
SS 2024 lecture 8

Constraint Solving

René Thiemann and Fabian Mitterwallner

based on a previous course by Aart Middeldorp

http://cl-informatik.uibk.ac.at/teaching/ss24/cs
http://cl-informatik.uibk.ac.at/~thiemann
http://cl-informatik.uibk.ac.at/members/fmitterwallner/

Outline

1. Summary of Previous Lecture

2. Application, Motivating LIA

3. Branch and Bound

4. Proof of Small Model Property of LIA

5. Further Reading

SS 2024 Constraint Solving lecture 8 2/28

Properties of DPLL(T) Simplex Algorithm

• termination ensured via Bland’s rule:
choose xi and xj for pivoting in a way that (xi, xj) ∈ B× N is lexicographically smallest

• worst-case complexity is exponential, but often it runs in polynomial time

• provides incremental interface (activation flags for bounds) and unsatisfiable cores
(Haskell: initSimplex, assert i, check, solution, checkpoint, backtrack cp)

• Farkas’ lemma: constraints
∧

i ℓi ≤ ri are unsatisfiable iff a non-negative linear combination
yields an obvious contradiction Q ∋

∑
i ciℓi >

∑
i ciri ∈ Q

• ranking functions for proving termination can be synthesized

• DPLL(T) simplex not well suited for linear programming, i.e., optimization problems

SS 2024 Constraint Solving lecture 8 1. Summary of Previous Lecture 3/28

Properties of DPLL(T) Simplex Algorithm

• termination ensured via Bland’s rule:
choose xi and xj for pivoting in a way that (xi, xj) ∈ B× N is lexicographically smallest

• worst-case complexity is exponential, but often it runs in polynomial time

• provides incremental interface (activation flags for bounds) and unsatisfiable cores
(Haskell: initSimplex, assert i, check, solution, checkpoint, backtrack cp)

• Farkas’ lemma: constraints
∧

i ℓi ≤ ri are unsatisfiable iff a non-negative linear combination
yields an obvious contradiction Q ∋

∑
i ciℓi >

∑
i ciri ∈ Q

• ranking functions for proving termination can be synthesized

• DPLL(T) simplex not well suited for linear programming, i.e., optimization problems

SS 2024 Constraint Solving lecture 8 1. Summary of Previous Lecture 3/28

Properties of DPLL(T) Simplex Algorithm

• termination ensured via Bland’s rule:
choose xi and xj for pivoting in a way that (xi, xj) ∈ B× N is lexicographically smallest

• worst-case complexity is exponential, but often it runs in polynomial time

• provides incremental interface (activation flags for bounds) and unsatisfiable cores
(Haskell: initSimplex, assert i, check, solution, checkpoint, backtrack cp)

• Farkas’ lemma: constraints
∧

i ℓi ≤ ri are unsatisfiable iff a non-negative linear combination
yields an obvious contradiction Q ∋

∑
i ciℓi >

∑
i ciri ∈ Q

• ranking functions for proving termination can be synthesized

• DPLL(T) simplex not well suited for linear programming, i.e., optimization problems

SS 2024 Constraint Solving lecture 8 1. Summary of Previous Lecture 3/28

Properties of DPLL(T) Simplex Algorithm

• termination ensured via Bland’s rule:
choose xi and xj for pivoting in a way that (xi, xj) ∈ B× N is lexicographically smallest

• worst-case complexity is exponential, but often it runs in polynomial time

• provides incremental interface (activation flags for bounds) and unsatisfiable cores
(Haskell: initSimplex, assert i, check, solution, checkpoint, backtrack cp)

• Farkas’ lemma: constraints
∧

i ℓi ≤ ri are unsatisfiable iff a non-negative linear combination
yields an obvious contradiction Q ∋

∑
i ciℓi >

∑
i ciri ∈ Q

• ranking functions for proving termination can be synthesized

• DPLL(T) simplex not well suited for linear programming, i.e., optimization problems

SS 2024 Constraint Solving lecture 8 1. Summary of Previous Lecture 3/28

Properties of DPLL(T) Simplex Algorithm

• termination ensured via Bland’s rule:
choose xi and xj for pivoting in a way that (xi, xj) ∈ B× N is lexicographically smallest

• worst-case complexity is exponential, but often it runs in polynomial time

• provides incremental interface (activation flags for bounds) and unsatisfiable cores
(Haskell: initSimplex, assert i, check, solution, checkpoint, backtrack cp)

• Farkas’ lemma: constraints
∧

i ℓi ≤ ri are unsatisfiable iff a non-negative linear combination
yields an obvious contradiction Q ∋

∑
i ciℓi >

∑
i ciri ∈ Q

• ranking functions for proving termination can be synthesized

• DPLL(T) simplex not well suited for linear programming, i.e., optimization problems

SS 2024 Constraint Solving lecture 8 1. Summary of Previous Lecture 3/28

Properties of DPLL(T) Simplex Algorithm

• termination ensured via Bland’s rule:
choose xi and xj for pivoting in a way that (xi, xj) ∈ B× N is lexicographically smallest

• worst-case complexity is exponential, but often it runs in polynomial time

• provides incremental interface (activation flags for bounds) and unsatisfiable cores
(Haskell: initSimplex, assert i, check, solution, checkpoint, backtrack cp)

• Farkas’ lemma: constraints
∧

i ℓi ≤ ri are unsatisfiable iff a non-negative linear combination
yields an obvious contradiction Q ∋

∑
i ciℓi >

∑
i ciri ∈ Q

• ranking functions for proving termination can be synthesized

• DPLL(T) simplex not well suited for linear programming, i.e., optimization problems

SS 2024 Constraint Solving lecture 8 1. Summary of Previous Lecture 3/28

Outline

1. Summary of Previous Lecture

2. Application, Motivating LIA

3. Branch and Bound

4. Proof of Small Model Property of LIA

5. Further Reading

SS 2024 Constraint Solving lecture 8 2. Application, Motivating LIA 4/28

Example (Application of Linear Arithmetic: Termination Proving)

• last lecture

int factorial(int n) {

int i = 1;

int r = 1;

while (i <= n) {

r = r * i;

i = i + 1; }

return r; }

• remark: ranking function formula consists purely of ≤ inequalities
• φ := i ≤ n ∧ n′ = n ∧ i′ = i + 1
• φ→ e(i,n) ≥ e(i′,n′) + d
• φ→ e(i,n) ≥ f

SS 2024 Constraint Solving lecture 8 2. Application, Motivating LIA 5/28

Example (Application of Linear Arithmetic: Termination Proving)

• last lecture

int factorial(int n) {

int i = 1;

int r = 1;

while (i <= n) {

r = r * i;

i = i + 1; }

return r; }

• remark: ranking function formula consists purely of ≤ inequalities
• φ := i ≤ n ∧ n′ = n ∧ i′ = i + 1
• φ→ e(i,n) ≥ e(i′,n′) + d
• φ→ e(i,n) ≥ f

SS 2024 Constraint Solving lecture 8 2. Application, Motivating LIA 5/28

Example (Application of Linear Integer Arithmetic: Termination Proving)

• consider another program

int log2(int x) {

int n := 0;

while (x > 0) {

x := x div 2;

n := n + 1; }

return n - 1; }

• φ := x > 0 ∧ 2x′ ≤ x ∧ x ≤ 2x′ + 1 ∧ n′ = n + 1 contains strict inequality
• choose e(x,n) = x, d = 1 and f = −1; get two LIA problems that must be unsat
• φ ∧ x < x′ + 1 (¬ decrease)
• φ ∧ x < −1 (¬ bounded)

• (¬ bounded) is unsatisfiable over R
• (¬ decrease) is unsatisfiable over Z, but not over R =⇒ require LIA solver
• remark: LIA reasoning is crucial, the problem is not wrong choice of expression e;

program does not terminate when executed with real number arithmetic

SS 2024 Constraint Solving lecture 8 2. Application, Motivating LIA 6/28

Example (Application of Linear Integer Arithmetic: Termination Proving)

• consider another program

int log2(int x) {

int n := 0;

while (x > 0) {

x := x div 2;

n := n + 1; }

return n - 1; }

• φ := x > 0 ∧ 2x′ ≤ x ∧ x ≤ 2x′ + 1 ∧ n′ = n + 1 contains strict inequality

• choose e(x,n) = x, d = 1 and f = −1; get two LIA problems that must be unsat
• φ ∧ x < x′ + 1 (¬ decrease)
• φ ∧ x < −1 (¬ bounded)

• (¬ bounded) is unsatisfiable over R
• (¬ decrease) is unsatisfiable over Z, but not over R =⇒ require LIA solver
• remark: LIA reasoning is crucial, the problem is not wrong choice of expression e;

program does not terminate when executed with real number arithmetic

SS 2024 Constraint Solving lecture 8 2. Application, Motivating LIA 6/28

Example (Application of Linear Integer Arithmetic: Termination Proving)

• consider another program

int log2(int x) {

int n := 0;

while (x > 0) {

x := x div 2;

n := n + 1; }

return n - 1; }

• φ := x > 0 ∧ 2x′ ≤ x ∧ x ≤ 2x′ + 1 ∧ n′ = n + 1 contains strict inequality
• choose e(x,n) = x, d = 1 and f = −1; get two LIA problems that must be unsat
• φ ∧ x < x′ + 1 (¬ decrease)
• φ ∧ x < −1 (¬ bounded)

• (¬ bounded) is unsatisfiable over R
• (¬ decrease) is unsatisfiable over Z, but not over R =⇒ require LIA solver
• remark: LIA reasoning is crucial, the problem is not wrong choice of expression e;

program does not terminate when executed with real number arithmetic

SS 2024 Constraint Solving lecture 8 2. Application, Motivating LIA 6/28

Example (Application of Linear Integer Arithmetic: Termination Proving)

• consider another program

int log2(int x) {

int n := 0;

while (x > 0) {

x := x div 2;

n := n + 1; }

return n - 1; }

• φ := x > 0 ∧ 2x′ ≤ x ∧ x ≤ 2x′ + 1 ∧ n′ = n + 1 contains strict inequality
• choose e(x,n) = x, d = 1 and f = −1; get two LIA problems that must be unsat
• φ ∧ x < x′ + 1 (¬ decrease)
• φ ∧ x < −1 (¬ bounded)

• (¬ bounded) is unsatisfiable over R

• (¬ decrease) is unsatisfiable over Z, but not over R =⇒ require LIA solver
• remark: LIA reasoning is crucial, the problem is not wrong choice of expression e;

program does not terminate when executed with real number arithmetic

SS 2024 Constraint Solving lecture 8 2. Application, Motivating LIA 6/28

Example (Application of Linear Integer Arithmetic: Termination Proving)

• consider another program

int log2(int x) {

int n := 0;

while (x > 0) {

x := x div 2;

n := n + 1; }

return n - 1; }

• φ := x > 0 ∧ 2x′ ≤ x ∧ x ≤ 2x′ + 1 ∧ n′ = n + 1 contains strict inequality
• choose e(x,n) = x, d = 1 and f = −1; get two LIA problems that must be unsat
• φ ∧ x < x′ + 1 (¬ decrease)
• φ ∧ x < −1 (¬ bounded)

• (¬ bounded) is unsatisfiable over R
• (¬ decrease) is unsatisfiable over Z, but not over R =⇒ require LIA solver

• remark: LIA reasoning is crucial, the problem is not wrong choice of expression e;
program does not terminate when executed with real number arithmetic

SS 2024 Constraint Solving lecture 8 2. Application, Motivating LIA 6/28

Example (Application of Linear Integer Arithmetic: Termination Proving)

• consider another program

int log2(int x) {

int n := 0;

while (x > 0) {

x := x div 2;

n := n + 1; }

return n - 1; }

• φ := x > 0 ∧ 2x′ ≤ x ∧ x ≤ 2x′ + 1 ∧ n′ = n + 1 contains strict inequality
• choose e(x,n) = x, d = 1 and f = −1; get two LIA problems that must be unsat
• φ ∧ x < x′ + 1 (¬ decrease)
• φ ∧ x < −1 (¬ bounded)

• (¬ bounded) is unsatisfiable over R
• (¬ decrease) is unsatisfiable over Z, but not over R =⇒ require LIA solver
• remark: LIA reasoning is crucial, the problem is not wrong choice of expression e;

program does not terminate when executed with real number arithmetic

SS 2024 Constraint Solving lecture 8 2. Application, Motivating LIA 6/28

Outline

1. Summary of Previous Lecture

2. Application, Motivating LIA

3. Branch and Bound

4. Proof of Small Model Property of LIA

5. Further Reading

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 7/28

Example

3x− 2y≥ −1

y≤ 4

2x + y≥ 5

3x− y≤ 7

• looking for solution in Z2

• infinite R2 solution space, six solutions in Z2

• simplex returns (9
7 ,

17
7)

2 4 6

2

4

6

Branch and Bound, a Solver for LIA Formulas – Idea

• add constraints that exclude current solution in R2 \ Z2 but do not change solutions in Z2

• in current solution 1 < x < 2, so use simplex on two augmented problems:

• C ∧ x ⩽ 1

unsatisfiable

• C ∧ x ⩾ 2

satisfiable, simplex can return (2,1)

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 8/28

Example

3x− 2y≥ −1

y≤ 4

2x + y≥ 5

3x− y≤ 7

• looking for solution in Z2

• infinite R2 solution space, six solutions in Z2

• simplex returns (9
7 ,

17
7)

2 4 6

2

4

6

Branch and Bound, a Solver for LIA Formulas – Idea

• add constraints that exclude current solution in R2 \ Z2 but do not change solutions in Z2

• in current solution 1 < x < 2, so use simplex on two augmented problems:

• C ∧ x ⩽ 1

unsatisfiable

• C ∧ x ⩾ 2

satisfiable, simplex can return (2,1)

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 8/28

Example

3x− 2y≥ −1

y≤ 4

2x + y≥ 5

3x− y≤ 7

• looking for solution in Z2

• infinite R2 solution space, six solutions in Z2

• simplex returns (9
7 ,

17
7) 2 4 6

2

4

6

Branch and Bound, a Solver for LIA Formulas – Idea

• add constraints that exclude current solution in R2 \ Z2 but do not change solutions in Z2

• in current solution 1 < x < 2, so use simplex on two augmented problems:

• C ∧ x ⩽ 1

unsatisfiable

• C ∧ x ⩾ 2

satisfiable, simplex can return (2,1)

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 8/28

Example

3x− 2y≥ −1

y≤ 4

2x + y≥ 5

3x− y≤ 7

• looking for solution in Z2

• infinite R2 solution space, six solutions in Z2

• simplex returns (9
7 ,

17
7) 2 4 6

2

4

6

Branch and Bound, a Solver for LIA Formulas – Idea

• add constraints that exclude current solution in R2 \ Z2 but do not change solutions in Z2

• in current solution 1 < x < 2, so use simplex on two augmented problems:

• C ∧ x ⩽ 1

unsatisfiable

• C ∧ x ⩾ 2

satisfiable, simplex can return (2,1)

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 8/28

Example

3x− 2y≥ −1

y≤ 4

2x + y≥ 5

3x− y≤ 7

• looking for solution in Z2

• infinite R2 solution space, six solutions in Z2

• simplex returns (9
7 ,

17
7) 2 4 6

2

4

6

Branch and Bound, a Solver for LIA Formulas – Idea

• add constraints that exclude current solution in R2 \ Z2 but do not change solutions in Z2

• in current solution 1 < x < 2, so use simplex on two augmented problems:

• C ∧ x ⩽ 1

unsatisfiable

• C ∧ x ⩾ 2

satisfiable, simplex can return (2,1)

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 8/28

Example

3x− 2y≥ −1

y≤ 4

2x + y≥ 5

3x− y≤ 7

• looking for solution in Z2

• infinite R2 solution space, six solutions in Z2

• simplex returns (9
7 ,

17
7) 2 4 6

2

4

6

Branch and Bound, a Solver for LIA Formulas – Idea

• add constraints that exclude current solution in R2 \ Z2 but do not change solutions in Z2

• in current solution 1 < x < 2, so use simplex on two augmented problems:

• C ∧ x ⩽ 1 unsatisfiable
• C ∧ x ⩾ 2

satisfiable, simplex can return (2,1)

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 8/28

Example

3x− 2y≥ −1

y≤ 4

2x + y≥ 5

3x− y≤ 7

• looking for solution in Z2

• infinite R2 solution space, six solutions in Z2

• simplex returns (9
7 ,

17
7) 2 4 6

2

4

6

Branch and Bound, a Solver for LIA Formulas – Idea

• add constraints that exclude current solution in R2 \ Z2 but do not change solutions in Z2

• in current solution 1 < x < 2, so use simplex on two augmented problems:

• C ∧ x ⩽ 1 unsatisfiable
• C ∧ x ⩾ 2 satisfiable,

simplex can return (2,1)

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 8/28

Example

3x− 2y≥ −1

y≤ 4

2x + y≥ 5

3x− y≤ 7

• looking for solution in Z2

• infinite R2 solution space, six solutions in Z2

• simplex returns (9
7 ,

17
7) 2 4 6

2

4

6

Branch and Bound, a Solver for LIA Formulas – Idea

• add constraints that exclude current solution in R2 \ Z2 but do not change solutions in Z2

• in current solution 1 < x < 2, so use simplex on two augmented problems:

• C ∧ x ⩽ 1 unsatisfiable
• C ∧ x ⩾ 2 satisfiable, simplex can return (2,1)

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 8/28

Algorithm BranchAndBound(φ)

Input: LIA formula φ, a conjunction of linear inequalities
Output: unsatisfiable, or satisfying assignment

let res be result of deciding φ over R ▷ e.g. by simplex
if res is unsatisfiable then

return unsatisfiable
else if res is solution over Z then

return res
else

let x be variable assigned non-integer value q in res
res = BranchAndBound(φ ∧ x ≤ ⌊q⌋)
if res ̸= unsatisfiable then

return res
else

return BranchAndBound(φ ∧ x ≥ ⌈q⌉)

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 9/28

Example (Termination Proof of log2, Continued)

• problematic formula (satisfiable over R)

ψ := x > 0 ∧ 2x′ ≤ x ∧ x ≤ 2x′ + 1 ∧ x < x′ + 1 (¬ decrease)

• execution of BranchAndBound on ψ (short notation: BB(ψ))

• simplex: v(x) = 1, v(x′) = 1
2

• invoke BB(ψ ∧ x′ ≥ 1), simplex: unsatisfiable
• invoke BB(ψ ∧ x′ ≤ 0), simplex: v(x) = 1

2 , v(x
′) = −1

4

• invoke BB(ψ ∧ x′ ≤ 0 ∧ x ≥ 1), simplex: unsatisfiable
• invoke BB(ψ ∧ x′ ≤ 0 ∧ x ≤ 0), simplex: unsatisfiable

• return unsatisfiable

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 10/28

Example (Termination Proof of log2, Continued)

• problematic formula (satisfiable over R)

ψ := x > 0 ∧ 2x′ ≤ x ∧ x ≤ 2x′ + 1 ∧ x < x′ + 1 (¬ decrease)

• execution of BranchAndBound on ψ (short notation: BB(ψ))

• simplex: v(x) = 1, v(x′) = 1
2

• invoke BB(ψ ∧ x′ ≥ 1), simplex: unsatisfiable
• invoke BB(ψ ∧ x′ ≤ 0), simplex: v(x) = 1

2 , v(x
′) = −1

4

• invoke BB(ψ ∧ x′ ≤ 0 ∧ x ≥ 1), simplex: unsatisfiable
• invoke BB(ψ ∧ x′ ≤ 0 ∧ x ≤ 0), simplex: unsatisfiable

• return unsatisfiable

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 10/28

Example (Termination Proof of log2, Continued)

• problematic formula (satisfiable over R)

ψ := x > 0 ∧ 2x′ ≤ x ∧ x ≤ 2x′ + 1 ∧ x < x′ + 1 (¬ decrease)

• execution of BranchAndBound on ψ (short notation: BB(ψ))

• simplex: v(x) = 1, v(x′) = 1
2

• invoke BB(ψ ∧ x′ ≥ 1), simplex: unsatisfiable

• invoke BB(ψ ∧ x′ ≤ 0), simplex: v(x) = 1
2 , v(x

′) = −1
4

• invoke BB(ψ ∧ x′ ≤ 0 ∧ x ≥ 1), simplex: unsatisfiable
• invoke BB(ψ ∧ x′ ≤ 0 ∧ x ≤ 0), simplex: unsatisfiable

• return unsatisfiable

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 10/28

Example (Termination Proof of log2, Continued)

• problematic formula (satisfiable over R)

ψ := x > 0 ∧ 2x′ ≤ x ∧ x ≤ 2x′ + 1 ∧ x < x′ + 1 (¬ decrease)

• execution of BranchAndBound on ψ (short notation: BB(ψ))

• simplex: v(x) = 1, v(x′) = 1
2

• invoke BB(ψ ∧ x′ ≥ 1), simplex: unsatisfiable
• invoke BB(ψ ∧ x′ ≤ 0), simplex: v(x) = 1

2 , v(x
′) = −1

4

• invoke BB(ψ ∧ x′ ≤ 0 ∧ x ≥ 1), simplex: unsatisfiable
• invoke BB(ψ ∧ x′ ≤ 0 ∧ x ≤ 0), simplex: unsatisfiable

• return unsatisfiable

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 10/28

Example (Termination Proof of log2, Continued)

• problematic formula (satisfiable over R)

ψ := x > 0 ∧ 2x′ ≤ x ∧ x ≤ 2x′ + 1 ∧ x < x′ + 1 (¬ decrease)

• execution of BranchAndBound on ψ (short notation: BB(ψ))

• simplex: v(x) = 1, v(x′) = 1
2

• invoke BB(ψ ∧ x′ ≥ 1), simplex: unsatisfiable
• invoke BB(ψ ∧ x′ ≤ 0), simplex: v(x) = 1

2 , v(x
′) = −1

4
• invoke BB(ψ ∧ x′ ≤ 0 ∧ x ≥ 1), simplex: unsatisfiable

• invoke BB(ψ ∧ x′ ≤ 0 ∧ x ≤ 0), simplex: unsatisfiable

• return unsatisfiable

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 10/28

Example (Termination Proof of log2, Continued)

• problematic formula (satisfiable over R)

ψ := x > 0 ∧ 2x′ ≤ x ∧ x ≤ 2x′ + 1 ∧ x < x′ + 1 (¬ decrease)

• execution of BranchAndBound on ψ (short notation: BB(ψ))

• simplex: v(x) = 1, v(x′) = 1
2

• invoke BB(ψ ∧ x′ ≥ 1), simplex: unsatisfiable
• invoke BB(ψ ∧ x′ ≤ 0), simplex: v(x) = 1

2 , v(x
′) = −1

4
• invoke BB(ψ ∧ x′ ≤ 0 ∧ x ≥ 1), simplex: unsatisfiable
• invoke BB(ψ ∧ x′ ≤ 0 ∧ x ≤ 0), simplex: unsatisfiable

• return unsatisfiable

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 10/28

Example (Termination Proof of log2, Continued)

• problematic formula (satisfiable over R)

ψ := x > 0 ∧ 2x′ ≤ x ∧ x ≤ 2x′ + 1 ∧ x < x′ + 1 (¬ decrease)

• execution of BranchAndBound on ψ (short notation: BB(ψ))

• simplex: v(x) = 1, v(x′) = 1
2

• invoke BB(ψ ∧ x′ ≥ 1), simplex: unsatisfiable
• invoke BB(ψ ∧ x′ ≤ 0), simplex: v(x) = 1

2 , v(x
′) = −1

4
• invoke BB(ψ ∧ x′ ≤ 0 ∧ x ≥ 1), simplex: unsatisfiable
• invoke BB(ψ ∧ x′ ≤ 0 ∧ x ≤ 0), simplex: unsatisfiable

• return unsatisfiable

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 10/28

Example (Branch and Bound – Problem)

consider ψ := 1 ≤ 3x− 3y ∧ 3x− 3y ≤ 2

• v(x) = 1
3 , v(y) = 0

, add x ≤ 0 or x ≥ 1

• for ψ ∧ x ≥ 1: v(x) = 1, v(y) = 1
3

, add y ≤ 0 or y ≥ 1

• . . . BranchAndBound is not terminating, since search space is unbounded

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 11/28

Example (Branch and Bound – Problem)

consider ψ := 1 ≤ 3x− 3y ∧ 3x− 3y ≤ 2

• v(x) = 1
3 , v(y) = 0

, add x ≤ 0 or x ≥ 1
• for ψ ∧ x ≥ 1: v(x) = 1, v(y) = 1

3

, add y ≤ 0 or y ≥ 1

• . . . BranchAndBound is not terminating, since search space is unbounded

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 11/28

Example (Branch and Bound – Problem)

consider ψ := 1 ≤ 3x− 3y ∧ 3x− 3y ≤ 2

• v(x) = 1
3 , v(y) = 0, add x ≤ 0 or x ≥ 1

• for ψ ∧ x ≥ 1: v(x) = 1, v(y) = 1
3

, add y ≤ 0 or y ≥ 1

• . . . BranchAndBound is not terminating, since search space is unbounded

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 11/28

Example (Branch and Bound – Problem)

consider ψ := 1 ≤ 3x− 3y ∧ 3x− 3y ≤ 2

• v(x) = 1
3 , v(y) = 0, add x ≤ 0 or x ≥ 1

• for ψ ∧ x ≥ 1: v(x) = 1, v(y) = 1
3

, add y ≤ 0 or y ≥ 1
• . . . BranchAndBound is not terminating, since search space is unbounded

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 11/28

Example (Branch and Bound – Problem)

consider ψ := 1 ≤ 3x− 3y ∧ 3x− 3y ≤ 2

• v(x) = 1
3 , v(y) = 0, add x ≤ 0 or x ≥ 1

• for ψ ∧ x ≥ 1: v(x) = 1, v(y) = 1
3 , add y ≤ 0 or y ≥ 1

• . . . BranchAndBound is not terminating, since search space is unbounded

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 11/28

Example (Branch and Bound – Problem)

consider ψ := 1 ≤ 3x− 3y ∧ 3x− 3y ≤ 2

• v(x) = 1
3 , v(y) = 0, add x ≤ 0 or x ≥ 1

• for ψ ∧ x ≥ 1: v(x) = 1, v(y) = 1
3 , add y ≤ 0 or y ≥ 1

• . . . BranchAndBound is not terminating, since search space is unbounded

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 11/28

Theorem (Small Model Property of LIA)

if LIA formula ψ has solution over Z then it has a solution v with

|v(x)| ≤ bound(ψ) := (n + 1) ·
√

nn · cn

for all x where

• n: number of variables in ψ
• c: maximal absolute value of numbers occurring in ψ

Consequences and Remarks

• satisfiability of ψ for LIA formula is in NP
• invoke

BranchAndBound

ψ ∧ ∧
x∈vars(ψ)

−bound(ψ) ≤ x ≤ bound(ψ)


to decide solvability of ψ over Z
• bound is quite tight: c ≤ x1 ∧ c · x1 ≤ x2 ∧ . . . ∧ c · xn−1 ≤ xn implies xn ≥ cn

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 12/28

Theorem (Small Model Property of LIA)

if LIA formula ψ has solution over Z then it has a solution v with

|v(x)| ≤ bound(ψ) := (n + 1) ·
√

nn · cn

for all x where

• n: number of variables in ψ
• c: maximal absolute value of numbers occurring in ψ

Consequences and Remarks

• satisfiability of ψ for LIA formula is in NP

• invoke

BranchAndBound

ψ ∧ ∧
x∈vars(ψ)

−bound(ψ) ≤ x ≤ bound(ψ)


to decide solvability of ψ over Z
• bound is quite tight: c ≤ x1 ∧ c · x1 ≤ x2 ∧ . . . ∧ c · xn−1 ≤ xn implies xn ≥ cn

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 12/28

Theorem (Small Model Property of LIA)

if LIA formula ψ has solution over Z then it has a solution v with

|v(x)| ≤ bound(ψ) := (n + 1) ·
√

nn · cn

for all x where

• n: number of variables in ψ
• c: maximal absolute value of numbers occurring in ψ

Consequences and Remarks

• satisfiability of ψ for LIA formula is in NP
• invoke

BranchAndBound

ψ ∧ ∧
x∈vars(ψ)

−bound(ψ) ≤ x ≤ bound(ψ)


to decide solvability of ψ over Z

• bound is quite tight: c ≤ x1 ∧ c · x1 ≤ x2 ∧ . . . ∧ c · xn−1 ≤ xn implies xn ≥ cn

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 12/28

Theorem (Small Model Property of LIA)

if LIA formula ψ has solution over Z then it has a solution v with

|v(x)| ≤ bound(ψ) := (n + 1) ·
√

nn · cn

for all x where

• n: number of variables in ψ
• c: maximal absolute value of numbers occurring in ψ

Consequences and Remarks

• satisfiability of ψ for LIA formula is in NP
• invoke

BranchAndBound

ψ ∧ ∧
x∈vars(ψ)

−bound(ψ) ≤ x ≤ bound(ψ)


to decide solvability of ψ over Z
• bound is quite tight: c ≤ x1 ∧ c · x1 ≤ x2 ∧ . . . ∧ c · xn−1 ≤ xn implies xn ≥ cn

SS 2024 Constraint Solving lecture 8 3. Branch and Bound 12/28

Outline

1. Summary of Previous Lecture

2. Application, Motivating LIA

3. Branch and Bound

4. Proof of Small Model Property of LIA

5. Further Reading

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 13/28

Geometric Objects

• polytope: convex hull of finite set of points X

hull(X) = {λ1v⃗1 + . . .+ λmv⃗m | {v⃗1, . . . , v⃗m} ⊆ X ∧ λ1, . . . , λm ≥ 0 ∧
∑

λi = 1}

• finitely generated cone: non-negative linear combinations of finite set of vectors V

cone(V) = {λ1v⃗1 + . . .+ λmv⃗m | {v⃗1, . . . , v⃗m} ⊆ V ∧ λ1, . . . , λm ≥ 0}

• polyhedron: polytope + finitely generated cone

hull(X) + cone(V) = {x⃗ + v⃗ | x⃗ ∈ hull(X) ∧ v⃗ ∈ cone(V)}

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 14/28

Geometric Objects

• polytope: convex hull of finite set of points X

hull(X) = {λ1v⃗1 + . . .+ λmv⃗m | {v⃗1, . . . , v⃗m} ⊆ X ∧ λ1, . . . , λm ≥ 0 ∧
∑

λi = 1}

• finitely generated cone: non-negative linear combinations of finite set of vectors V

cone(V) = {λ1v⃗1 + . . .+ λmv⃗m | {v⃗1, . . . , v⃗m} ⊆ V ∧ λ1, . . . , λm ≥ 0}

• polyhedron: polytope + finitely generated cone

hull(X) + cone(V) = {x⃗ + v⃗ | x⃗ ∈ hull(X) ∧ v⃗ ∈ cone(V)}

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 14/28

Geometric Objects

• polytope: convex hull of finite set of points X

hull(X) = {λ1v⃗1 + . . .+ λmv⃗m | {v⃗1, . . . , v⃗m} ⊆ X ∧ λ1, . . . , λm ≥ 0 ∧
∑

λi = 1}

• finitely generated cone: non-negative linear combinations of finite set of vectors V

cone(V) = {λ1v⃗1 + . . .+ λmv⃗m | {v⃗1, . . . , v⃗m} ⊆ V ∧ λ1, . . . , λm ≥ 0}

• polyhedron: polytope + finitely generated cone

hull(X) + cone(V) = {x⃗ + v⃗ | x⃗ ∈ hull(X) ∧ v⃗ ∈ cone(V)}

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 14/28

More Geometric Objects

• C is polyhedral cone iff C = {x⃗ | Ax⃗ ≤ 0⃗} for some matrix A
iff C is intersection of finitely many half-spaces

Example

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 15/28

More Geometric Objects

• C is polyhedral cone iff C = {x⃗ | Ax⃗ ≤ 0⃗} for some matrix A
iff C is intersection of finitely many half-spaces

Example

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 15/28

More Geometric Objects

• C is polyhedral cone iff C = {x⃗ | Ax⃗ ≤ 0⃗} for some matrix A
iff C is intersection of finitely many half-spaces

Example

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 15/28

More Geometric Objects

• C is polyhedral cone iff C = {x⃗ | Ax⃗ ≤ 0⃗} for some matrix A
iff C is intersection of finitely many half-spaces

Example

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 15/28

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Theorem (Decomposition Theorem for Polyhedra)

A set P ⊆ Rn can be described as a polyhedron P = hull(X) + cone(V) for finite X and V
iff P = {x⃗ | Ax⃗ ≤ b⃗} for some matrix A and vector b⃗.
Moreover, given X and V one can compute A and b⃗, and vice versa.

Example

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 16/28

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Theorem (Decomposition Theorem for Polyhedra)

A set P ⊆ Rn can be described as a polyhedron P = hull(X) + cone(V) for finite X and V
iff P = {x⃗ | Ax⃗ ≤ b⃗} for some matrix A and vector b⃗.
Moreover, given X and V one can compute A and b⃗, and vice versa.

Example

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 16/28

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Theorem (Decomposition Theorem for Polyhedra)

A set P ⊆ Rn can be described as a polyhedron P = hull(X) + cone(V) for finite X and V
iff P = {x⃗ | Ax⃗ ≤ b⃗} for some matrix A and vector b⃗.
Moreover, given X and V one can compute A and b⃗, and vice versa.

Example

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 16/28

Proof Idea of Small Model Property

1 convert conjunctive LIA formula ψ into form Ax⃗ ≤ b⃗

2 represent polyhedron {x⃗ | Ax⃗ ≤ b⃗} as polyhedron P = hull(X) + cone(V)

3 show that P has small integral solutions, depending on X and V

4 approximate size of entries of vectors in X and V to obtain small model property

Remark

• given ψ, one can compute X and V instead of using approximations
• however, this would be expensive: decomposition theorem requires exponentially

many steps (in n,m) for input A ∈ Zm×n and b⃗ ∈ Zm

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 17/28

Proof Idea of Small Model Property

1 convert conjunctive LIA formula ψ into form Ax⃗ ≤ b⃗

2 represent polyhedron {x⃗ | Ax⃗ ≤ b⃗} as polyhedron P = hull(X) + cone(V)

3 show that P has small integral solutions, depending on X and V

4 approximate size of entries of vectors in X and V to obtain small model property

Remark

• given ψ, one can compute X and V instead of using approximations
• however, this would be expensive: decomposition theorem requires exponentially

many steps (in n,m) for input A ∈ Zm×n and b⃗ ∈ Zm

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 17/28

Proof Idea of Small Model Property

1 convert conjunctive LIA formula ψ into form Ax⃗ ≤ b⃗

2 represent polyhedron {x⃗ | Ax⃗ ≤ b⃗} as polyhedron P = hull(X) + cone(V)

3 show that P has small integral solutions, depending on X and V

4 approximate size of entries of vectors in X and V to obtain small model property

Remark

• given ψ, one can compute X and V instead of using approximations
• however, this would be expensive: decomposition theorem requires exponentially

many steps (in n,m) for input A ∈ Zm×n and b⃗ ∈ Zm

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 17/28

Proof Idea of Small Model Property

1 convert conjunctive LIA formula ψ into form Ax⃗ ≤ b⃗

2 represent polyhedron {x⃗ | Ax⃗ ≤ b⃗} as polyhedron P = hull(X) + cone(V)

3 show that P has small integral solutions, depending on X and V

4 approximate size of entries of vectors in X and V to obtain small model property

Remark

• given ψ, one can compute X and V instead of using approximations
• however, this would be expensive: decomposition theorem requires exponentially

many steps (in n,m) for input A ∈ Zm×n and b⃗ ∈ Zm

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 17/28

Proof Idea of Small Model Property

1 convert conjunctive LIA formula ψ into form Ax⃗ ≤ b⃗

2 represent polyhedron {x⃗ | Ax⃗ ≤ b⃗} as polyhedron P = hull(X) + cone(V)

3 show that P has small integral solutions, depending on X and V

4 approximate size of entries of vectors in X and V to obtain small model property

Remark

• given ψ, one can compute X and V instead of using approximations
• however, this would be expensive: decomposition theorem requires exponentially

many steps (in n,m) for input A ∈ Zm×n and b⃗ ∈ Zm

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 17/28

Step 1: Conjunctive LIA Formula into Matrix Form Ax⃗ ≤ b⃗

• (variable renamed) formula

x1 > 0 2x2 ≤ x1 x1 ≤ 2x2 + 1 x1 < x2 + 1

• eliminate strict inequalities (only valid in LIA)

x1 ≥ 0 + 1 2x2 ≤ x1 x1 ≤ 2x2 + 1 x1 + 1 ≤ x2 + 1

• normalize (only ≤, constant to the right-hand-side)

−x1 ≤ −1 −x1 + 2x2 ≤ 0 x1 − 2x2 ≤ 1 x1 − x2 ≤ 0

• matrix form 
−1 0

−1 2

1 −2

1 −1


(

x1

x2

)
≤


−1

0

1

0



SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 18/28

Step 1: Conjunctive LIA Formula into Matrix Form Ax⃗ ≤ b⃗

• (variable renamed) formula

x1 > 0 2x2 ≤ x1 x1 ≤ 2x2 + 1 x1 < x2 + 1

• eliminate strict inequalities (only valid in LIA)

x1 ≥ 0 + 1 2x2 ≤ x1 x1 ≤ 2x2 + 1 x1 + 1 ≤ x2 + 1

• normalize (only ≤, constant to the right-hand-side)

−x1 ≤ −1 −x1 + 2x2 ≤ 0 x1 − 2x2 ≤ 1 x1 − x2 ≤ 0

• matrix form 
−1 0

−1 2

1 −2

1 −1


(

x1

x2

)
≤


−1

0

1

0



SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 18/28

Step 1: Conjunctive LIA Formula into Matrix Form Ax⃗ ≤ b⃗

• (variable renamed) formula

x1 > 0 2x2 ≤ x1 x1 ≤ 2x2 + 1 x1 < x2 + 1

• eliminate strict inequalities (only valid in LIA)

x1 ≥ 0 + 1 2x2 ≤ x1 x1 ≤ 2x2 + 1 x1 + 1 ≤ x2 + 1

• normalize (only ≤, constant to the right-hand-side)

−x1 ≤ −1 −x1 + 2x2 ≤ 0 x1 − 2x2 ≤ 1 x1 − x2 ≤ 0

• matrix form 
−1 0

−1 2

1 −2

1 −1


(

x1

x2

)
≤


−1

0

1

0



SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 18/28

Step 1: Conjunctive LIA Formula into Matrix Form Ax⃗ ≤ b⃗

• (variable renamed) formula

x1 > 0 2x2 ≤ x1 x1 ≤ 2x2 + 1 x1 < x2 + 1

• eliminate strict inequalities (only valid in LIA)

x1 ≥ 0 + 1 2x2 ≤ x1 x1 ≤ 2x2 + 1 x1 + 1 ≤ x2 + 1

• normalize (only ≤, constant to the right-hand-side)

−x1 ≤ −1 −x1 + 2x2 ≤ 0 x1 − 2x2 ≤ 1 x1 − x2 ≤ 0

• matrix form 
−1 0

−1 2

1 −2

1 −1


(

x1

x2

)
≤


−1

0

1

0


SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 18/28

Step 3: Small Integral Solutions of Polyhedrons

• consider finite sets X ⊆ Rn and V ⊆ Zn

• define

B = {λ1v⃗1 + . . .+ λnv⃗n | {v⃗1, . . . , v⃗n} ⊆ V ∧ 1 ≥ λ1, . . . , λn ≥ 0} ⊆ cone(V)

Theorem

(hull(X) + cone(V)) ∩ Zn = ∅ ←→ (hull(X) + B) ∩ Zn = ∅

Corollary

Assume |c| ≤ b ∈ Z for all entries c of all vectors in X ∪ V.
Define Bnd := (n + 1) · b. Then

(hull(X) + cone(V)) ∩ Zn = ∅
←→ (hull(X) + cone(V)) ∩ {−Bnd, . . . ,Bnd}n = ∅

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 19/28

Step 3: Small Integral Solutions of Polyhedrons

• consider finite sets X ⊆ Rn and V ⊆ Zn

• define

B = {λ1v⃗1 + . . .+ λnv⃗n | {v⃗1, . . . , v⃗n} ⊆ V ∧ 1 ≥ λ1, . . . , λn ≥ 0} ⊆ cone(V)

Theorem

(hull(X) + cone(V)) ∩ Zn = ∅ ←→ (hull(X) + B) ∩ Zn = ∅

Corollary

Assume |c| ≤ b ∈ Z for all entries c of all vectors in X ∪ V.
Define Bnd := (n + 1) · b. Then

(hull(X) + cone(V)) ∩ Zn = ∅
←→ (hull(X) + cone(V)) ∩ {−Bnd, . . . ,Bnd}n = ∅

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 19/28

Step 3: Small Integral Solutions of Polyhedrons

• consider finite sets X ⊆ Rn and V ⊆ Zn

• define

B = {λ1v⃗1 + . . .+ λnv⃗n | {v⃗1, . . . , v⃗n} ⊆ V ∧ 1 ≥ λ1, . . . , λn ≥ 0} ⊆ cone(V)

Theorem

(hull(X) + cone(V)) ∩ Zn = ∅ ←→ (hull(X) + B) ∩ Zn = ∅

Corollary

Assume |c| ≤ b ∈ Z for all entries c of all vectors in X ∪ V.
Define Bnd := (n + 1) · b. Then

(hull(X) + cone(V)) ∩ Zn = ∅
←→ (hull(X) + cone(V)) ∩ {−Bnd, . . . ,Bnd}n = ∅

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 19/28

Theorem

(hull(X) + cone(V)) ∩ Zn = ∅ ←→ (hull(X) + B) ∩ Zn = ∅

Proof

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 20/28

Theorem

(hull(X) + cone(V)) ∩ Zn = ∅ ←→ (hull(X) + B) ∩ Zn = ∅

Proof

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 20/28

Theorem

(hull(X) + cone(V)) ∩ Zn = ∅ ←→ (hull(X) + B) ∩ Zn = ∅

Proof

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 20/28

Theorem

(hull(X) + cone(V)) ∩ Zn = ∅ ←→ (hull(X) + B) ∩ Zn = ∅

Proof

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 20/28

Step 2a: Decomposing Polyhedron P = {u⃗ | Au⃗ ≤ b⃗} into hull(X) + cone(V)

1 use FMW to convert polyhedral cone of

{
v⃗

∣∣∣∣∣
(

A −b⃗

0⃗ −1

)
v⃗ ≤ 0⃗

}
into cone(C) for integral

vectors C =

{(
y⃗1

τ1

)
, . . . ,

(
y⃗ℓ

τℓ

)
,

(
z⃗1

0

)
, . . . ,

(
z⃗k

0

)}
with τi > 0 for all 1 ≤ i ≤ ℓ

2 define x⃗i :=
1
τi

y⃗i

3 return X := {x⃗1, . . . , x⃗ℓ} and V := {⃗z1, . . . , z⃗k}

Theorem

P = hull(X) + cone(V)

Bounds
• the absolute values of the numbers in X ∪ V are all bounded by the absolute values

of the numbers in C
• hence, bounds on C can be reused to bound vectors in X ∪ V

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 21/28

Step 2a: Decomposing Polyhedron P = {u⃗ | Au⃗ ≤ b⃗} into hull(X) + cone(V)

1 use FMW to convert polyhedral cone of

{
v⃗

∣∣∣∣∣
(

A −b⃗

0⃗ −1

)
v⃗ ≤ 0⃗

}
into cone(C) for integral

vectors C =

{(
y⃗1

τ1

)
, . . . ,

(
y⃗ℓ

τℓ

)
,

(
z⃗1

0

)
, . . . ,

(
z⃗k

0

)}
with τi > 0 for all 1 ≤ i ≤ ℓ

2 define x⃗i :=
1
τi

y⃗i

3 return X := {x⃗1, . . . , x⃗ℓ} and V := {⃗z1, . . . , z⃗k}

Theorem

P = hull(X) + cone(V)

Bounds
• the absolute values of the numbers in X ∪ V are all bounded by the absolute values

of the numbers in C
• hence, bounds on C can be reused to bound vectors in X ∪ V

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 21/28

Step 2a: Decomposing Polyhedron P = {u⃗ | Au⃗ ≤ b⃗} into hull(X) + cone(V)

1 use FMW to convert polyhedral cone of

{
v⃗

∣∣∣∣∣
(

A −b⃗

0⃗ −1

)
v⃗ ≤ 0⃗

}
into cone(C) for integral

vectors C =

{(
y⃗1

τ1

)
, . . . ,

(
y⃗ℓ

τℓ

)
,

(
z⃗1

0

)
, . . . ,

(
z⃗k

0

)}
with τi > 0 for all 1 ≤ i ≤ ℓ

2 define x⃗i :=
1
τi

y⃗i

3 return X := {x⃗1, . . . , x⃗ℓ} and V := {⃗z1, . . . , z⃗k}

Theorem

P = hull(X) + cone(V)

Bounds
• the absolute values of the numbers in X ∪ V are all bounded by the absolute values

of the numbers in C
• hence, bounds on C can be reused to bound vectors in X ∪ V

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 21/28

Step 2a: Decomposing Polyhedron P = {u⃗ | Au⃗ ≤ b⃗} into hull(X) + cone(V)

1 use FMW to convert polyhedral cone of

{
v⃗

∣∣∣∣∣
(

A −b⃗

0⃗ −1

)
v⃗ ≤ 0⃗

}
into cone(C) for integral

vectors C =

{(
y⃗1

τ1

)
, . . . ,

(
y⃗ℓ

τℓ

)
,

(
z⃗1

0

)
, . . . ,

(
z⃗k

0

)}
with τi > 0 for all 1 ≤ i ≤ ℓ

2 define x⃗i :=
1
τi

y⃗i

3 return X := {x⃗1, . . . , x⃗ℓ} and V := {⃗z1, . . . , z⃗k}

Theorem

P = hull(X) + cone(V)

Bounds
• the absolute values of the numbers in X ∪ V are all bounded by the absolute values

of the numbers in C
• hence, bounds on C can be reused to bound vectors in X ∪ V

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 21/28

Step 2a: Decomposing Polyhedron P = {u⃗ | Au⃗ ≤ b⃗} into hull(X) + cone(V)

1 use FMW to convert polyhedral cone of

{
v⃗

∣∣∣∣∣
(

A −b⃗

0⃗ −1

)
v⃗ ≤ 0⃗

}
into cone(C) for integral

vectors C =

{(
y⃗1

τ1

)
, . . . ,

(
y⃗ℓ

τℓ

)
,

(
z⃗1

0

)
, . . . ,

(
z⃗k

0

)}
with τi > 0 for all 1 ≤ i ≤ ℓ

2 define x⃗i :=
1
τi

y⃗i

3 return X := {x⃗1, . . . , x⃗ℓ} and V := {⃗z1, . . . , z⃗k}

Theorem

P = hull(X) + cone(V)

Bounds
• the absolute values of the numbers in X ∪ V are all bounded by the absolute values

of the numbers in C
• hence, bounds on C can be reused to bound vectors in X ∪ V

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 21/28

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

First direction: finitely generated implies polyhedral

• consider cone (V) for V = {v⃗1, . . . , v⃗m} ⊆ Zn

• consider every set W ⊆ V of linearly independent vectors with |W| = n− 1
• obtain integral normal vector c⃗ of hyper-space spanned by W
• next check whether V is contained in hyper-space {v⃗ | v⃗ · c⃗ ≤ 0} or {v⃗ | v⃗ · (−c⃗) ≤ 0}

• if v⃗i · c⃗ ≤ 0 for all i, then add c⃗ as row to A
• if v⃗i · c⃗ ≥ 0 for all i, then add −c⃗ as row to A

• cone (V) = {x⃗ | Ax⃗ ≤ 0⃗}
• bounds

• each normal vector c⃗ can be computed via determinants
=⇒ obtain bound on numbers in c⃗ by using bounds on determinants

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 22/28

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

First direction: finitely generated implies polyhedral

• consider cone (V) for V = {v⃗1, . . . , v⃗m} ⊆ Zn

• consider every set W ⊆ V of linearly independent vectors with |W| = n− 1

• obtain integral normal vector c⃗ of hyper-space spanned by W
• next check whether V is contained in hyper-space {v⃗ | v⃗ · c⃗ ≤ 0} or {v⃗ | v⃗ · (−c⃗) ≤ 0}

• if v⃗i · c⃗ ≤ 0 for all i, then add c⃗ as row to A
• if v⃗i · c⃗ ≥ 0 for all i, then add −c⃗ as row to A

• cone (V) = {x⃗ | Ax⃗ ≤ 0⃗}
• bounds

• each normal vector c⃗ can be computed via determinants
=⇒ obtain bound on numbers in c⃗ by using bounds on determinants

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 22/28

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

First direction: finitely generated implies polyhedral

• consider cone (V) for V = {v⃗1, . . . , v⃗m} ⊆ Zn

• consider every set W ⊆ V of linearly independent vectors with |W| = n− 1
• obtain integral normal vector c⃗ of hyper-space spanned by W

• next check whether V is contained in hyper-space {v⃗ | v⃗ · c⃗ ≤ 0} or {v⃗ | v⃗ · (−c⃗) ≤ 0}

• if v⃗i · c⃗ ≤ 0 for all i, then add c⃗ as row to A
• if v⃗i · c⃗ ≥ 0 for all i, then add −c⃗ as row to A

• cone (V) = {x⃗ | Ax⃗ ≤ 0⃗}
• bounds

• each normal vector c⃗ can be computed via determinants
=⇒ obtain bound on numbers in c⃗ by using bounds on determinants

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 22/28

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

First direction: finitely generated implies polyhedral

• consider cone (V) for V = {v⃗1, . . . , v⃗m} ⊆ Zn

• consider every set W ⊆ V of linearly independent vectors with |W| = n− 1
• obtain integral normal vector c⃗ of hyper-space spanned by W
• next check whether V is contained in hyper-space {v⃗ | v⃗ · c⃗ ≤ 0} or {v⃗ | v⃗ · (−c⃗) ≤ 0}
• if v⃗i · c⃗ ≤ 0 for all i, then add c⃗ as row to A
• if v⃗i · c⃗ ≥ 0 for all i, then add −c⃗ as row to A

• cone (V) = {x⃗ | Ax⃗ ≤ 0⃗}
• bounds

• each normal vector c⃗ can be computed via determinants
=⇒ obtain bound on numbers in c⃗ by using bounds on determinants

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 22/28

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

First direction: finitely generated implies polyhedral

• consider cone (V) for V = {v⃗1, . . . , v⃗m} ⊆ Zn

• consider every set W ⊆ V of linearly independent vectors with |W| = n− 1
• obtain integral normal vector c⃗ of hyper-space spanned by W
• next check whether V is contained in hyper-space {v⃗ | v⃗ · c⃗ ≤ 0} or {v⃗ | v⃗ · (−c⃗) ≤ 0}
• if v⃗i · c⃗ ≤ 0 for all i, then add c⃗ as row to A
• if v⃗i · c⃗ ≥ 0 for all i, then add −c⃗ as row to A

• cone (V) = {x⃗ | Ax⃗ ≤ 0⃗}

• bounds

• each normal vector c⃗ can be computed via determinants
=⇒ obtain bound on numbers in c⃗ by using bounds on determinants

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 22/28

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

First direction: finitely generated implies polyhedral

• consider cone (V) for V = {v⃗1, . . . , v⃗m} ⊆ Zn

• consider every set W ⊆ V of linearly independent vectors with |W| = n− 1
• obtain integral normal vector c⃗ of hyper-space spanned by W
• next check whether V is contained in hyper-space {v⃗ | v⃗ · c⃗ ≤ 0} or {v⃗ | v⃗ · (−c⃗) ≤ 0}
• if v⃗i · c⃗ ≤ 0 for all i, then add c⃗ as row to A
• if v⃗i · c⃗ ≥ 0 for all i, then add −c⃗ as row to A

• cone (V) = {x⃗ | Ax⃗ ≤ 0⃗}
• bounds
• each normal vector c⃗ can be computed via determinants

=⇒ obtain bound on numbers in c⃗ by using bounds on determinants

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 22/28

Example: Construction of Polyhedral Cone from Finitely Generated Cone

V =

{(
−3

−2

)
,

(
−2

−2

)
,

(
−1

−2

)}

A =

(

− 2 3

2 −1

)

• pick W = {w⃗}, w⃗ =

(
−2

−2

)
and consider span W

• compute normal vector c⃗ =
(
−2 2

)
• if V is in same half-space, add ±c⃗ to A

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 23/28

Example: Construction of Polyhedral Cone from Finitely Generated Cone

V =

{(
−3

−2

)
,

(
−2

−2

)
,

(
−1

−2

)}

A =

(

− 2 3

2 −1

)

• pick W = {w⃗}, w⃗ =

(
−3

−2

)
and consider span W

• compute normal vector c⃗ =
(
−2 3

)
• if V is in same half-space, add ±c⃗ to A

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 23/28

Example: Construction of Polyhedral Cone from Finitely Generated Cone

V =

{(
−3

−2

)
,

(
−2

−2

)
,

(
−1

−2

)}

A =

(

− 2 3

2 −1

)

• pick W = {w⃗}, w⃗ =

(
−3

−2

)
and consider span W

• compute normal vector c⃗ =
(
−2 3

)

• if V is in same half-space, add ±c⃗ to A

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 23/28

Example: Construction of Polyhedral Cone from Finitely Generated Cone

V =

{(
−3

−2

)
,

(
−2

−2

)
,

(
−1

−2

)}

A =

(

− 2 3

2 −1

)

• pick W = {w⃗}, w⃗ =

(
−3

−2

)
and consider span W

• compute normal vector c⃗ =
(
−2 3

)
• if V is in same half-space, add ±c⃗ to A

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 23/28

Example: Construction of Polyhedral Cone from Finitely Generated Cone

V =

{(
−3

−2

)
,

(
−2

−2

)
,

(
−1

−2

)}

A =

(
− 2 3

2 −1

)

• pick W = {w⃗}, w⃗ =

(
−3

−2

)
and consider span W

• compute normal vector c⃗ =
(
−2 3

)
• if V is in same half-space, add ±c⃗ to A

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 23/28

Example: Construction of Polyhedral Cone from Finitely Generated Cone

V =

{(
−3

−2

)
,

(
−2

−2

)
,

(
−1

−2

)}

A =

(
− 2 3

2 −1

)

• pick W = {w⃗}, w⃗ =

(
−2

−2

)
and consider span W

• compute normal vector c⃗ =
(
−2 2

)
• if V is in same half-space, add ±c⃗ to A

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 23/28

Example: Construction of Polyhedral Cone from Finitely Generated Cone

V =

{(
−3

−2

)
,

(
−2

−2

)
,

(
−1

−2

)}

A =

(
− 2 3

2 −1

)

• pick W = {w⃗}, w⃗ =

(
−2

−2

)
and consider span W

• compute normal vector c⃗ =
(
−2 2

)
• if V is in same half-space, add ±c⃗ to A

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 23/28

Example: Construction of Polyhedral Cone from Finitely Generated Cone

V =

{(
−3

−2

)
,

(
−2

−2

)
,

(
−1

−2

)}

A =

(
− 2 3

2 −1

)

• pick W = {w⃗}, w⃗ =

(
−2

−2

)
and consider span W

• compute normal vector c⃗ =
(
−2 2

)
• if V is in same half-space, add ±c⃗ to A

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 23/28

Example: Construction of Polyhedral Cone from Finitely Generated Cone

V =

{(
−3

−2

)
,

(
−2

−2

)
,

(
−1

−2

)}

A =

(
− 2 3

2 −1

)

• pick W = {w⃗}, w⃗ =

(
−1

−2

)
and consider span W

• compute normal vector c⃗ =
(
−2 1

)
• if V is in same half-space, add ±c⃗ to A

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 23/28

Example: Construction of Polyhedral Cone from Finitely Generated Cone

V =

{(
−3

−2

)
,

(
−2

−2

)
,

(
−1

−2

)}

A =

(
− 2 3

2 −1

)

• pick W = {w⃗}, w⃗ =

(
−1

−2

)
and consider span W

• compute normal vector c⃗ =
(
−2 1

)
• if V is in same half-space, add ±c⃗ to A

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 23/28

Example: Construction of Polyhedral Cone from Finitely Generated Cone

V =

{(
−3

−2

)
,

(
−2

−2

)
,

(
−1

−2

)}

A =

(
− 2 3

2 −1

)

• pick W = {w⃗}, w⃗ =

(
−1

−2

)
and consider span W

• compute normal vector c⃗ =
(
−2 1

)
• if V is in same half-space, add ±c⃗ to A

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 23/28

Example: Construction of Polyhedral Cone from Finitely Generated Cone

V =

{(
−3

−2

)
,

(
−2

−2

)
,

(
−1

−2

)}

A =

(
− 2 3

2 −1

)

• pick W = {w⃗}, w⃗ =

(
−1

−2

)
and consider span W

• compute normal vector c⃗ =
(
−2 1

)
• if V is in same half-space, add ±c⃗ to A

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 23/28

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

• consider {x⃗ | Ax⃗ ≤ 0⃗}

• define W as the set of row vectors of A
• by first direction obtain integral matrix B such that cone (W) = {x⃗ | Bx⃗ ≤ 0⃗}
• define V as the set of row vectors of B
• {x⃗ | Ax⃗ ≤ 0⃗} = cone (V)
• bounds carry over from first direction

Step 4: Theorem of Farkas, Minkowski, Weyl (bounded version)

Let C ⊆ Rn be a polyhedral cone, given via an integral matrix A. Let b be a bound for
all matrix entries, b ≥ |Aij|. Then C is generated by a finite set of integral vectors V
whose entries are at most ±

√
(n− 1)n−1 · bn−1.

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 24/28

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

• consider {x⃗ | Ax⃗ ≤ 0⃗}
• define W as the set of row vectors of A

• by first direction obtain integral matrix B such that cone (W) = {x⃗ | Bx⃗ ≤ 0⃗}
• define V as the set of row vectors of B
• {x⃗ | Ax⃗ ≤ 0⃗} = cone (V)
• bounds carry over from first direction

Step 4: Theorem of Farkas, Minkowski, Weyl (bounded version)

Let C ⊆ Rn be a polyhedral cone, given via an integral matrix A. Let b be a bound for
all matrix entries, b ≥ |Aij|. Then C is generated by a finite set of integral vectors V
whose entries are at most ±

√
(n− 1)n−1 · bn−1.

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 24/28

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

• consider {x⃗ | Ax⃗ ≤ 0⃗}
• define W as the set of row vectors of A
• by first direction obtain integral matrix B such that cone (W) = {x⃗ | Bx⃗ ≤ 0⃗}

• define V as the set of row vectors of B
• {x⃗ | Ax⃗ ≤ 0⃗} = cone (V)
• bounds carry over from first direction

Step 4: Theorem of Farkas, Minkowski, Weyl (bounded version)

Let C ⊆ Rn be a polyhedral cone, given via an integral matrix A. Let b be a bound for
all matrix entries, b ≥ |Aij|. Then C is generated by a finite set of integral vectors V
whose entries are at most ±

√
(n− 1)n−1 · bn−1.

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 24/28

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

• consider {x⃗ | Ax⃗ ≤ 0⃗}
• define W as the set of row vectors of A
• by first direction obtain integral matrix B such that cone (W) = {x⃗ | Bx⃗ ≤ 0⃗}
• define V as the set of row vectors of B

• {x⃗ | Ax⃗ ≤ 0⃗} = cone (V)
• bounds carry over from first direction

Step 4: Theorem of Farkas, Minkowski, Weyl (bounded version)

Let C ⊆ Rn be a polyhedral cone, given via an integral matrix A. Let b be a bound for
all matrix entries, b ≥ |Aij|. Then C is generated by a finite set of integral vectors V
whose entries are at most ±

√
(n− 1)n−1 · bn−1.

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 24/28

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

• consider {x⃗ | Ax⃗ ≤ 0⃗}
• define W as the set of row vectors of A
• by first direction obtain integral matrix B such that cone (W) = {x⃗ | Bx⃗ ≤ 0⃗}
• define V as the set of row vectors of B
• {x⃗ | Ax⃗ ≤ 0⃗} = cone (V)

• bounds carry over from first direction

Step 4: Theorem of Farkas, Minkowski, Weyl (bounded version)

Let C ⊆ Rn be a polyhedral cone, given via an integral matrix A. Let b be a bound for
all matrix entries, b ≥ |Aij|. Then C is generated by a finite set of integral vectors V
whose entries are at most ±

√
(n− 1)n−1 · bn−1.

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 24/28

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

• consider {x⃗ | Ax⃗ ≤ 0⃗}
• define W as the set of row vectors of A
• by first direction obtain integral matrix B such that cone (W) = {x⃗ | Bx⃗ ≤ 0⃗}
• define V as the set of row vectors of B
• {x⃗ | Ax⃗ ≤ 0⃗} = cone (V)
• bounds carry over from first direction

Step 4: Theorem of Farkas, Minkowski, Weyl (bounded version)

Let C ⊆ Rn be a polyhedral cone, given via an integral matrix A. Let b be a bound for
all matrix entries, b ≥ |Aij|. Then C is generated by a finite set of integral vectors V
whose entries are at most ±

√
(n− 1)n−1 · bn−1.

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 24/28

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

• consider {x⃗ | Ax⃗ ≤ 0⃗}
• define W as the set of row vectors of A
• by first direction obtain integral matrix B such that cone (W) = {x⃗ | Bx⃗ ≤ 0⃗}
• define V as the set of row vectors of B
• {x⃗ | Ax⃗ ≤ 0⃗} = cone (V)
• bounds carry over from first direction

Step 4: Theorem of Farkas, Minkowski, Weyl (bounded version)

Let C ⊆ Rn be a polyhedral cone, given via an integral matrix A. Let b be a bound for
all matrix entries, b ≥ |Aij|. Then C is generated by a finite set of integral vectors V
whose entries are at most ±

√
(n− 1)n−1 · bn−1.

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 24/28

Theorem (Hadamard’s Inequality)

• Let A be a square matrix of dimension n such that |Ai,j| ≤ b for all i, j.
Then |det(A)| ≤

√
nn · bn.

• Whenever n = 2k, then the bound is tight, i.e., there exists a matrix A of
dimension n such that det(A) =

√
nn · bn = nn/2 · bn.

Proof
• uses results about Gram matrices

• construct matrices A0,A1,A2, . . . ,Ak of dimensions 20,21,22, . . . ,2k as follows:

A0 =
(

b
)

, A1 =

(
b b

−b b

)
=

(
A0 A0

−A0 A0

)
, A2 =

(
A1 A1

−A1 A1

)
, . . .

obtain desired equality det(Ak) = (2k)2k/2 · b2k
by induction on k:

det(Ak+1) = det(2 ·Ak ·Ak) = 22k ·det(Ak)
2 = 22k · ((2k)2k/2 ·b2k

)2 = (2k+1)
2k+1/2 ·b2k+1

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 25/28

Theorem (Hadamard’s Inequality)

• Let A be a square matrix of dimension n such that |Ai,j| ≤ b for all i, j.
Then |det(A)| ≤

√
nn · bn.

• Whenever n = 2k, then the bound is tight, i.e., there exists a matrix A of
dimension n such that det(A) =

√
nn · bn = nn/2 · bn.

Proof
• uses results about Gram matrices

• construct matrices A0,A1,A2, . . . ,Ak of dimensions 20,21,22, . . . ,2k as follows:

A0 =
(

b
)

, A1 =

(
b b

−b b

)
=

(
A0 A0

−A0 A0

)
, A2 =

(
A1 A1

−A1 A1

)
, . . .

obtain desired equality det(Ak) = (2k)2k/2 · b2k
by induction on k:

det(Ak+1) = det(2 ·Ak ·Ak) = 22k ·det(Ak)
2 = 22k · ((2k)2k/2 ·b2k

)2 = (2k+1)
2k+1/2 ·b2k+1

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 25/28

Theorem (Hadamard’s Inequality)

• Let A be a square matrix of dimension n such that |Ai,j| ≤ b for all i, j.
Then |det(A)| ≤

√
nn · bn.

• Whenever n = 2k, then the bound is tight, i.e., there exists a matrix A of
dimension n such that det(A) =

√
nn · bn = nn/2 · bn.

Proof
• uses results about Gram matrices

• construct matrices A0,A1,A2, . . . ,Ak of dimensions 20,21,22, . . . ,2k as follows:

A0 =
(

b
)

, A1 =

(
b b

−b b

)
=

(
A0 A0

−A0 A0

)
, A2 =

(
A1 A1

−A1 A1

)
, . . .

obtain desired equality det(Ak) = (2k)2k/2 · b2k
by induction on k:

det(Ak+1) = det(2 ·Ak ·Ak) = 22k ·det(Ak)
2 = 22k · ((2k)2k/2 ·b2k

)2 = (2k+1)
2k+1/2 ·b2k+1

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 25/28

Theorem (Hadamard’s Inequality)

• Let A be a square matrix of dimension n such that |Ai,j| ≤ b for all i, j.
Then |det(A)| ≤

√
nn · bn.

• Whenever n = 2k, then the bound is tight, i.e., there exists a matrix A of
dimension n such that det(A) =

√
nn · bn = nn/2 · bn.

Proof
• uses results about Gram matrices
• construct matrices A0,A1,A2, . . . ,Ak of dimensions 20,21,22, . . . ,2k as follows:

A0 =
(

b
)

, A1 =

(
b b

−b b

)
=

(
A0 A0

−A0 A0

)
, A2 =

(
A1 A1

−A1 A1

)
, . . .

obtain desired equality det(Ak) = (2k)2k/2 · b2k
by induction on k:

det(Ak+1) = det(2 ·Ak ·Ak) = 22k ·det(Ak)
2 = 22k · ((2k)2k/2 ·b2k

)2 = (2k+1)
2k+1/2 ·b2k+1

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 25/28

Theorem (Hadamard’s Inequality)

• Let A be a square matrix of dimension n such that |Ai,j| ≤ b for all i, j.
Then |det(A)| ≤

√
nn · bn.

• Whenever n = 2k, then the bound is tight, i.e., there exists a matrix A of
dimension n such that det(A) =

√
nn · bn = nn/2 · bn.

Proof
• uses results about Gram matrices
• construct matrices A0,A1,A2, . . . ,Ak of dimensions 20,21,22, . . . ,2k as follows:

A0 =
(

b
)

, A1 =

(
b b

−b b

)
=

(
A0 A0

−A0 A0

)
, A2 =

(
A1 A1

−A1 A1

)
, . . .

obtain desired equality det(Ak) = (2k)2k/2 · b2k
by induction on k:

det(Ak+1) = det(2 ·Ak ·Ak) = 22k ·det(Ak)
2 = 22k · ((2k)2k/2 ·b2k

)2 = (2k+1)
2k+1/2 ·b2k+1

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 25/28

Example Hadamard Matrix

det



1 1 1 1 1 1 1 1

−1 1 −1 1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

−1 1 1 −1 1 −1 −1 1


= 4096 = 84 · 18

SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA 26/28

Outline

1. Summary of Previous Lecture

2. Application, Motivating LIA

3. Branch and Bound

4. Proof of Small Model Property of LIA

5. Further Reading

SS 2024 Constraint Solving lecture 8 5. Further Reading 27/28

Kröning and Strichmann

• Section 5.3

Further Reading

Alexander Schrijver
Theory of linear and integer programming, Chapters 7, 16, 17, and 24
Wiley, 1998.

Important Concepts

• branch-and-bound

• cone (finitely generated or polyhedral)

• decomposition theorem for polyhedra

• Farkas–Minkowski–Weyl theorem

• Hadamard’s inequality

• polyhedron

• small model property of LIA

SS 2024 Constraint Solving lecture 8 5. Further Reading 28/28

	lecture 8
	Summary of Previous Lecture
	Application, Motivating LIA
	Branch and Bound
	Proof of Small Model Property of LIA
	Further Reading

