innsbruck

Constraint Solving

René Thiemann and Fabian Mitterwallner

based on a previous course by Aart Middeldorp

Outline

1. Summary of Previous Lecture

2. Application, Motivating LIA
3. Branch and Bound
4. Proof of Small Model Property of LIA
5. Further Reading

Example (Application of Linear Arithmetic: Termination Proving)

```
- last lecture
int factorial(int n) \{
    int i = 1;
    int \(r=1\);
    while (i <= n) \{
    r = r * i;
    \(i=i+1 ; \quad\}\)
```


return r;

```
\(\}\)
```

- remark: ranking function formula consists purely of \leq inequalities
- $\varphi:=i \leq n \wedge n^{\prime}=n \wedge i^{\prime}=i+1$
- $\varphi \rightarrow e(i, n) \geq e\left(i^{\prime}, n^{\prime}\right)+d$
- $\varphi \rightarrow e(i, n) \geq f$

Outline

1. Summary of Previous Lecture
2. Application, Motivating LIA

3. Branch and Bound

4. Proof of Small Model Property of LIA
5. Further Reading

Example (Application of Linear Integer Arithmetic: Termination Proving)

- consider another program
int $\log 2($ int $x) \quad\{$
int $n:=0 ;$
while (x > 0) \{
$\mathrm{x}:=\mathrm{x}$ div 2;
$\mathrm{n}:=\mathrm{n}+1 ;\}$
return $\mathrm{n}-1$;
- choose $e(x, n)=\bar{x}, d=1$ and $f=-1$; get two LIA problems that must be unsat
- $\varphi \wedge x<x^{\prime}+1$
(\neg decrease)
- $\varphi \wedge x<-1$
(\neg bounded)
- (\neg bounded) is unsatisfiable over \mathbb{R}
- (\neg decrease) is unsatisfiable over \mathbb{Z}, but not over $\mathbb{R} \Longrightarrow$ require LIA solver
- remark: LIA reasoning is crucial, the problem is not wrong choice of expression e; program does not terminate when executed with real number arithmetic

Example

$$
\begin{aligned}
3 x-2 y & \geq-1 \\
y & \leq 4 \\
2 x+y & \geq 5 \\
3 x-y & \leq 7
\end{aligned}
$$

- looking for solution in \mathbb{Z}^{2}
- infinite \mathbb{R}^{2} solution space, six solutions in \mathbb{Z}^{2}
- simplex returns $\left(\frac{9}{7}, \frac{17}{7}\right)$

Branch and Bound, a Solver for LIA Formulas - Idea

- add constraints that exclude current solution in $\mathbb{R}^{2} \backslash \mathbb{Z}^{2}$ but do not change solutions in \mathbb{Z}^{2}
- in current solution $1<x<2$, so use simplex on two augmented problems:
- $C \wedge x \leqslant 1$
unsatisfiable
- $C \wedge x \geqslant 2$ satisfiable, simplex can return $(2,1)$

Algorithm BranchAndBound (φ)
Input: LIA formula φ, a conjunction of linear inequalities
Output: unsatisfiable, or satisfying assignment
let res be result of deciding φ over \mathbb{R}
if res is unsatisfiable then
return unsatisfiable
else if res is solution over \mathbb{Z} then
return res
else
\quad let x be variable assigned non-integer value q in res
res $=$ BranchAndBound $(\varphi \wedge x \leq\lfloor q\rfloor)$
if res \neq unsatisfiable then
return res
else
return BranchAndBound $(\varphi \wedge x \geq\lceil q\rceil)$
Euniversitat ss 2024 constraintsolving lecture $8 \quad$ 3. Branch and Bound

Example (Termination Proof of log2, Continued)

- problematic formula (satisfiable over \mathbb{R})

$$
\psi:=x>0 \wedge 2 x^{\prime} \leq x \wedge x \leq 2 x^{\prime}+1 \wedge x<x^{\prime}+1
$$

$$
\text { (} \neg \text { decrease) }
$$

- execution of BranchAndBound on ψ (short notation: $B B(\psi)$)
- simplex: $v(x)=1, v\left(x^{\prime}\right)=\frac{1}{2}$
invoke $B B\left(\psi \wedge x^{\prime} \geq 1\right)$, simplex: unsatisfiable
- invoke $B B\left(\psi \wedge x^{\prime} \leq 0\right)$, simplex: $v(x)=\frac{1}{2}, v\left(x^{\prime}\right)=-\frac{1}{4}$
- invoke $B B\left(\psi \wedge x^{\prime} \leq 0 \wedge x \geq 1\right)$, simplex: unsatisfiable
- invoke $B B\left(\psi \wedge x^{\prime} \leq 0 \wedge x \leq 0\right)$, simplex: unsatisfiable
- return unsatisfiable
$\begin{array}{llll}\text { E Universitiat } & \text { SS } 2024 & \text { Constraint Solving } & \text { lecture } 8 \\ \text { 3. Branch and Bound } & 10 / 28\end{array}$

Theorem (Small Model Property of LIA)

if LIA formula ψ has solution over \mathbb{Z} then it has a solution v with

$$
|v(x)| \leq \operatorname{bound}(\psi):=(n+1) \cdot \sqrt{n^{n}} \cdot c^{n}
$$

for all x where

- n: number of variables in ψ
- c: maximal absolute value of numbers occurring in ψ

Consequences and Remarks

- satisfiability of ψ for LIA formula is in NP
- invoke

$$
\text { BranchAndBound }\left(\psi \wedge \bigwedge_{x \in \operatorname{vars}(\psi)}-\operatorname{bound}(\psi) \leq x \leq \operatorname{bound}(\psi)\right)
$$

to decide solvability of ψ over \mathbb{Z}

- bound is quite tight: $c \leq x_{1} \wedge c \cdot x_{1} \leq x_{2} \wedge \ldots \wedge c \cdot x_{n-1} \leq x_{n}$ implies $x_{n} \geq c^{n}$
$\begin{array}{llll}\text { E Mniversitatat } & \text { S5 } 2024 \text { Constraint Solving } & \text { lecture } 8 & \text { 3. Branch and Bound }\end{array}$

Outline

1. Summary of Previous Lecture
2. Application, Motivating LIA
3. Branch and Bound

4. Proof of Small Model Property of LIA

5. Further Reading

M univerititat
innsbrick SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA
13128

More Geometric Objects

- C is polyhedral cone iff $C=\{\vec{x} \mid A \vec{x} \leq \overrightarrow{0}\}$ for some matrix A iff C is intersection of finitely many half-spaces

Example

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Geometric Objects

- polytope: convex hull of finite set of points X

$$
\operatorname{hull}(X)=\left\{\lambda_{1} \vec{v}_{1}+\ldots+\lambda_{m} \vec{v}_{m} \mid\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\} \subseteq X \wedge \lambda_{1}, \ldots, \lambda_{m} \geq 0 \wedge \sum \lambda_{i}=1\right\}
$$

- finitely generated cone: non-negative linear combinations of finite set of vectors V

$$
\operatorname{cone}(V)=\left\{\lambda_{1} \vec{v}_{1}+\ldots+\lambda_{m} \vec{v}_{m} \mid\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\} \subseteq V \wedge \lambda_{1}, \ldots, \lambda_{m} \geq 0\right\}
$$

- polyhedron: polytope + finitely generated cone

$$
\operatorname{hull}(X)+\operatorname{cone}(V)=\{\vec{x}+\vec{v} \mid \vec{x} \in \operatorname{hull}(X) \wedge \vec{v} \in \operatorname{cone}(V)\}
$$

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Theorem (Decomposition Theorem for Polyhedra)

A set $P \subseteq \mathbb{R}^{n}$ can be described as a polyhedron $P=$ hull $(X)+$ cone (V) for finite X and V iff $P=\{\vec{x} \mid A \vec{x} \leq \vec{b}\}$ for some matrix A and vector \vec{b}.
Moreover, given X and V one can compute A and \vec{b}, and vice versa.

Example

Step 1: Conjunctive LIA Formula into Matrix Form $A \vec{x} \leq \vec{b}$

- (variable renamed) formula
$x_{1}>0$
$2 x_{2} \leq x_{1}$
$x_{1} \leq 2 x_{2}+1$
$x_{1}<x_{2}+1$

Proof Idea of Small Model Property

(1) convert conjunctive LIA formula ψ into form $A \vec{x} \leq \vec{b}$
(2) represent polyhedron $\{\vec{x} \mid A \vec{x} \leq \vec{b}\}$ as polyhedron $P=$ hull $(X)+\operatorname{cone}(V)$
(3) show that P has small integral solutions, depending on X and V
(4) approximate size of entries of vectors in X and V to obtain small model property

Remark

- given ψ, one can compute X and V instead of using approximations
- however, this would be expensive: decomposition theorem requires exponentially many steps (in n, m) for input $A \in \mathbb{Z}^{m \times n}$ and $\vec{b} \in \mathbb{Z}^{m}$
- universitat
innsbruck SS 2024 Constraint Solving lecture $8 \quad$ 4. Proof of Small Model Property of LIA

Step 3: Small Integral Solutions of Polyhedrons

- consider finite sets $X \subseteq \mathbb{R}^{n}$ and $V \subseteq \mathbb{Z}^{n}$
- define

$$
B=\left\{\lambda_{1} \overrightarrow{v_{1}}+\ldots+\lambda_{n} \vec{v}_{n} \mid\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\} \subseteq V \wedge 1 \geq \lambda_{1}, \ldots, \lambda_{n} \geq 0\right\} \subseteq \text { cone }(V)
$$

Theorem

$($ hull $(X)+$ cone $(V)) \cap \mathbb{Z}^{n}=\emptyset \longleftrightarrow($ hull $(X)+B) \cap \mathbb{Z}^{n}=\emptyset$

Corollary

Assume $|c| \leq b \in \mathbb{Z}$ for all entries c of all vectors in $X \cup V$. Define Bnd := $n+1) \cdot b$. Then

$$
\begin{aligned}
& (\text { hull }(X)+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\emptyset \\
\longleftrightarrow & (\text { hull }(X)+\operatorname{cone}(V)) \cap\{-B n d, \ldots, \text { Bnd }\}^{n}=\emptyset
\end{aligned}
$$

ate strict inequalities (only valid in LIA)

$$
x_{1} \geq 0+1 \quad 2 x_{2} \leq x_{1} \quad x_{1} \leq 2 x_{2}+1 \quad x_{1}+1 \leq x_{2}+1
$$

- normalize (only \leq, constant to the right-hand-side)

$$
-x_{1} \leq-1 \quad-x_{1}+2 x_{2} \leq 0 \quad x_{1}-2 x_{2} \leq 1 \quad x_{1}-x_{2} \leq 0
$$

- matrix form

$$
\left(\begin{array}{cc}
-1 & 0 \\
-1 & 2 \\
1 & -2 \\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}} \leq\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right)
$$

Hunivesitat SS 2024 Constraint Solving lecture 8 4. Proof of Small Model Property of LIA

Theorem

$($ hull $(X)+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\emptyset \longleftrightarrow($ hull $(X)+B) \cap \mathbb{Z}^{n}=\emptyset$

Proof

```
Step 2a: Decomposing Polyhedron \(P=\{\vec{u} \mid A \vec{u} \leq \vec{b}\}\) into hull \((X)+\operatorname{cone}(V)\)
(1) use FMW to convert polyhedral cone of \(\left\{\vec{v} \left\lvert\,\left(\begin{array}{cc}A & -\vec{b} \\ \overrightarrow{0} & -1\end{array}\right) \vec{v} \leq \overrightarrow{0}\right.\right\}\) into cone(C) for integral
```

vectors $C=\left\{\binom{\vec{y}_{1}}{\tau_{1}}\right.$
(2) define $\vec{x}_{i}:=\frac{1}{\tau_{i}} \vec{y}_{i}$
$\left.\binom{\vec{y}_{\ell}}{\tau_{\ell}},\binom{\vec{z}_{1}}{0}, \ldots,\binom{\vec{z}_{k}}{0}\right\}$ with $\tau_{i}>0$ for all $1 \leq i \leq \ell$
(3) return $X:=\left\{\vec{x}_{1}\right.$,
$\left.\vec{x}_{\ell}\right\}$ and $V:=\left\{\vec{z}_{1}, \ldots, \vec{z}_{k}\right\}$

Theorem

$P=\operatorname{hull}(X)+\operatorname{cone}(V)$

Bounds

- the absolute values of the numbers in $X \cup V$ are all bounded by the absolute values of the numbers in C
- hence, bounds on C can be reused to bound vectors in $X \cup V$

Example: Construction of Polyhedral Cone from Finitely Generated Cone

$$
\begin{gathered}
V=\left\{\binom{-3}{-2},\binom{-2}{-2},\binom{-1}{-2}\right\} \\
A=\left(\begin{array}{cc}
-2 & 3 \\
2 & -1
\end{array}\right)
\end{gathered}
$$

- pick $W=\{\vec{w}\}, \vec{W}=\binom{-3}{-2}$ and consider span W
- compute normal vector $\vec{c}=\left(\begin{array}{ll}-2 & 3\end{array}\right)$
- if V is in same half-space, add $\pm \vec{c}$ to A

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

First direction: finitely generated implies polyhedral

- consider cone (V) for $V=\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\} \subseteq \mathbb{Z}^{n}$
- consider every set $W \subseteq V$ of linearly independent vectors with $|W|=n-1$
- obtain integral normal vector \vec{c} of hyper-space spanned by W
- next check whether V is contained in hyper-space $\{\vec{v} \mid \vec{v} \cdot \vec{c} \leq 0\}$ or $\{\vec{v} \mid \vec{v} \cdot(-\vec{c}) \leq 0\}$
- if $\vec{v}_{i} \cdot \vec{c} \leq 0$ for all i, then add \vec{c} as row to A
- if $\vec{v}_{i} \cdot \vec{c} \geq 0$ for all i, then add $-\vec{c}$ as row to A
- cone $(V)=\{\vec{x} \mid A \vec{x} \leq \overrightarrow{0}\}$
- bounds
- each normal vector \vec{c} can be computed via determinants
\Longrightarrow obtain bound on numbers in \vec{c} by using bounds on determinants

$$
\begin{array}{lllll}
\hline \text { Huniversitat } & \text { SS 2024 } & \text { Constraint Solving } & \text { lecture 8 } & \text { 4. Proof of Small Model Property of LIA }
\end{array} 22 / 128
$$

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

- consider $\{\vec{x} \mid A \vec{x} \leq \overrightarrow{0}\}$
- define W as the set of row vectors of A
- by first direction obtain integral matrix B such that cone $(W)=\{\vec{x} \mid B \vec{x} \leq \overrightarrow{0}\}$
- define V as the set of row vectors of B
- $\{\vec{x} \mid A \vec{x} \leq \overrightarrow{0}\}=$ cone (V)
- bounds carry over from first direction

Step 4: Theorem of Farkas, Minkowski, Weyl (bounded version)

Let $C \subseteq \mathbb{R}^{n}$ be a polyhedral cone, given via an integral matrix A. Let b be a bound for all matrix entries, $b \geq\left|A_{i j}\right|$. Then C is generated by a finite set of integral vectors V whose entries are at most $\pm \sqrt{(n-1)^{n-1}} \cdot b^{n-1}$

Theorem (Hadamard's Inequality)

- Let A be a square matrix of dimension n such that $\left|A_{i, j}\right| \leq b$ for all i, j. Then $|\operatorname{det}(A)| \leq \sqrt{n^{n}} \cdot b^{n}$.
- Whenever $n=2^{k}$, then the bound is tight, i.e., there exists a matrix A of dimension n such that $\operatorname{det}(A)=\sqrt{n^{n}} \cdot b^{n}=n^{n / 2} \cdot b^{n}$.

Proof

- uses results about Gram matrices

- construct matrices $A_{0}, A_{1}, A_{2}, \ldots, A_{k}$ of dimensions $2^{0}, 2^{1}, 2^{2}, \ldots, 2^{k}$ as follows: $A_{0}=(b), A_{1}=\left(\begin{array}{cc}b & b \\ -b & b\end{array}\right)=\left(\begin{array}{cc}A_{0} & A_{0} \\ -A_{0} & A_{0}\end{array}\right), A_{2}=\left(\begin{array}{cc}A_{1} & A_{1} \\ -A_{1} & A_{1}\end{array}\right), \ldots$
obtain desired equality $\operatorname{det}\left(A_{k}\right)=\left(2^{k}\right)^{2^{k} / 2} \cdot b^{2^{k}}$ by induction on k :
$\operatorname{det}\left(A_{k+1}\right)=\operatorname{det}\left(2 \cdot A_{k} \cdot A_{k}\right)=2^{2^{k}} \cdot \operatorname{det}\left(A_{k}\right)^{2}=2^{2^{k}} \cdot\left(\left(2^{k}\right)^{2^{k} / 2} \cdot b^{2^{k}}\right)^{2}=\left(2^{k+1}\right)^{2^{k+1} / 2} \cdot b^{2^{k+1}}$
$\begin{array}{lllll}\text { E univerititat } & \text { SS 2024 Constraint Solving } & \text { lecture 8 } & \text { 4. Proof of Small Model Property of LIA } & 25 / 28\end{array}$

Outline

Example Hadamard Matrix

$$
\operatorname{det}\left(\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
-1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\
-1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
-1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
-1 & 1 & 1 & -1 & 1 & -1 & -1 & 1
\end{array}\right)=4096=8^{4} \cdot 1^{8}
$$

B universitat	SS 2024 Constraint Solving	lecture 8	4. Proof of Small Model Property of LIA

Kröning and Strichmann

- Section 5.3

Further Reading

Alexander Schrijver
Theory of linear and integer programming, Chapters 7, 16, 17, and 24 Wiley, 1998.

Important Concepts

branch-and-bound

- cone (finitely generated or polyhedral)
- decomposition theorem for polyhedra
- Farkas-Minkowski-Weyl theorem
- Hadamard's inequality
- polyhedron
- small model property of LIA

