and drop all non-linear constraints to get two linear problems:
 - $i < n \land i' = i + 1 \land n' = n \land n i < n' i' + 1$ (violate decrease)
 - $i < n \land i' = i + 1 \land n' = n \land n i < -1$ (violate boundedness)

both problems are unsatisfiable over ${\mathbb Q}$ (just run simplex), so termination is proved

- problem: how to find linear expression e(i, n, r) and constants d and f?
- solution: combined search for e(i, n, r), d and f and Farkas' coefficients

universität
SS 2024 Constraint Solving lecture 7
3. Unsatisfiable Cores and Farkas' Lemma
Insbruck

```
16/30
```

Towards Algorithm to Synthesize Linear Ranking Function

• assume loop is given as transition formula in the form of linear inequalities $A\vec{x} + A'\vec{x'} \le \vec{b}$ between primed and unprimed variables

• example

• $(c_1 \ c_2 \ c_3 \ c_4 \ c_5) \ge (0 \ 0 \ 0 \ 0), \ (c_6 \ c_7 \ c_8 \ c_9 \ c_{10}) \ge (0 \ \dots \ 0)$

encodes transition formula $i \le n \land n' = n \land i' = i + 1$ (formula φ after removal of non-linear part)

Example Application (Continue in Termination Proof)

• $(c_1 + c_4 - c_5 - c_1 + c_2 - c_3) = (c_6 + c_9 - c_{10} - c_6 + c_7 - c_8)$

• $(c_6 + c_9 - c_{10} - c_6 + c_7 - c_8) = -(-c_9 + c_{10} - c_7 + c_8)$

universität SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas' Lemma
 innsbruck

• $\begin{pmatrix} -c_4+c_5 & -c_2+c_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \end{pmatrix}$

extract ranking function parameters

• $d = -(0 \ 0 \ 1 \ 1 \ 0)\vec{b} = 1$

• $f = -(1 \ 0 \ 0 \ 0) \vec{b} = 0$

• $e(i,n) = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \end{pmatrix} A' \begin{pmatrix} i \\ n \end{pmatrix} = n - i$

• $C_{10} - C_0 < 0$

17/30

Algorithm to Synthesize Linear Ranking Function [Podelski, Rybalschenko]

- assume loop is given as transition formula in the form of linear inequalities $A\vec{x} + A'\vec{x'} \le \vec{b}$ between primed and unprimed variables
- idea: find parameters of ranking function and Farkas' coefficients in one go
- algorithm: encode the following constraints for row vectors $\vec{c_1}, \vec{c_2}$ of variables
 - $\vec{c_1} \ge \vec{0}, \, \vec{c_2} \ge \vec{0}$
 - $\vec{c_1}A' = 0$
 - $\vec{c_1}A = \vec{c_2}A$
 - $\vec{c_2}A = -\vec{c_2}A'$
 - $\vec{c_2}\vec{b} < 0$

and return "linear ranking function exists" iff constraints are satisfiable

- completeness is based on Farkas' lemma (assumes satisfiable transition formula)
- soundness: extract parameters of ranking function from concrete solution $\vec{c_1}, \vec{c_2}$

 $e(\vec{x}) = \vec{c_2}A'\vec{x}$ $d = -\vec{c_2}\vec{b}$ $f = -\vec{c_1}\vec{b}$

• find solution $c_1 = c_8 = c_9 = 1$, $c_i = 0$ for $i \notin \{1, 8, 9\}$

Soundness Proof: Details

- loop transition formula: $A\vec{x} + A'\vec{x'} \le \vec{b}$
- constraints: $\vec{c_1} \ge \vec{0}$, $\vec{c_2} \ge \vec{0}$, $\vec{c_1}A' = 0$, $\vec{c_1}A = \vec{c_2}A$, $\vec{c_2}A = -\vec{c_2}A'$, and $\vec{c_2}\vec{b} < 0$
- ranking function parameters: $e(\vec{x}) = \vec{c_2}A'\vec{x}$, $d = -\vec{c_2}\vec{b}$, and $f = -\vec{c_1}\vec{b}$
- choice of $d: d = -\vec{c_2 b} > 0$
- boundedness
- assume \vec{x} and $\vec{x'}$ satisfy loop transition formula
- hence $\vec{c_1}(A\vec{x} + A'\vec{x'}) \leq \vec{c_1}\vec{b}$
- hence $\vec{c_1}A\vec{x} + \vec{c_1}A'\vec{x'} \le \vec{c_1}\vec{b}$
- hence $\vec{c_1} A \vec{x} \le \vec{c_1} \vec{b}$
- hence $\vec{c_2} A \vec{x} \le \vec{c_1} \vec{b}$
- hence $-\vec{c_2}A'\vec{x} \leq \vec{c_1}\vec{b}$
- hence $-e(\vec{x}) \leq -f$
- hence $e(\vec{x}) \ge f$
- decrease $e(\vec{x}) \ge e(\vec{x'}) + d$: similar to boundedness

universität SS 2024 Constraint Solving lecture 7 3. Unsatisfiable Cores and Farkas' Lemma

20/30

Outline

- **1. Summary of Previous Lecture**
- 2. Complexity of Simplex Algorithm
- 3. Unsatisfiable Cores and Farkas' Lemma
- 4. Simplex Algorithm for DPLL(T)
- 5. Further Reading

universität SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(7)
Inspruck

Why use simplex algorithm for LRA?

- situation
 - solving LRA problems is in P (interior point method, ...)
 - simplex algorithm has exponential worst-case time complexity
- simplex algorithm is still popular
 - exponential behaviour rarely triggered, only on artificial examples
 - simplex can be used incrementally
- incrementality
 - simplex can be used as theory solver for DPLL(T), where often constraints are activated and deactivated
 - simplex can be used as backend for LIA solver (next lecture), where new constraints are added on-the-fly
 - aim: do not restart simplex from scratch when slightly modifying constraints

Incremental Interface for DPLL(T)

- make all constraints available to simplex at the beginning of the algorithm, ignoring Boolean structure => obtain global tableau for all constraints
- modify simplex algorithm by adding active-flags for upper and lower bounds
- when executing simplex, all inactive bounds are ignored
- initially all bounds are inactive
- activation of a constraint
 - activate corresponding lower or upper bound $s_i \leq c$ or $c \leq s_i$ for slack variable s_i
 - if new bound gives rise to a conflict $u_i < l_i$ then report unsatisfiable
 - otherwise, if $s_i \in N$ and s_i violates bound, then update assignment of s_i to c (at this point, invariants (1) and (2) are established for the active bounds)
- run simplex on current tableau and assignment to determine satisfiability
- deactivation of a constraint
 - deactivate corresponding lower or upper bound
 - usually occurs after a conflict has been detected
- tableau and assignment can be reused from before: they satisfy invariants (1) and (2)

Example (Simplex as DPLL(T) Theory Solver)

• input is formula φ

$$(c_1 \lor c_5) \land (c_6 \lor \neg c_3) \land (c_4 \lor c_5) \land (c_2 \lor c_7 \lor \neg c_8) \land \dots$$

$$\underbrace{x \ge 5}_{c_1} \qquad \underbrace{2x + y \le 12}_{c_2} \qquad \underbrace{y < 3}_{c_3} \qquad \underbrace{x - 3y \le 2}_{c_4} \qquad \dots$$

- example execution (without theory propagation)
 - start simplex with tableau for all atoms and negated atoms within φ , but no activated bounds (obtain tableau T_0 , assignment $v_0(x) = 0$)
- assume partial Boolean assignment c_1 , $\neg c_3$, c_4 from Boolean solver \implies activate the bounds, execute simplex on T_0 and v_0 to obtain T_1 and v_1
- all bounds are satisfied, so detect LRA-consistency
- extend to c_1 , $\neg c_3$, c_4 , c_2 , activate bound, execute simplex on T_1 and v_1 to obtain T_2 and v_2
- detect unsatisfiable core c_1 , $\neg c_3$, c_2 , so learn $\neg c_1 \lor c_3 \lor \neg c_2$
- ... next simplex invocation starting from T_2 and v_2 ...

universität SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(7)

24/30

Incremental Simplex Algorithm – Interface

- initSimplex: takes list of indexed constraints, initially all inactive
- assert i: activates constraint with index i, may detect unsat core
- check: check if currently activated constraints are satisfiable, may detect unsat core
- solution: after successful check, deliver satisfying assignment
- checkpoint: after successful check, get checkpoint information to return to this state
- backtrack cp: return to previous checkpoint cp, where subset of constraints has been asserted

Haskell Implementation

- available under
- http://cl-informatik.uibk.ac.at/teaching/ss24/cs/simplex.tgz
- SimplexInternals.hs verified simplex implementation
- SimplexCommon.hs common interface to access verified types
- SimplexInterface.hs wrapper for non-incremental simplex algorithm + example
- SimplexIOInterface.hs wrapper for incremental simplex algorithm + example

universität SS 2024 Constraint Solving lecture 7 4. Simplex Algorithm for DPLL(7)

25/30

ghci SimplexIOInterface.hs ghci> initSimplex exampleSlidesInput Okav <state 0, asserted: []> ghci> assert 1 Okay <state 1, asserted: [1]> ghci> assert (-3) Okay <state 2, asserted: [-3,1]> ghci> assert 4 Okay <state 3, asserted: [4,-3,1]> ghci> check Okay <state 4, asserted: [4,-3,1]> ghci> checkpoint checkpoint "cp5" created Okay <state 5, asserted: [4,-3,1]> ghci> assert 2 Okay <state 6, asserted: [2,4,-3,1]> ghci> check unsat-core [2,1,-3] detected, use backtrack to one of ["cp5"] ghci> backtrack "cp5" Okay <state 7, asserted: [4,-3,1]>

Linear Programming

- linear programming: find solution in $\mathbb Q$ of linear constraints φ that maximizes linear function f
- potential implementation
 - perform standard setup for running simplex on φ
 - add additional slack variable s with tableau equality s = f, then start simplex
 - once solution v has been detected, compute f(v) and change bound of s to $s \ge f(v) + \delta$
 - iterate to find better solution, or detect optimality if unsat is returned
- problem: algorithm does not terminate if *f* can be increased arbitrarily
- solution: use standard simplex algorithm for linear programming,^a and not the DPLL(*T*)-variant of simplex for decidability that was presented here
 - at least one difference: solving $A\vec{x} \le \vec{b}$ is formulated via slack variables $\vec{s} \ge \vec{0}$ as tableau $A\vec{x} + \vec{s} = \vec{b}$ so the tableau equations can have non-zero constants

^aAlexander Schrijver, Theory of Linear and Integer Programming, Chapter 11

Outline

universität innsbruck

- **1. Summary of Previous Lecture**
- 2. Complexity of Simplex Algorithm
- 3. Unsatisfiable Cores and Farkas' Lemma

5. Further Reading

4. Simplex Algorithm for DPLL(*T*)

SS 2024 Constraint Solving lecture 7

5. Further Reading

Kröning and Strichmann

Sections 5.1 and 5.2

Further Reading

- Bruno Dutertre and Leonardo de Moura. A Fast Linear-Arithmetic Solver for DPLL(T) In Proc. CAV, LNCS 4144, pp. 81–94, 2006.
- Bertram Felgenhauer and Aart Middeldorp Constructing Cycles in the Simplex Method for DPLL(T) Proc. 14th ICTAC, LNCS 10580, pp. 213–228, 2017
- Andreas Podelski and Andrey Rybalchenko A Complete Method for the Synthesis of Linear Ranking Functions Proc. VMCAI 2004, LNCS 2937, pp. 239–251, 2004
- Ralph Bottesch, Max W. Haslbeck, and René Thiemann Verifying an Incremental Theory Solver for Linear Arithmetic in Isabelle/HOL In Proc. FroCoS, LNAI 11715, pp. 223—239, 2019.

29/30

universität SS 2024 Constraint Solving lecture 7 5. Further Reading

- Important Concepts
- active and inactive bounds
- Bland's selection rule
- Farkas' coefficients
- Farkas' lemma
- incremental simplex algorithm
- linear programming
- linear ranking function
- unsatisfiable core

universität SS 2024 Constraint Solving lecture 7 5. Further Reading