

SS 2024 lecture 8

Constraint Solving

René Thiemann and Fabian Mitterwallner based on a previous course by Aart Middeldorp

Outline

- **1. Summary of Previous Lecture**
- 2. Application, Motivating LIA
- 3. Branch and Bound
- 4. Proof of Small Model Property of LIA
- 5. Further Reading

Properties of DPLL(T) Simplex Algorithm

- termination ensured via Bland's rule: choose x_i and x_j for pivoting in a way that (x_i, x_j) ∈ B × N is lexicographically smallest
- worst-case complexity is exponential, but often it runs in polynomial time
- provides incremental interface (activation flags for bounds) and unsatisfiable cores (Haskell: initSimplex, assert *i*, check, solution, checkpoint, backtrack *cp*)
- Farkas' lemma: constraints $\bigwedge_i \ell_i \leq r_i$ are unsatisfiable iff a non-negative linear combination yields an obvious contradiction $\mathbb{Q} \ni \sum_i c_i \ell_i > \sum_i c_i r_i \in \mathbb{Q}$
- ranking functions for proving termination can be synthesized
- DPLL(*T*) simplex not well suited for linear programming, i.e., optimization problems

Outline

1. Summary of Previous Lecture

2. Application, Motivating LIA

- 3. Branch and Bound
- 4. Proof of Small Model Property of LIA
- 5. Further Reading

Example (Application of Linear Arithmetic: Termination Proving)

last lecture

```
int factorial(int n) {
```

```
int i = 1;
int r = 1;
while (i <= n) {
  r = r * i;
  i = i + 1; }
return r;
```

• remark: ranking function formula consists purely of \leq inequalities

•
$$\varphi := i \le n \land n' = n \land i' = i + 1$$

•
$$\varphi \rightarrow e(i,n) \ge e(i',n') + d$$

•
$$\varphi \to e(i,n) \ge f$$

}

Example (Application of Linear Integer Arithmetic: Termination Proving)

consider another program

int log2(int x) {
 int n := 0;
 while (x > 0) {
 x := x div 2;
 n := n + 1; }
 return n - 1;

• $\varphi := x > 0 \land 2x' \le x \land x \le 2x' + 1 \land n' = n + 1$ contains strict inequality

- choose e(x, n) = x, d = 1 and f = -1; get two LIA problems that must be unsat
 - $\varphi \wedge x < x' + 1$ (¬ decrease)
 - $\varphi \wedge x < -1$ (¬ bounded)
- (\neg bounded) is unsatisfiable over $\mathbb R$
- (¬ decrease) is unsatisfiable over $\mathbb Z$, but not over $\mathbb R \Longrightarrow$ require LIA solver
- remark: LIA reasoning is crucial, the problem is not wrong choice of expression *e*; program does not terminate when executed with real number arithmetic

Outline

- **1. Summary of Previous Lecture**
- 2. Application, Motivating LIA

3. Branch and Bound

- 4. Proof of Small Model Property of LIA
- 5. Further Reading

Example

 $3x - 2y \ge -1$ $y \le 4$ $2x + y \ge 5$ $3x - y \le 7$

- looking for solution in \mathbb{Z}^2
- infinite \mathbb{R}^2 solution space, six solutions in \mathbb{Z}^2
- simplex returns $(\frac{9}{7}, \frac{17}{7})$

Branch and Bound, a Solver for LIA Formulas - Idea

- add constraints that exclude current solution in $\mathbb{R}^2 \setminus \mathbb{Z}^2$ but do not change solutions in \mathbb{Z}^2
- in current solution 1 < x < 2, so use simplex on two augmented problems:
 - $C \land x \leqslant 1$ unsatisfiable
 - $C \land x \ge 2$ satisfiable, simplex can return (2, 1)

Algorithm BranchAndBound(φ)

Input: LIA formula φ , a conjunction of linear inequalities unsatisfiable, or satisfying assignment **Output:** let *res* be result of deciding φ over \mathbb{R} if res is unsatisfiable then return **unsatisfiable** else if res is solution over \mathbb{Z} then return res else let x be variable assigned non-integer value q in res *res* = BranchAndBound($\varphi \land x \leq |q|$)

if $res \neq$ unsatisfiable then

return *res*

else

return BranchAndBound($\varphi \land x \ge \lceil q \rceil$)

 \triangleright e.g. by simplex

Example (Termination Proof of log2, Continued)

• problematic formula (satisfiable over \mathbb{R})

$$\psi := x > 0 \land 2x' \le x \land x \le 2x' + 1 \land x < x' + 1$$
 (¬ decrease)

- execution of BranchAndBound on ψ (short notation: $\textit{BB}(\psi)$)
 - simplex: v(x) = 1, $v(x') = \frac{1}{2}$
 - invoke $BB(\psi \wedge x' \geq 1)$, simplex: unsatisfiable
 - invoke $BB(\psi \wedge x' \leq 0)$, simplex: $v(x) = \frac{1}{2}, v(x') = -\frac{1}{4}$
 - invoke $BB(\psi \wedge x' \leq 0 \wedge x \geq 1)$, simplex: unsatisfiable
 - invoke $BB(\psi \wedge x' \leq 0 \wedge x \leq 0)$, simplex: unsatisfiable
 - return unsatisfiable

Example (Branch and Bound – Problem)

consider $\psi := 1 \le 3x - 3y \land 3x - 3y \le 2$

• $v(x) = \frac{1}{3}$, v(y) = 0, add $x \le 0$ or $x \ge 1$

. . .

• for $\psi \wedge x \geq 1$: v(x) = 1, $v(y) = \frac{1}{3}$, add $y \leq 0$ or $y \geq 1$

BranchAndBound is not terminating, since search space is unbounded

Theorem (Small Model Property of LIA)

if LIA formula ψ has solution over \mathbbm{Z} then it has a solution v with

$$|v(x)| \leq bound(\psi) := (n+1) \cdot \sqrt{n^n} \cdot c^n$$

for all x where

- *n*: number of variables in ψ
- c: maximal absolute value of numbers occurring in ψ

Consequences and Remarks

- satisfiability of ψ for LIA formula is in NP
 - invoke $BranchAndBound\left(\psi \land \bigwedge_{x \in vars(\psi)} -bound(\psi) \le x \le bound(\psi)\right)$

to decide solvability of ψ over $\mathbb Z$

• bound is quite tight: $c \le x_1 \land c \cdot x_1 \le x_2 \land \ldots \land c \cdot x_{n-1} \le x_n$ implies $x_n \ge c^n$

Outline

- **1. Summary of Previous Lecture**
- 2. Application, Motivating LIA
- 3. Branch and Bound

4. Proof of Small Model Property of LIA

5. Further Reading

Geometric Objects

polytope: convex hull of finite set of points X

$$hull(X) = \{\lambda_1 \vec{v}_1 + \ldots + \lambda_m \vec{v}_m \mid \{\vec{v}_1, \ldots, \vec{v}_m\} \subseteq X \land \lambda_1, \ldots, \lambda_m \ge \mathbf{0} \land \sum \lambda_i = \mathbf{1}\}$$

• finitely generated cone: non-negative linear combinations of finite set of vectors V

$$cone(V) = \{\lambda_1 \vec{v}_1 + \ldots + \lambda_m \vec{v}_m \mid \{\vec{v}_1, \ldots, \vec{v}_m\} \subseteq V \land \lambda_1, \ldots, \lambda_m \ge 0\}$$

• polyhedron: polytope + finitely generated cone

 $hull(X) + cone(V) = \{ \vec{x} + \vec{v} \mid \vec{x} \in hull(X) \land \vec{v} \in cone(V) \}$

More Geometric Objects

• *C* is polyhedral cone iff $C = \{\vec{x} \mid A\vec{x} \le \vec{0}\}$ for some matrix *A* iff *C* is intersection of finitely many half-spaces

Example

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Theorem (Decomposition Theorem for Polyhedra)

A set $P \subseteq \mathbb{R}^n$ can be described as a polyhedron P = hull(X) + cone(V) for finite X and V iff $P = \{\vec{x} \mid A\vec{x} \leq \vec{b}\}$ for some matrix A and vector \vec{b} . Moreover, given X and V one can compute A and \vec{b} , and vice versa.

Example

Proof Idea of Small Model Property

- **1** convert conjunctive LIA formula ψ into form $A\vec{x} \leq \vec{b}$
- **2** represent polyhedron $\{\vec{x} \mid A\vec{x} \leq \vec{b}\}$ as polyhedron P = hull(X) + cone(V)
- show that P has small integral solutions, depending on X and V
- approximate size of entries of vectors in X and V to obtain small model property

Remark

- given ψ , one can compute X and V instead of using approximations
- however, this would be expensive: decomposition theorem requires exponentially many steps (in n, m) for input $A \in \mathbb{Z}^{m \times n}$ and $\vec{b} \in \mathbb{Z}^m$

Step 1: Conjunctive LIA Formula into Matrix Form $A\vec{x} \leq \vec{b}$

(variable renamed) formula

 $x_1 > 0$ $2x_2 \le x_1$ $x_1 \le 2x_2 + 1$ $x_1 < x_2 + 1$

eliminate strict inequalities (only valid in LIA)

 $x_1 \ge 0 + 1$ $2x_2 \le x_1$ $x_1 \le 2x_2 + 1$ $x_1 + 1 \le x_2 + 1$

• normalize (only \leq , constant to the right-hand-side)

$$-x_1 \leq -1$$
 $-x_1 + 2x_2 \leq 0$ $x_1 - 2x_2 \leq 1$ $x_1 - x_2 \leq 0$

matrix form

$$\begin{pmatrix} -1 & 0 \\ -1 & 2 \\ 1 & -2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \leq \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Step 3: Small Integral Solutions of Polyhedrons

• consider finite sets $X \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{Z}^n$

define

$$B = \{\lambda_1 \vec{v_1} + \ldots + \lambda_n \vec{v_n} \mid \{\vec{v_1}, \ldots, \vec{v_n}\} \subseteq V \land \mathbf{1} \ge \lambda_1, \ldots, \lambda_n \ge \mathbf{0}\} \subseteq cone(V)$$

Theorem

$$(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset \longleftrightarrow (hull(X) + B) \cap \mathbb{Z}^n = \emptyset$$

Corollary

Assume $|c| \le b \in \mathbb{Z}$ for all entries c of all vectors in $X \cup V$. Define Bnd := $(n + 1) \cdot b$. Then

$$(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset$$

 $\longleftrightarrow (hull(X) + cone(V)) \cap \{-Bnd, \dots, Bnd\}^n = \emptyset$

Theorem

$$(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset \longleftrightarrow (hull(X) + B) \cap \mathbb{Z}^n = \emptyset$$

Proof

Step 2a: Decomposing Polyhedron $P = \{\vec{u} \mid A\vec{u} \leq \vec{b}\}$ into hull(X) + cone(V)

1 use FMW to convert polyhedral cone of
$$\left\{ \vec{v} \mid \begin{pmatrix} A & -\vec{b} \\ \vec{0} & -1 \end{pmatrix} \vec{v} \leq \vec{0} \right\}$$
 into $cone(C)$ for integral vectors $C = \left\{ \begin{pmatrix} \vec{y}_1 \\ \tau_1 \end{pmatrix}, \dots, \begin{pmatrix} \vec{y}_\ell \\ \tau_\ell \end{pmatrix}, \begin{pmatrix} \vec{z}_1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} \vec{z}_k \\ 0 \end{pmatrix} \right\}$ with $\tau_i > 0$ for all $1 \leq i \leq \ell$
2 define $\vec{x}_i := \frac{1}{\tau_i} \vec{y}_i$
3 return $X := \{\vec{x}_1, \dots, \vec{x}_\ell\}$ and $V := \{\vec{z}_1, \dots, \vec{z}_k\}$

Theorem

$$P = hull(X) + cone(V)$$

Bounds

- the absolute values of the numbers in *X* ∪ *V* are all bounded by the absolute values of the numbers in *C*
- hence, bounds on C can be reused to bound vectors in $X \cup V$

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

First direction: finitely generated implies polyhedral

- consider *cone* (V) for $V = {\vec{v}_1, \dots, \vec{v}_m} \subseteq \mathbb{Z}^n$
- consider every set $W \subseteq V$ of linearly independent vectors with |W| = n 1
- obtain integral normal vector \vec{c} of hyper-space spanned by W
- next check whether V is contained in hyper-space $\{\vec{v} \mid \vec{v} \cdot \vec{c} \leq 0\}$ or $\{\vec{v} \mid \vec{v} \cdot (-\vec{c}) \leq 0\}$
 - if $\vec{v}_i \cdot \vec{c} \leq 0$ for all *i*, then add \vec{c} as row to A
 - if $\vec{v}_i \cdot \vec{c} \ge 0$ for all *i*, then add $-\vec{c}$ as row to A
- cone $(V) = \{ \vec{x} \mid A\vec{x} \le \vec{0} \}$
- bounds
 - each normal vector \vec{c} can be computed via determinants
- \implies obtain bound on numbers in $ec{c}$ by using bounds on determinants

Example: Construction of Polyhedral Cone from Finitely Generated Cone

$$V = \left\{ \begin{pmatrix} -3 \\ -2 \end{pmatrix}, \begin{pmatrix} -2 \\ -2 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \end{pmatrix} \right\}$$
$$A = \begin{pmatrix} -2 & 3 \\ 2 & -1 \end{pmatrix}$$

- pick $W = {\vec{w}}, \vec{w} = \begin{pmatrix} -3 \\ -2 \end{pmatrix}$ and consider *span W* • compute normal vector $\vec{c} = \begin{pmatrix} -2 & 3 \end{pmatrix}$
- if V is in same half-space, add $\pm \vec{c}$ to A

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

- consider $\{\vec{x} \mid A\vec{x} \leq \vec{0}\}$
- define *W* as the set of row vectors of *A*
- by first direction obtain integral matrix *B* such that $cone(W) = \{ ec{x} \mid Bec{x} \leq ec{0} \}$
- define V as the set of row vectors of B
- $\{\vec{x} \mid A\vec{x} \le \vec{0}\} = cone(V)$
- bounds carry over from first direction

Step 4: Theorem of Farkas, Minkowski, Weyl (bounded version)

Let $C \subseteq \mathbb{R}^n$ be a polyhedral cone, given via an integral matrix A. Let b be a bound for all matrix entries, $b \ge |A_{ij}|$. Then C is generated by a finite set of integral vectors V whose entries are at most $\pm \sqrt{(n-1)^{n-1}} \cdot b^{n-1}$.

Theorem (Hadamard's Inequality)

- Let A be a square matrix of dimension n such that $|A_{i,j}| \le b$ for all i,j. Then $|det(A)| \le \sqrt{n^n} \cdot b^n$.
- Whenever $n = 2^k$, then the bound is tight, i.e., there exists a matrix A of dimension n such that $det(A) = \sqrt{n^n} \cdot b^n = n^{n/2} \cdot b^n$.

Proof

uses results about Gram matrices

• construct matrices
$$A_0, A_1, A_2, \dots, A_k$$
 of dimensions $2^0, 2^1, 2^2, \dots, 2^k$ as follows:
 $A_0 = \begin{pmatrix} b \end{pmatrix}, A_1 = \begin{pmatrix} b & b \\ -b & b \end{pmatrix} = \begin{pmatrix} A_0 & A_0 \\ -A_0 & A_0 \end{pmatrix}, A_2 = \begin{pmatrix} A_1 & A_1 \\ -A_1 & A_1 \end{pmatrix}, \dots$
obtain desired equality $det(A_k) = (2^k)^{2^k/2} \cdot b^{2^k}$ by induction on k :
 $det(A_{k+1}) = det(2 \cdot A_k \cdot A_k) = 2^{2^k} \cdot det(A_k)^2 = 2^{2^k} \cdot ((2^k)^{2^k/2} \cdot b^{2^k})^2 = (2^{k+1})^{2^{k+1}/2} \cdot b^{2^{k+1}}$

Example Hadamard Matrix

Outline

- **1. Summary of Previous Lecture**
- 2. Application, Motivating LIA
- 3. Branch and Bound
- 4. Proof of Small Model Property of LIA

5. Further Reading

Section 5.3

Further Reading

Alexander Schrijver Theory of linear and integer programming, Chapters 7, 16, 17, and 24 Wiley, 1998.

Important Concepts

- branch-and-bound
- cone (finitely generated or polyhedral)
- decomposition theorem for polyhedra
- Farkas–Minkowski–Weyl theorem

- Hadamard's inequality
- polyhedron
- small model property of LIA