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Properties of DPLL(T) Simplex Algorithm

® termination ensured via Bland’s rule:
choose x; and x; for pivoting in a way that (x;,x;) € B x N is lexicographically smallest
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Properties of DPLL(T) Simplex Algorithm

® termination ensured via Bland’s rule:
choose x; and x; for pivoting in a way that (x;,x;) € B x N is lexicographically smallest
® worst-case complexity is exponential, but often it runs in polynomial time

® provides incremental interface (activation flags for bounds) and unsatisfiable cores
(Haskell: initSimplex, assert i, check, solution, checkpoint, backtrack cp)
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Properties of DPLL(T) Simplex Algorithm
® termination ensured via Bland’s rule:

choose x; and x; for pivoting in a way that (x;,x;) € B x N is lexicographically smallest
® worst-case complexity is exponential, but often it runs in polynomial time

® provides incremental interface (activation flags for bounds) and unsatisfiable cores
(Haskell: initSimplex, assert i, check, solution, checkpoint, backtrack cp)

Farkas’ lemma: constraints \; ¢; < r; are unsatisfiable iff a non-negative linear combination
yields an obvious contradiction Q 3 ), ¢;f; > >, cir € Q
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Properties of DPLL(T) Simplex Algorithm

® termination ensured via Bland’s rule:
choose x; and x; for pivoting in a way that (x;,x;) € B x N is lexicographically smallest

® worst-case complexity is exponential, but often it runs in polynomial time

® provides incremental interface (activation flags for bounds) and unsatisfiable cores
(Haskell: initSimplex, assert i, check, solution, checkpoint, backtrack cp)

® Farkas’ lemma: constraints /\;¢; < r; are unsatisfiable iff a non-negative linear combination
yields an obvious contradiction Q 3 )", citi > >, cirj € Q

® ranking functions for proving termination can be synthesized
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Properties of DPLL(T) Simplex Algorithm

® termination ensured via Bland’s rule:
choose x; and x; for pivoting in a way that (x;,x;) € B x N is lexicographically smallest

® worst-case complexity is exponential, but often it runs in polynomial time

® provides incremental interface (activation flags for bounds) and unsatisfiable cores
(Haskell: initSimplex, assert i, check, solution, checkpoint, backtrack cp)

® Farkas’ lemma: constraints /\;¢; < r; are unsatisfiable iff a non-negative linear combination
yields an obvious contradiction Q 3 )", citi > >, cirj € Q

® ranking functions for proving termination can be synthesized

® DPLL(T) simplex not well suited for linear programming, i.e., optimization problems
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2. Application, Motivating LIA
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Example (Application of Linear Arithmetic: Termination Proving)

® |ast lecture

int factorial(int n) {
int 1 = 1;
int r 1;
while (i <= n) {
r =r % ij;
i=1i+1; ¥
return r; }
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Example (Application of Linear Arithmetic: Termination Proving)
® |ast lecture

int factorial(int n) {
int 1 = 1;
int r = 1;
while (i <= n) {
r =r % ij;
i=1i+1; ¥
return r; }
® remark: ranking function formula consists purely of < inequalities
e o:=i<nAn =nAi"=i+1
° o —e(i,n)>e(,n)+d
* o —e(i,n)>f
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Example (Application of Linear Integer Arithmetic: Termination Proving)

® consider another program
int log2(int x) {
int n := 0;
while (x > 0) {
X := x div 2;
n+1;}
return n - 1;

n
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Example (Application of Linear Integer Arithmetic: Termination Proving)

® consider another program
int log2(int x) {
int n := 0;
while (x > 0) {
X := x div 2;
n:=n+1; }
return n - 1; }

e p=x>0A2X <xAx<2X'+1An=n+1

contains strict inequality
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Example (Application of Linear Integer Arithmetic: Termination Proving)
® consider another program
int log2(int x) {
int n := 0;
while (x > 0) {
X := x div 2;
n:=n+1; }
return n - 1; }
e p=x>0A2X <xAx<2X'+1An=n+1 contains strict inequality
¢ choose e(x,n) = x,d =1and f = —1; get two LIA problems that must be unsat
°* pAX<X +1 (— decrease)
®* pAX< -1 (— bounded)
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Example (Application of Linear Integer Arithmetic: Termination Proving)
® consider another program

int log2(int x) {
int n := 0;
while (x > 0) {
X := x div 2;
n:=n+ 1; }
return n - 1; }
e p=x>0A2X <xAx<2X'+1An=n+1 contains strict inequality
¢ choose e(x,n) = x,d =1and f = —1; get two LIA problems that must be unsat
°* pAX<X +1 (— decrease)
®* pAX< -1 (— bounded)

® (= bounded) is unsatisfiable over R
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Example (Application of Linear Integer Arithmetic: Termination Proving)
® consider another program

int log2(int x) {
int n := 0;
while (x > 0) {
X := x div 2;
n:=n+ 1; }
return n - 1; }
e p=x>0A2X <xAx<2X'+1An=n+1 contains strict inequality
¢ choose e(x,n) = x,d =1and f = —1; get two LIA problems that must be unsat
* oAX<X +1 (— decrease)
®* pAX< -1 (— bounded)

(— bounded) is unsatisfiable over R
(— decrease) is unsatisfiable over Z, but not over R = require LIA solver
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Example (Application of Linear Integer Arithmetic: Termination Proving)
® consider another program

int log2(int x) {
int n := 0;
while (x > 0) {
X := x div 2;
n:=n+ 1; }
return n - 1; }
e p=x>0A2X <xAx<2X'+1An=n+1 contains strict inequality
¢ choose e(x,n) = x,d =1and f = —1; get two LIA problems that must be unsat
* oAX<X +1 (— decrease)
®* pAX< -1 (— bounded)

(— bounded) is unsatisfiable over R

(— decrease) is unsatisfiable over Z, but not over R = require LIA solver
remark: LIA reasoning is crucial, the problem is not wrong choice of expression e;
program does not terminate when executed with real number arithmetic
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3x -2y > -1 6\
y<4 \
2x+y>5 4
3x—y<7
27
* |ooking for solution in Z?
\/ I [
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3x -2y > -1

y<4a
2x+y>5
3x—y<7

* |ooking for solution in Z?

e infinite R? solution space, six solutions in Z?2
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3x -2y > -1

y<4a
2Xx+y=>5
3x—-y<7

* |ooking for solution in Z?
e infinite R? solution space, six solutions in Z?2

* simplex returns (2, /)
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3x -2y > -1

6 -
y<4 \
2x+y>5 4
3X — y S 7 - e o
. N 2 t
* looking for solution in Z? |
e infinite R? solution space, six solutions in Z?2 I : ‘
° gj 9 17 2 4 6
simplex returns (2, %)

Branch and Bound, a Solver for LIA Formulas - Idea

® add constraints that exclude current solution in R? \ Z? but do not change solutions in Z?
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3x -2y > -1

6 -
y<4 \
2x+y>5 4
3X — y S 7 - e o
. N 2 t
* looking for solution in Z? |
e infinite R? solution space, six solutions in Z?2 I : ‘
° gj 9 17 2 4 6
simplex returns (2, %)

Branch and Bound, a Solver for LIA Formulas - Idea

* add constraints that exclude current solution in R? \ Z? but do not change solutions in Z?
® in current solution 1 < x < 2, so use simplex on two augmented problems:

®* CAx<K1
®* CAXx>2
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3x—-2y> -1 6\
y<4 \
2x+y>5 4
3x—y<7 4
. N 2]
* looking for solution in Z? |
e infinite R? solution space, six solutions in Z?2 ‘
i 9 17 ‘/ ‘
* simplex returns (2, 17) Z 4 6

Branch and Bound, a Solver for LIA Formulas - Idea
* add constraints that exclude current solution in R? \ Z? but do not change solutions in Z?
® in current solution 1 < x < 2, so use simplex on two augmented problems:

®* CAx<K1 unsatisfiable
®* CAXx =2
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3x -2y > -1

6\- |
y<4 \
2x+y>5 4
3x—y<7 4 .
. N 2
* looking for solution in Z? |
e infinite R? solution space, six solutions in Z?2 I : ‘
° gj 9 17 2 4 6
simplex returns (2, %)

Branch and Bound, a Solver for LIA Formulas - Idea

* add constraints that exclude current solution in R? \ Z? but do not change solutions in Z?
® in current solution 1 < x < 2, so use simplex on two augmented problems:

®* CAx<K1 unsatisfiable
®* CAx =2 satisfiable,
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3x -2y > -1

] \
y<4 6\

2x+y>5 4 \-
3x—y<7

* |ooking for solution in Z?

e infinite R? solution space, six solutions in Z?2

* simplex returns (2, 17) Z 4 6

Branch and Bound, a Solver for LIA Formulas - Idea

* add constraints that exclude current solution in R? \ Z? but do not change solutions in Z?
® in current solution 1 < x < 2, so use simplex on two augmented problems:

®* CAx<1 unsatisfiable
®* CAx=2 satisfiable, simplex can return (2, 1)

B universitat i
innsbruck SS 2024 Constraint Solving lecture 8 3. Branch and Bound 8/28



Algorithm BranchAndBound(y)

Input: LIA formula ¢, a conjunction of linear inequalities
Output: unsatisfiable, or satisfying assignment
let res be result of deciding ¢ over R
if res is unsatisfiable then
return unsatisfiable
else if res is solution over Z then
return res
else
let x be variable assigned non-integer value q in res
res = BranchAndBound(p A x < |q])
if res # unsatisfiable then
return res
else
return BranchAndBound(y A x > [q])

> e.g. by simplex
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Example (Termination Proof of log2, Continued)

® problematic formula (satisfiable over R)

Yi=x>0A2X <xAXx<2X' +1Ax<x +1 (— decrease)

e execution of BranchAndBound on % (short notation: BB(1))
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Example (Termination Proof of log2, Continued)

® problematic formula (satisfiable over R)

Yi=x>0A2X <xAXx<2X' +1Ax<x +1 (— decrease)

e execution of BranchAndBound on % (short notation: BB(1))

* simplex: v(x) =1, v(x') = 3
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Example (Termination Proof of log2, Continued)

® problematic formula (satisfiable over R)

Yi=x>0A2X <xAXx<2X' +1Ax<x +1 (— decrease)

e execution of BranchAndBound on % (short notation: BB(1))

* simplex: v(x) =1, v(x') = 3

¢ invoke BB(i) A X’ > 1), simplex: unsatisfiable
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Example (Termination Proof of log2, Continued)
® problematic formula (satisfiable over R)

Yi=x>0A2X <xAXx<2X' +1Ax<x +1 (— decrease)

e execution of BranchAndBound on % (short notation: BB(1))

* simplex: v(x) =1, v(x') = 3
¢ invoke BB(1) A X’ > 1), simplex: unsatisfiable

* invoke BB(y A X' < 0), simplex: v(x) = 3, v(x') = -1
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Example (Termination Proof of log2, Continued)
® problematic formula (satisfiable over R)

Yi=x>0A2X <xAXx<2X' +1Ax<x +1 (— decrease)

e execution of BranchAndBound on % (short notation: BB(1))

* simplex: v(x) =1, v(x') = 3

¢ invoke BB(1) A X’ > 1), simplex: unsatisfiable
* invoke BB(y A X' < 0), simplex: v(x) = 3, v(x') = -1

25
® invoke BB(¢) A x’ < 0 A x > 1), simplex: unsatisfiable
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Example (Termination Proof of log2, Continued)

® problematic formula (satisfiable over R)

Yi=x>0A2X <xAXx<2X' +1Ax<x +1 (— decrease)

e execution of BranchAndBound on % (short notation: BB(1))

* simplex: v(x) =1, v(x') = 3

¢ invoke BB(1) A X’ > 1), simplex: unsatisfiable

* invoke BB( A X' < 0), simplex: v(x) = 3, v(x) =
® invoke BB(¢) A x’ < 0 A x > 1), simplex: unsatisfiable
® invoke BB(y) A X’ < 0 A x < 0), simplex: unsatisfiable

_1
4
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Example (Termination Proof of log2, Continued)
® problematic formula (satisfiable over R)

Yi=x>0A2X <xAXx<2X' +1Ax<x +1 (— decrease)

e execution of BranchAndBound on % (short notation: BB(1))

* simplex: v(x) =1, v(x') = 3

¢ invoke BB(1) A X’ > 1), simplex: unsatisfiable

* invoke BB( A X' < 0), simplex: v(x) = 3, v(x) =
® invoke BB(¢) A x’ < 0 A x > 1), simplex: unsatisfiable

® invoke BB(y) A X’ < 0 A x < 0), simplex: unsatisfiable
® return unsatisfiable

_1
4
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Example (Branch and Bound - Problem)

considery :=1<3x—3yA3x—3y <2
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Example (Branch and Bound - Problem)

considery :=1<3x—3yA3x—3y <2

e v(x) =1 vy)=0
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Example (Branch and Bound - Problem)
considery :=1<3x—3yA3x—3y <2

° v(x)=1 v(y)=0,addx<0orx>1
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Example (Branch and Bound - Problem)
considery :=1<3x—3yA3x—3y <2

° v(x)=1 v(y)=0,addx<0orx>1

e foryy Ax>1:v(x) =1, v(y) =3

B universitat i ;
B innsbruck SS 2024 Constraint Solving lecture 8 3. Branch and Bound 11/28



Example (Branch and Bound - Problem)
considery :=1<3x—3yA3x—3y <2

° v(x)=1 v(y)=0,addx<0orx>1

e fory Ax>1:v(x)=1,v(y)=3,addy <Oory>1
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Example (Branch and Bound - Problem)
considery :=1<3x—3yA3x—3y <2

° v(x)=1 v(y)=0,addx<0orx>1
e fory Ax>1:v(x)=1,v(y)=3,addy <Oory>1

° .. BranchAndBound is not terminating, since search space is unbounded

B universitat i ;
B innsbruck SS 2024 Constraint Solving lecture 8 3. Branch and Bound 11/28



Theorem (Small Model Property of LIA)

if LIA formula 1) has solution over Z then it has a solution v with
lv(x)| < bound(¢)) :=(n+1)-vn"-c"

for all x where

® n: number of variables in
® c: maximal absolute value of numbers occurring in ¥
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Theorem (Small Model Property of LIA)
if LIA formula 1) has solution over Z then it has a solution v with

lv(x)| < bound() := (n+1)-Vn" - "

for all x where

® n: number of variables in
® c: maximal absolute value of numbers occurring in ¥

Consequences and Remarks
e satisfiability of ¢ for LIA formula is in NP
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Theorem (Small Model Property of LIA)
if LIA formula 1) has solution over Z then it has a solution v with

lv(x)| < bound() := (n+1)-Vn" - "

for all x where

® n: number of variables in
® c: maximal absolute value of numbers occurring in ¥

Consequences and Remarks

e satisfiability of ¢ for LIA formula is in NP
® invoke

BranchAndBound | i A /\ —bound(v)) < x < bound(v))
xevars(y)

to decide solvability of ) over Z
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Theorem (Small Model Property of LIA)
if LIA formula 1) has solution over Z then it has a solution v with

lv(x)| < bound() := (n+1)-Vn" - "

for all x where

® n: number of variables in
® c: maximal absolute value of numbers occurring in ¥

Consequences and Remarks

e satisfiability of ¢ for LIA formula is in NP
® invoke

BranchAndBound | i A /\ —bound(v)) < x < bound(v))
xevars(v)

to decide solvability of ) over Z
® boundis quite tight: c < x31 Ac-x1 < X2 A...AC-Xp_1 < X, implies x, > "
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4. Proof of Small Model Property of LIA
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Geometric Objects

® polytope: convex hull of finite set of points X
hull(X) = {AV1 + ...+ AmVim [ {V1, - Vm} SXA AL Am = 0A D N =1}

>
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Geometric Objects
® polytope: convex hull of finite set of points X

hull(X) = {AV1 + ...+ AmVim [ {V1, - Vm} SXA AL Am = 0A D N =1}
¢ finitely generated cone: non-negative linear combinations of finite set of vectors V

cone(V):{/\1\71+...+/\m\7m ‘ {\71,...,\7m}QV/\)\1,...,)\m20}

>
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Geometric Objects
® polytope: convex hull of finite set of points X

hull(X) = {AV1 + ...+ AmVim [ {V1, - Vm} SXA AL Am = 0A D N =1}

¢ finitely generated cone: non-negative linear combinations of finite set of vectors V
COﬂE‘(V) = {/\1\71+...+/\m\7m ‘ {\71,...,\7m} CVAA,..., A\ > 0}
® polyhedron: polytope + finitely generated cone

hull(X) 4+ cone(V) = {X+ V | X € hull(X) AV € cone(V)}
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More Geometric Objects

* Cis polyhedral cone iff C = {X | AX < 0} for some matrix A
iff C is intersection of finitely many half-spaces
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More Geometric Objects

e Cis polyhedral cone iff C = {X | AX < 0} for some matrix A
iff C is intersection of finitely many half-spaces
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More Geometric Objects

* Cis polyhedral cone iff C = {X | AX < 0} for some matrix A
iff C is intersection of finitely many half-spaces

A

Theorem (Farkas, Minkowski, Weyl)
A cone is polyhedral iff it is finitely generated.
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Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.
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Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Theorem (Decomposition Theorem for Polyhedra)

A set P C R" can be described as a polyhedron P = hull(X) + cone(V) for finite X and V
iff P = {X | AX < b} for some matrix A and vector b.
Moreover, given X and V one can compute A and b, and vice versa.
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Theorem (Farkas, Minkowski, Weyl)
A cone is polyhedral iff it is finitely generated.

Theorem (Decomposition Theorem for Polyhedra)

A set P C R" can be described as a polyhedron P = hull(X) + cone(V) for finite X and V
iff P = {X | AX < b} for some matrix A and vector b.
Moreover, given X and V one can compute A and b, and vice versa.
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Proof Idea of Small Model Property

@ convert conjunctive LIA formula ¢ into form AX < b
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Proof Idea of Small Model Property

@ convert conjunctive LIA formula ¢ into form AX < b
© represent polyhedron {X | AX < b} as polyhedron P = hull(X) + cone(V)
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Proof Idea of Small Model Property

@ convert conjunctive LIA formula ¢ into form AX < b
© represent polyhedron {X | AX < b} as polyhedron P = hull(X) + cone(V)
© show that P has small integral solutions, depending on X and V
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Proof Idea of Small Model Property

@ convert conjunctive LIA formula ¢ into form AX < b

© represent polyhedron {X | AX < b} as polyhedron P = hull(X) + cone(V)

© show that P has small integral solutions, depending on X and V

@ approximate size of entries of vectors in X and V to obtain small model property
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Proof Idea of Small Model Property

@ convert conjunctive LIA formula ¢ into form AX < b

© represent polyhedron {X | AX < b} as polyhedron P = hull(X) + cone(V)

© show that P has small integral solutions, depending on X and V

@ approximate size of entries of vectors in X and V to obtain small model property

® given 1), one can compute X and V instead of using approximations
®* however, this would be expensive: decomposition theorem requires exponentially
many steps (in n,m) for input A € ZM*" and b € Z™
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Step 1: Conjunctive LIA Formula into Matrix Form Ax < b

® (variable renamed) formula

x1 >0 2x2 < X1 x1 <2x;+1 X1 <Xx2>+1
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Step 1: Conjunctive LIA Formula into Matrix Form Ax < b

® (variable renamed) formula

x1 >0 2x2 < X1 x1 <2x;+1 X1 <Xx2>+1

® eliminate strict inequalities (only valid in LIA)

x1>0+1 2x2 < X1 X1 < 2x2 +1 x1+1<xx+1
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Step 1: Conjunctive LIA Formula into Matrix Form Ax < b
® (variable renamed) formula

x1 >0 2x2 < X1 x1 <2x;+1 X1 <Xx2>+1

® eliminate strict inequalities (only valid in LIA)

x1>0+1 2x2 < X1 X1 < 2x2 +1 x1+1<xx+1

® normalize (only <, constant to the right-hand-side)

—x1 < -1 —X1+2x> <0 X1 —2x> <1 X1 —Xx> <0
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Step 1: Conjunctive LIA Formula into Matrix Form Ax < b
® (variable renamed) formula

x1 >0 2x2 < X1 x1 <2x;+1

® eliminate strict inequalities (only valid in LIA)

x1>0+1 2x2 < X1 X1 < 2x2 +1

® normalize (only <, constant to the right-hand-side)
—x1 < -1 —X1+2x> <0 X1 —2x> <1

® matrix form
-1 0 -1

1 -1

X1 <Xx2>+1

x1+1<xx+1

X1 —x2<0
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Step 3: Small Integral Solutions of Polyhedrons

e consider finite sets X C R" and V C Z"
® define

B={\Vvi+...+ Vs |[{V1,....Va} SVAL>N,....,\s >0} C cone(V)
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Step 3: Small Integral Solutions of Polyhedrons

e consider finite sets X C R" and V C Z"
® define

B={\Vvi+...+ Vs |[{V1,....Va} SVAL>N,....,\s >0} C cone(V)

Theorem
(hull(X) 4+ cone(V))NZ" = 0 «— (hull(X) +B)NZ" =0
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Step 3: Small Integral Solutions of Polyhedrons

e consider finite sets X C R" and V C Z"
® define

B={\Vvi+...+ Vs |[{V1,....Va} SVAL>N,....,\s >0} C cone(V)

Theorem
(hull(X) 4+ cone(V))NZ" = 0 «— (hull(X) +B)NZ" =0

Corollary
Assume |c| < b € Z for all entries c of all vectors in X U V.
Define Bnd := (n+ 1) - b. Then

(hull(X) + cone(V)) NZ" =)
< (hull(X) + cone(V)) N {-Bnd,...,Bnd}" =0
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(hull(X) + cone(V)) N Z" = ) +— (hull(X) + B) N Z" = {

PProor
N
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Theorem
(hull(X) + cone(V))NZ" =0 «+— (hull(X) + B)NZ" =)

\.
N
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Theorem
(hull(X) + cone(V))NZ" =0 «+— (hull(X) + B)NZ" =)

\
—
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(hull(X) + cone(V)) N Z" = ) +— (hull(X) + B) N Z" = {

PProor
N
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Step 2a: Decomposing Polyhedron P = {ii | Aii < b} into hull(X) + cone(V)
A —b\_. =|. .
5 v < 0 ; into cone(C) for integral

)}withﬂ->0foralllgi§£

@ use FMW to convert polyhedral cone of < v

vectors C = L e ye , A e =
1 o, 0 0

-

k
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Step 2a: Decomposing Polyhedron P = {ii | Aii < b} into hull(X) + cone(V)
A —b\_. =|. .
5 v < 0 ; into cone(C) for integral

)}withﬂ->0foralllgi§£

@ use FMW to convert polyhedral cone of < v

vectors C = L e ye , A e =
1 o, 0 0

9 define )?,' = %’_)7,

© return X := {X1,..., X%} and V= {Z,..., Z}

-

k
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Step 2a: Decomposing Polyhedron P = {ii | Aii < b} into hull(X) + cone(V)

A —b\. |, .
5 v < 0 » into cone(C) for integral

@ use FMW to convert polyhedral cone of < v

vectors C = L ey ye , A ey s with7; > 0 forall1 <i</
1 o, 0 0

9 define )?,' = %’_)7,
© return X := {X1,..., X%} and V= {Z,..., Z}

P = hull(X) + cone(V)
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Step 2a: Decomposing Polyhedron P = {ii | Aii < b} into hull(X) + cone(V)
A —b\. =|. .
v < 0 ; into cone(C) for integral

—

0 -1

@ use FMW to convert polyhedral cone of < v

vectors C = L ey ye , A ey s with7; > 0 forall1 <i</
1 o, 0 0

9 define )?,' = %’_)7,

© return X := {X1,..., X%} and V= {Z,..., Z}

Theorem

P = hull(X) + cone(V)
® the absolute values of the numbers in X U V are all bounded by the absolute values

of the numbers in C
® hence, bounds on C can be reused to bound vectors in XU V

| l

21/28
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Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

First direction: finitely generated implies polyhedral

e consider cone (V) for V = {vi,...,Vm} CZ"
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Step 2b: Theorem of Farkas, Minkowski, Weyl
A cone is polyhedral iff it is finitely generated.

First direction: finitely generated implies polyhedral

e consider cone (V) for V = {vi,...,Vm} CZ"
® consider every set W C V of linearly independent vectors with [W|=n—1
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Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

First direction: finitely generated implies polyhedral

e consider cone (V) for V = {vi,...,Vm} CZ"
® consider every set W C V of linearly independent vectors with [W|=n—1
® obtain integral normal vector ¢ of hyper-space spanned by W
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Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

First direction: finitely generated implies polyhedral

consider cone (V) for V = {V1,...,Vy} CZ"

consider every set W C V of linearly independent vectors with [W| =n —1

obtain integral normal vector ¢ of hyper-space spanned by W

next check whether V is contained in hyper-space {vV |v-¢c <0} or{v | v:(—C) < 0}
e ifv;-C <0 forall i, then add ¢ as row to A

e if v;-C > 0 for all i, then add —c as row to A
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Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

First direction: finitely generated implies polyhedral

consider cone (V) for V = {V1,...,Vy} CZ"

consider every set W C V of linearly independent vectors with [W| =n —1

obtain integral normal vector ¢ of hyper-space spanned by W

next check whether V is contained in hyper-space {vV |v-¢c <0} or{v | v:(—C) < 0}
e ifv;-C <0 forall i, then add ¢ as row to A

e if v;-C > 0 for all i, then add —c as row to A

cone (V) = {X | AX < 0}
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Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

First direction: finitely generated implies polyhedral

e consider cone (V) for V = {vi,...,Vm} CZ"

® consider every set W C V of linearly independent vectors with [W|=n—1

® obtain integral normal vector ¢ of hyper-space spanned by W

* next check whether V is contained in hyper-space {v |v-¢c <0} or{v | v (-C) < 0}
e ifv;-C <0 forall i, then add ¢ as row to A
e if v;-C > 0 for all i, then add —c as row to A

e cone(V) = {X| AX < 0}

® bounds
® each normal vector ¢ can be computed via determinants

— obtain bound on numbers in ¢ by using bounds on determinants
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Example: Construction of Polyhedral Cone from Finitely Generated Cone
-3 —2 -1
V - Y )
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Example: Construction of Polyhedral Cone from Finitely Generated Cone
-3 —2 -1
V - Y )

) and consider span W

® pick W= {w}, w

Il
/I—\\
N W
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Example: Construction of Polyhedral Cone from Finitely Generated Cone

GG
()

) and consider span W

e compute normal vector ¢ = (—2 3)

23/28

u ﬂj”n';’gifa'ct'?t SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA



Example: Construction of Polyhedral Cone from Finitely Generated Cone

()

- -3 .
® pick W= {w}, w= ( 2) and consider span W

e compute normal vector ¢ = (—2 3)

e if V is in same half-space, add +Cto A
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Example: Construction of Polyhedral Cone from Finitely Generated Cone

- -1 .
® pick W= {w}, w= ( 2) and consider span W

e compute normal vector ¢ = (—2 1)

e if V is in same half-space, add +Cto A
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Example: Construction of Polyhedral Cone from Finitely Generated Cone
-3 —2 -1

V = Y )
(-2 3
S\ 2 -1

- -1 .
® pick W= {w}, w = ( 2) and consider span W

® compute normal vector ¢ = (—2 1)

e if V is in same half-space, add +Cto A
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® compute normal vector ¢ = (—2 1)

e if V is in same half-space, add +Cto A

u ﬂj”n';’gifa'ct'?t $52024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 23/28



Example: Construction of Polyhedral Cone from Finitely Generated Cone
-3 —2 -1
V - Y )
(-2 3
S\ 2 -1
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Step 2b: Theorem of Farkas, Minkowski, Weyl
A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

e consider {X | AX < 0}
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Step 2b: Theorem of Farkas, Minkowski, Weyl
A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

e consider {X | AX < 0}
e define W as the set of row vectors of A
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Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

e consider {X | AX < 0}
® define W as the set of row vectors of A
* by first direction obtain integral matrix B such that cone (W) = {X | BX < 0}
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Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

consider {X | AX < 0}

define W as the set of row vectors of A

by first direction obtain integral matrix B such that cone (W) = {X | BX < 0}
define V as the set of row vectors of B
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Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

consider {X | AX < 0}

define W as the set of row vectors of A

by first direction obtain integral matrix B such that cone (W) = {X | BX < 0}
define V as the set of row vectors of B

{X | AX < 0} = cone (V)
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Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

consider {X | AX < 0}

define W as the set of row vectors of A

by first direction obtain integral matrix B such that cone (W) = {X | BX < 0}
define V as the set of row vectors of B

{X | AX < 0} = cone (V)

® bounds carry over from first direction
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Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

e consider {X | AX < 0}

¢ define W as the set of row vectors of A

* by first direction obtain integral matrix B such that cone (W) = {X | BX < 0}
e define V as the set of row vectors of B

{X | AX < 0} = cone (V)

® bounds carry over from first direction

Step 4: Theorem of Farkas, Minkowski, Weyl (bounded version)

Let C C R” be a polyhedral cone, given via an integral matrix A. Let b be a bound for
all matrix entries, b > |A;|. Then C is generated by a finite set of integral vectors V

whose entries are at most & /(n — 1)1 . p"~1,

u ﬁﬂj;’g;ﬁi{ft $52024 Constraint Solving  lecture 8 4. Proof of Small Model Property of LIA 24/28




Theorem (Hadamard’s Inequality)

* Let A be a square matrix of dimension n such that |A;;| < b for all i, .
Then |det(A)| < v/n"-b".

u ﬂj"n';’g;a'ct'?t SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 25/28



Theorem (Hadamard’s Inequality)

* Let A be a square matrix of dimension n such that |A;;| < b for all i, .
Then |det(A)| < v/n" - b".

* Whenever n = 2K, then the bound is tight, i.e., there exists a matrix A of
dimension n such that det(A) = /n" - b" = n"/2 . p".
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Theorem (Hadamard’s Inequality)

* Let A be a square matrix of dimension n such that |A;;| < b for all i, .
Then |det(A)| < v/n" - b".

* Whenever n = 2K, then the bound is tight, i.e., there exists a matrix A of
dimension n such that det(A) = /n" - b" = n"/2 . p".

® uses results about Gram matrices
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Theorem (Hadamard’s Inequality)

* Let A be a square matrix of dimension n such that |A;;| < b for all i, .
Then |det(A)| < v/n" - b".

* Whenever n = 2K, then the bound is tight, i.e., there exists a matrix A of
dimension n such that det(A) = /n" - b" = n"/2 . p".

® uses results about Gram matrices
* construct matrices Ag, A1, A,, ..., A of dimensions 29,21, 22 ... 2K as follows:

b b Ao Ao AL A
A0:<b>,A1: - Ay =
—b b —Ap Ao —A1 A
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Theorem (Hadamard’s Inequality)

* Let A be a square matrix of dimension n such that |A;;| < b for all i, .
Then |det(A)| < v/n" - b".

* Whenever n = 2K, then the bound is tight, i.e., there exists a matrix A of
dimension n such that det(A) = /n" - b" = n"/2 . p".

® uses results about Gram matrices
* construct matrices Ag, A1, A,, ..., A of dimensions 29,21, 22 ... 2K as follows:

b b Ao Ao A1 A

Ao = (b), A1 = = Ay =
—b b —Aop Ao A1 A

obtain desired equality det(A) = (2€)2°/2 . b2 by induction on k:

det(Ars1) = det(2-Ax-Ag) = 22 - det(A)? = 22 ((2€)2/2 . p2)2 = (2k+1)2 /2 p2*
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Example Hadamard Matrix

1 1 1 1 1 1 1
-1 1 -1 1 -1 1 -1
-1 -1 1 1 -1 -1 1

1 -1 -1 1 1 -1 -1

det = 4096 = 8% .18

-1 -1 -1 -1 1 1 1
1 -1 1 -1 -1 1 -1

1 -1 -1 -1 -1 1
-1 1 1 -1 1 -1 -1

L = T = T S S R
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Outline

5. Further Reading
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Kroning and Strichmann

® Section 5.3

Further Reading

@ Alexander Schrijver
Theory of linear and integer programming, Chapters 7, 16, 17, and 24

Wiley, 1998.
® branch-and-bound ® Hadamard’s inequality
® cone (finitely generated or polyhedral) ® polyhedron
® decomposition theorem for polyhedra ® small model property of LIA

® Farkas-Minkowski-Weyl theorem
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