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Example (Application of Linear Integer Arithmetic: Termination Proving)
® consider program

® model loop-iteration as formula ¢ using pre-variables X and post-variables x’
® prove termination by choosing expression e and integer constant f and show that

two LIA problems are unsatisfiable

* phe(X)<e(X)+1 (- decrease)
* pNhe(X)<f (- bounded)
for certain programs, reasoning over integers is essential
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Example (Application of Linear Integer Arithmetic: Termination Proving)

® consider program

* model loop-iteration as formula ¢ using pre-variables x and post-variables x’

® prove termination by choosing expression e and integer constant f and show that
two LIA problems are unsatisfiable

°* preX)<e(X)+1
e phe(X)<f

e for certain programs, reasoning over integers is essential

(— decrease)
(= bounded)

Branch-and-Bound Algorithm
e core idea for finding integral solution
® simplex algorithm is used to find real solution v or detect unsat in R
® whenever q := v(x) ¢ Z, consider two possibilities: add x < |g] or [q] < x
® small model property is required for termination: obtain finite search space
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Theorem (Small Model Property)
if LIA formula 1) has solution over Z then it has a solution v with

lv(x)| < bound(¢)) :=(n+1)-vn"-c"

for all x where

® n: number of variables in
e c: maximal absolute value of numbers in 1)
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Proof Idea of Small Model Property

@ convert conjunctive LIA formula 1 into form Ax < b
© represent polyhedron {X | AX < b} as polyhedron P = hull(X) + cone(V)
—_——— ——" ~—
yellow red green

© show that P has small integral solutions (orange), depending on X and V
O approximate entries of vectors in X and V to obtain small model property
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2. Tightening
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Tightening

e consider inequality > a;x; >1 b with < € {<,<}, and a1,...,an,b € Z

® tightening preprocesses such inequality in a way that preserves integer solutions
(but removes solutions in R)

® impact: tightening helps to obtain unsatisfiability in R
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e consider inequality > a;x; >1 b with < € {<,<}, and a1,...,an,b € Z

® tightening preprocesses such inequality in a way that preserves integer solutions
(but removes solutions in R)

® impact: tightening helps to obtain unsatisfiability in R

* last lecture: tightening of strict inequalities > Jaix; < bto > aix; <b—1
® 2 <517x+ 2y < 3 can be tightened to 3 < 517x + 2y < 2, trivially unsat via simplex
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Tightening

e consider inequality > a;x; >1 b with < € {<,<}, and a1,...,an,b € Z
tightening preprocesses such inequality in a way that preserves integer solutions
(but removes solutions in R)
® impact: tightening helps to obtain unsatisfiability in R
* last lecture: tightening of strict inequalities > Jaix; < bto > aix; <b—1

® 2 <517x+ 2y < 3 can be tightened to 3 < 517x + 2y < 2, trivially unsat via simplex
¢ tightening of weak inequalities

° letg =gcd(ai,...,an)
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Tightening

e consider inequality > a;x; >1 b with < € {<,<}, and a1,...,an,b € Z
tightening preprocesses such inequality in a way that preserves integer solutions
(but removes solutions in R)
® impact: tightening helps to obtain unsatisfiability in R
* last lecture: tightening of strict inequalities > Jaix; < bto > aix; <b—1

® 2 <517x+ 2y < 3 can be tightened to 3 < 517x + 2y < 2, trivially unsat via simplex
¢ tightening of weak inequalities

° letg =gcd(ai,...,an)

* if b is not divisible by g then tighten " aix; < b to ) %x,- < LgJ
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Tightening

e consider inequality > a;x; >1 b with < € {<,<}, and a1,...,an,b € Z
® tightening preprocesses such inequality in a way that preserves integer solutions
(but removes solutions in R)
® impact: tightening helps to obtain unsatisfiability in R
* last lecture: tightening of strict inequalities > Jaix; < bto > aix; <b—1
® 2 <517x+ 2y < 3 can be tightened to 3 < 517x + 2y < 2, trivially unsat via simplex
¢ tightening of weak inequalities
® letg =gcd(a1,...,an)
° if bis not divisible by g then tighten > ax; < bto 3~ %x; < Lg]
® example from last lecture
° tighten1 <3x—3y <2to[3] <x—y < 2]
® result 1 < x —y < 0isunsat by simplex
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3. Cubes
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® searching for integral solutions X for polyhedron P described as AX < b via
branch-and-bound algorithm is expensive
¢ idea: use sufficient criterion that sometimes quickly finds integral solution of P
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® searching for integral solutions X for polyhedron P described as AX < b via
branch-and-bound algorithm is expensive

¢ idea: use sufficient criterion that sometimes quickly finds integral solution of P

e core idea of the cube-test: if there is some cube C with edge-length > 1 that is
completely contained in P, then P contains an integral solution
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® searching for integral solutions X for polyhedron P described as AX < b via
branch-and-bound algorithm is expensive

¢ idea: use sufficient criterion that sometimes quickly finds integral solution of P
® core idea of the cube-test: if there is some cube C with edge-length > 1 that is
completely contained in P, then P contains an integral solution

® consider polyhedron P, the triangle
® none of the corners is integral, hence BB will
require some iterations
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® searching for integral solutions X for polyhedron P described as AX < b via
branch-and-bound algorithm is expensive

¢ idea: use sufficient criterion that sometimes quickly finds integral solution of P

® core idea of the cube-test: if there is some cube C with edge-length > 1 that is
completely contained in P, then P contains an integral solution

® consider polyhedron P, the triangle

® none of the corners is integral, hence BB will
require some iterations

® cube C, the square, is contained in P and has
edge-length 1.2

® hence C contains an integral solution, which can
be calculated from the center point of C
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Definition of Cubes

cubes(Z) is the cube with center Z € R” and size s € R>g

cubes(Z) ={X e R" |Vie {1,...,n}. |x; — zj| < s}
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Definition of Cubes

cubes(Z) is the cube with center Z € R” and size s € R>g

cubes(Z) ={X e R" |Vie {1,...,n}. |x; — zj| < s}

Lemma

if s > 1/2 then cubes(Z) contains an integral vector p
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Definition of Cubes
cubes(Z) is the cube with center Z € R” and size s € R>g

cubes(Z) ={X e R" |Vie {1,...,n}. |x; — zj| < s}

Lemma
if s > 1/2 then cubes(Z) contains an integral vector p

choose p where p; = | z], i.e., rounding z; to the nearest integer

the center of the cube on slide 9 is Z = (—0.8, —1.1)%, so we compute g = (-1, —1)*
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Cube Inclusion

e consider some polyhedron P = {X | AX < b} for some A € R™*" and b € R™
® we are interested in whether P contains a cube of size s, formally:

37 cubes(Z) C {X | AX < b} (1)
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Cube Inclusion

e consider some polyhedron P = {X | AX < b} for some A € R™*" and b € R™
® we are interested in whether P contains a cube of size s, formally:

37 cubes(Z) C {X | AX < b} (1)

Lemma (Cube Inclusion for Single Inequality)
For a single inequality a - X < c with @ € R", ¢ € R there is the equivalence:

n
cubes(?) C {X|&-%<c} iff &-Z<c-s)|aj ()
=il
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Cube Inclusion

e consider some polyhedron P = {X | AX < b} for some A € R™*" and b € R™
® we are interested in whether P contains a cube of size s, formally:

37 cubes(Z) C {X | AX < b} (1)

Lemma (Cube Inclusion for Single Inequality)

For a single inequality a - X < c with @ € R", ¢ € R there is the equivalence:

n
cubes(?) C {X|&-%<c} iff &-Z<c-s)|aj ()
=il

Corollary

|A11] + ... + |A1p]
Cube inclusion (1) is satisfied iff AZ<b —s - 200 has solution Z € R"
|Am1|+...+’Amn‘
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Proof of One Direction of the Cube Inclusion for Single Inequalities
We assume

n
(A) X € cubes(Z) and (B) 5'2§c752|a,-|
i=1

and prove & - X < c as follows:

a-x
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Proof of One Direction of the Cube Inclusion for Single Inequalities
We assume

n
(A) X € cubes(Z) and (B) §'E§c752|a,-|
i=1

and prove & - X < c as follows:

—

§.X=3 (Z+(X—2)=8-2+3-(Xx—2)
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Proof of One Direction of the Cube Inclusion for Single Inequalities
We assume

n
(A) X € cubes(Z) and (B) §~2§c752|a,‘|
i=1

and prove & - X < c as follows:

—

§.X=3 (Z+(X—2)=8-2+3-(Xx—2)
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Proof of One Direction of the Cube Inclusion for Single Inequalities

We assume

n
(A) X € cubes(Z) and (B) §~2§c752|a,‘|

—

and prove & - X < c as follows:

—

5-)?:5-(2+()?—Z)):5-2+§-()?—z)
<c—sZ|a|>+ —z—c—sZ|a|+Za, Xi — Zj)
gc—sZ!a,-|+Z|a,-|~]x,
i=1 i=1

B universitat i
innsbruck SS 2024 Constraint Solving lecture 9 3. Cubes

12/34



Proof of One Direction of the Cube Inclusion for Single Inequalities

We assume

n
(A) X € cubes(Z) and (B) §~2§c752|a,‘|

—

and prove & - X < c as follows:

—

5-)?:5-(2+()?—Z)):5-Z+§-()?—z)
<c—sZ|a|>+ —z—c—sZ|a|+Za, Xi — Zj)
gc—sZ!a,-|+Z|a,-|~]x,
i=1 i=1
(A) n n
<c-s> lal+> lal-s=c
i=1 i=1
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The Unit-Cube Test of Bromberger and Weidenbach

® a unit-cube has edge-length 1, i.e., s =1/2
e testing the unit-cube inclusion is possible via one invocation of simplex by checking
existence of Z for inequalities
|A11] + ... + |A1p]

AZ< b —

N|

|Am1| + oo + ‘Amn|
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The Unit-Cube Test of Bromberger and Weidenbach

® a unit-cube has edge-length 1, i.e., s =1/2
e testing the unit-cube inclusion is possible via one invocation of simplex by checking
existence of Z for inequalities
|A11] + ... + |A1p]

AZ< b —

N|

* the unit-cube test is just a sufficient criterion for integral solution of AX < b
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The Unit-Cube Test of Bromberger and Weidenbach

® a unit-cube has edge-length 1, i.e., s =1/2
e testing the unit-cube inclusion is possible via one invocation of simplex by checking
existence of Z for inequalities
|A11] + ... + |A1p]

AZ< b —

N|

* the unit-cube test is just a sufficient criterion for integral solution of AX < b
® the unit-cube test always fails on constraints that contain (or imply) equalities, e.g.,
G ANY =Yy =14 XIA L AXLI > 2X0 AX2 > X1 AX1 > 0A L.

B universitat i
innsbruck SS 2024 Constraint Solving lecture 9 3. Cubes 13/34



® a unit-cube has edge-length 1, i.e., s =1/2
e testing the unit-cube inclusion is possible via one invocation of simplex by checking
existence of Z for inequalities
|A11] + ... + |A1p]

AZ< b —

N|

* the unit-cube test is just a sufficient criterion for integral solution of AX < b
® the unit-cube test always fails on constraints that contain (or imply) equalities, e.g.,
G ANY =Yy =14 XIA L AXLI > 2X0 AX2 > X1 AX1 > 0A L.
® increase applicability as follows
® first detect all implied equalities
¢ then eliminate equalities (or detect unsat purely from equalities, e.g., from 2x = 1)
® afterwards achieve higher success rate of unit-cube test (and lower bounds for BB)
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4. Equality Detection
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Definition (Implied Equalities)

e consider set of inequalities AX < b where the i-th inequality has form &; - X < b;
e AX < b implies equality € - X = d if every solution X € R" of AX < b satisfies ¢- X = d
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Definition (Implied Equalities)

e consider set of inequalities AX < b where the i-th inequality has form &; - X < b;
e AX < b implies equality € - X = d if every solution X € R" of AX < b satisfies ¢- X = d

Observation

if AX < b is satisfiable, then no equality &; - X = b; is implied
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Definition (Implied Equalities)

e consider set of inequalities AX < b where the i-th inequality has form &; - X < b;
* AX < b implies equality ¢ - X = d if every solution X € R" of AX < b satisfies¢-X = d

Observation

if AX < b is satisfiable, then no equality &; - X = b; is implied

Further Results

® interestingly, also the other direction is satisfied
* assume AX < b is unsatisfiable
® then there is some minimal unsatisfiable subset / such that A
(obtained by a single simplex invocation)
® lemma: for every i € I, the i-th equality &; - X = b; is implied

ic) @i - X < bj is unsatisfiable
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Definition (Implied Equalities)

e consider set of inequalities AX < b where the i-th inequality has form &; - X < b;
e AX < b implies equality € - X = d if every solution X € R" of AX < b satisfies ¢- X = d

Observation

if AX < b is satisfiable, then no equality &; - X = b; is implied

Further Results
® interestingly, also the other direction is satisfied
 assume AX < b is unsatisfiable

® then there is some minimal unsatisfiable subset / such that A
(obtained by a single simplex invocation)

® lemma: for every i € I, the i-th equality &; - X = b; is implied

e overall: given AX < b with one simplex invocation it is possible to
® either get access to an implied equality
® or figure out that no such equality exists

ic) @i - X < bj is unsatisfiable
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Equality Basis Algorithm of Bromberger and Weidenbach

* the task is to iteratively deduce all equalities for (satisfiable) constraints AX < b
® in each iteration, one equality is added and one variable is eliminated
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Equality Basis Algorithm of Bromberger and Weidenbach

the task is to iteratively deduce all equalities for (satisfiable) constraints AX < b
in each iteration, one equality is added and one variable is eliminated
throughout the algorithm E stores equalities, and A’X < b’ is a set of inequalities
initialize E := ()

delete all trivial inequalities from AX < b, the result is the initial A’ and b’
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Equality Basis Algorithm of Bromberger and Weidenbach

* the task is to iteratively deduce all equalities for (satisfiable) constraints AX < b
® in each iteration, one equality is added and one variable is eliminated
® throughout the algorithm E stores equalities, and A’X < b’ is a set of inequalities
* initialize E := ()
e delete all trivial inequalities from AX < b, the result is the initial A’ and b’
* while simplex(A’X < b') delivers minimal unsat core /

* choose any equality & - X = b] fori €/
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Equality Basis Algorithm of Bromberger and Weidenbach

* the task is to iteratively deduce all equalities for (satisfiable) constraints AX < b
® in each iteration, one equality is added and one variable is eliminated
® throughout the algorithm E stores equalities, and A’X < b’ is a set of inequalities
* initialize E := ()
e delete all trivial inequalities from AX < b, the result is the initial A’ and b’
* while simplex(A’X < b') delivers minimal unsat core /

* choose any equality & - X = b] fori €/

® choose any j such that A}, # 0

* reorder equation to obtain equation (e;) of the form x; = % = Dk %xk
ij UJ
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Equality Basis Algorithm of Bromberger and Weidenbach

* the task is to iteratively deduce all equalities for (satisfiable) constraints AX < b
® in each iteration, one equality is added and one variable is eliminated

® throughout the algorithm E stores equalities, and A’X < b’ is a set of inequalities
* initialize E := ()

e delete all trivial inequalities from AX < b, the result is the initial A’ and b’

* while simplex(A’X < b') delivers minimal unsat core /

choose any equality & - X = b] fori € I
choose any j such that A}, # 0

reorder equation to obtain equation (e;) of the form x; = % = Dk %xk
ij UJ

eliminate x; from A’X < b’ and from E by using (e;) as substitution
add (ej) to E
remove trivial equations from A’X < b’ after simplifications
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Equality Basis Algorithm of Bromberger and Weidenbach

* the task is to iteratively deduce all equalities for (satisfiable) constraints AX < b
® in each iteration, one equality is added and one variable is eliminated

® throughout the algorithm E stores equalities, and A’X < b’ is a set of inequalities
* initialize E := ()

e delete all trivial inequalities from AX < b, the result is the initial A’ and b’

* while simplex(A’X < b') delivers minimal unsat core /

choose any equality & - X = b] fori € I
choose any j such that A}, # 0

reorder equation to obtain equation (e;) of the form x; = % = Dk %xk
ij UJ

eliminate x; from A’X < b’ and from E by using (e;) as substitution
add (ej) to E
remove trivial equations from A’X < b’ after simplifications

return E and the final A’X < b’
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Lemma

o AX < b is equivalent to EUA'X < b’ throughout the algorithm
e the final set E is even an equality basis, i.e., every implied equality ¢ - X = d of
AX < b is a linear combination of equations in E
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® initial constraints y —y—-x1<-1
y-y +x1<1
2x; —x1 <0
X1 —Xx> <0
—x1 <0
zZ—y+2y'—x; <5
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® initial constraints y —y—-x1<-1
y-y +x1<1
2x; —x1 <0
X1 —Xx> <0
—X1 < 0
z—y+2y —x2<5
® simplex on strict inequalities detects equalityy’ —y —x1 = —1,s0y' =y +x1; — 1
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® initial constraints y —y—-x1<-1
y—-y +x <1
2x; —x1 <0
X1 —Xx> <0
—x1 <0
z—y+2y —x2<5
® simplex on strict inequalities detects equalityy’ —y —x1 = —1,s0y' =y +x1; — 1
® hence E ={y’ =y + x; — 1} and inequalities become
(y+x1—1)—y—x; <—1 issimplified and deleted -1<-1
y—(y+x1—1)+x3 <1 issimplified and deleted 1<1
2X; —x1 <0
X1 —x2<0
—x1 <0

Z—y+2(y+x1—-1)—x2 <5 is simplifiedto z+y+2x; —x; <7
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Example (continued)

e E={y=y+x;—1}and
inequalities {2x2 —x1 <0, x1 —x2 <0, —x1 <0, Z+y +2x3 —x2 <7}
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Example (continued)

e E={y=y+x1—1}and
inequalities {2x2 —x1 <0, x1 —x2 <0, —x1 <0, Z+y +2x3 —x2 <7}
® simplex on strict inequalities detects equality x; — x2 = 0, so x1 = x;
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Example (continued)
e E={y=y+x1—1}and
inequalities {2x2 —x1 <0, x1 —x2 <0, —x1 <0, Z+y +2x3 —x2 <7}
® simplex on strict inequalities detects equality x; — x2 = 0, so x1 = x;
® after substitution and simplification get
E={y'=y+x2—1,x3=x2}and
inequalities {x; <0, —x2 <0, z+y+x2 <7}
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Example (continued)
e E={y=y+x1—1}and
inequalities {2x2 —x1 <0, x1 —x2 <0, —x1 <0, Z+y +2x3 —x2 <7}
® simplex on strict inequalities detects equality x; — x2 = 0, so x1 = x;
® after substitution and simplification get
E={y'=y+x2—1,x3=x2}and
inequalities {x; <0, —x2 <0, z+y+x2 <7}
® simplex on strict inequalities detects equality x, =0

B universitat i i i :
B innsbruck SS 2024 Constraint Solving lecture 9 4. Equality Detection 19/34



Example (continued)
e E={y=y+x1—1}and
inequalities {2x2 —x1 <0, x1 —x2 <0, —x1 <0, Z+y +2x3 —x2 <7}
® simplex on strict inequalities detects equality x; — x2 = 0, so x1 = x;
® after substitution and simplification get
E={y'=y+x2—1,x3=x2}and
inequalities {x; <0, —x2 <0, z+y+x2 <7}
® simplex on strict inequalities detects equality x, =0
e after substitution and simplification get
E={y/=y—1,x1=0,x; =0} and
inequalities {z+y < 7}
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Example (continued)
e E={y=y+x1—1}and
inequalities {2x2 —x1 <0, x1 —x2 <0, —x1 <0, Z+y +2x3 —x2 <7}
® simplex on strict inequalities detects equality x; — x2 = 0, so x1 = x;
® after substitution and simplification get
E={y=y+x2—1,x1 =x2} and
inequalities {x; <0, —x2 <0, z+y+x2 <7}
® simplex on strict inequalities detects equality x, =0
e after substitution and simplification get
E={y/=y—1,x1=0,x; =0} and
inequalities {z+y < 7}
® no further equalities are detected
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Example (continued)
e E={y=y+x1—1}and
inequalities {2x2 —x1 <0, x1 —x2 <0, —x1 <0, Z+y +2x3 —x2 <7}
® simplex on strict inequalities detects equality x; — x2 = 0, so x1 = x;
® after substitution and simplification get
E={y=y+x2—1,x1 =x2} and
inequalities {x; <0, —x2 <0, z+y+x2 <7}
® simplex on strict inequalities detects equality x, =0
e after substitution and simplification get
E={y/=y—1,x1=0,x; =0} and
inequalities {z+y < 7}
® no further equalities are detected
® finally simplex can be used to find solution of z+ y < 7 for variables y and z,
and E determines the values for all other variables
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Final Remarks

¢ the algorithm detects equalities over R
e given the final set E and final inequalities /, one can always easily transform real
solutions of | to real solutions of the initial constraints by using E
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Outline

5. Equality Elimination
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Current Situation

e given LIA or LRA constraints ¢ over variables X, compute set of equations E and
inequalities v such that

* X=YWZ
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Current Situation

e given LIA or LRA constraints ¢ over variables X, compute set of equations E and
inequalities v such that

* X=YWZ
® ¢ only uses variables in Z

® every equation in E has form y = e, with y € Y and e, linear expression over variables Z
for every y € Y there is exactly one equationy = e, in E
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Current Situation

e given LIA or LRA constraints ¢ over variables X, compute set of equations E and
inequalities v such that

* X=YWZ

® ¢ only uses variables in Z

® every equation in E has form y = e, with y € Y and e, linear expression over variables Z
for every y € Y there is exactly one equationy = e, in E

® o is equivalent to ¢ A /\y:eyeEy —e,
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Current Situation

e given LIA or LRA constraints ¢ over variables X, compute set of equations E and
inequalities v such that

* X=YWZ
® ¢ only uses variables in Z
® every equation in E has form y = e, with y € Y and e, linear expression over variables Z
e for every y € Y there is exactly one equationy = e, in E
® o is equivalent to ¢ A /\y:eyeEy —e,
® remarks
® e, does not necessarily have integer coefficients, e.g., y = %z +5
® consequently, integer solutions of 1) cannot always be extended to integer solutions of ¢
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Current Situation

e given LIA or LRA constraints ¢ over variables X, compute set of equations E and
inequalities v such that

* X=YWZ
® ¢ only uses variables in Z
® every equation in E has form y = e, with y € Y and e, linear expression over variables Z
for every y € Y there is exactly one equationy = e, in E
® o is equivalent to ¢ A /\y:eyeEy —e,
® remarks
® e, does not necessarily have integer coefficients, e.g., y = %z +5
® consequently, integer solutions of 1) cannot always be extended to integer solutions of ¢
° ifv(z)=4thenv(y)=2-445=9€Z
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Current Situation

e given LIA or LRA constraints ¢ over variables X, compute set of equations E and
inequalities v such that

* X=YWZ
® ¢ only uses variables in Z
® every equation in E has form y = e, with y € Y and e, linear expression over variables Z
for every y € Y there is exactly one equationy = e, in E
® o is equivalent to ¢ A /\y:eyeEy —e,
® remarks

® e, does not necessarily have integer coefficients, e.g., y = %z +5

® consequently, integer solutions of 1) cannot always be extended to integer solutions of ¢
° ifv(z)=4thenv(y)=2-445=9€Z
® ifv(z)=1thenv(y)=2+9¢Z
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Current Situation

e given LIA or LRA constraints ¢ over variables X, compute set of equations E and
inequalities v such that

* X=YWZ
® ¢ only uses variables in Z
® every equation in E has form y = e, with y € Y and e, linear expression over variables Z
for every y € Y there is exactly one equationy = e, in E
® o is equivalent to ¢ A /\y:eyeEy —e,
® remarks
® e, does not necessarily have integer coefficients, e.g., y = %z +5
® consequently, integer solutions of 1) cannot always be extended to integer solutions of ¢
° ifv(z)=4thenv(y)=2-445=9€Z
® ifv(z)=1thenv(y)=2+9¢Z
® upcoming: algorithm to convert E in a way that
® integer solutions can always be extended via resulting equations, or
® it is detected that E itself is not solvable in the integers
® remark: additional variables may be required, hence only obtain equisatisfiability
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Diophantine Equation Solver of Griggio - Setup

® input: set E of linear equalities

e output: “unsat” or “sat” with list of equations in solved form
® solved form

¢ |ist of equations of the shape x = e, with ey linear expression with integer coefficients
® no cyclic dependencies: exinlist[...,x =ey,...,y = ey,...] does neither contain x nor y
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Diophantine Equation Solver of Griggio - Setup

® input: set E of linear equalities

output: “unsat” or “sat” with list of equations in solved form
solved form

¢ |ist of equations of the shape x = e, with ey linear expression with integer coefficients
® no cyclic dependencies: exinlist[...,x =ey,...,y = ey,...] does neither contain x nor y
S is list of equations that will become part of solution, initially S =[]
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Diophantine Equation Solver of Griggio - Setup

input: set E of linear equalities

output: “unsat” or “sat” with list of equations in solved form

solved form

¢ |ist of equations of the shape x = e, with ey linear expression with integer coefficients

® no cyclic dependencies: exinlist[...,x =ey,...,y = ey,...] does neither contain x nor y
S is list of equations that will become part of solution, initially S =[]

F is a set of equations that need to be processed, initially F = E
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Diophantine Equation Solver of Griggio - Setup

® input: set E of linear equalities
e output: “unsat” or “sat” with list of equations in solved form
® solved form
¢ |ist of equations of the shape x = e, with ey linear expression with integer coefficients
® no cyclic dependencies: exinlist[...,x =ey,...,y = ey,...] does neither contain x nor y
e Sis list of equations that will become part of solution, initially S = []
® Fis a set of equations that need to be processed, initially F = E
® processing is done equation by equation, and the selected equation is marked;
initially no equation is marked
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Diophantine Equation Solver of Griggio - Setup

input: set E of linear equalities

® output: “unsat” or “sat” with list of equations in solved form
® solved form

¢ |ist of equations of the shape x = e, with ey linear expression with integer coefficients

® no cyclic dependencies: exinlist[...,x =ey,...,y = ey,...] does neither contain x nor y
S is list of equations that will become part of solution, initially S =[]

F is a set of equations that need to be processed, initially F = E

processing is done equation by equation, and the selected equation is marked;
initially no equation is marked

normalize is a sub-algorithm that transforms each equation into form
> aixj = b with a1,...,an,b € Z, gcd(as,...,an,b) =1

® normalize(2x — 6y — 14 =0) = (x — 3y =7)

* normalize(x = 3y + %) = (6x — 3y = 4)
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Diophantine Equation Solver of Griggio - Algorithm

© if F = () then return “sat” with solved form S
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Diophantine Equation Solver of Griggio - Algorithm

© if F = () then return “sat” with solved form S
® F := normalize(F), each equation has form > a;x; = b with a1,...,an,b € Z
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Diophantine Equation Solver of Griggio - Algorithm

© if F = () then return “sat” with solved form S
® F := normalize(F), each equation has form > a;x; = b with a1,...,an,b € Z
© if forsome ) a;x; = b € F the gcd(a1, ..., an) does not divide b, return “unsat”
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Diophantine Equation Solver of Griggio - Algorithm

© if F = () then return “sat” with solved form S

® F := normalize(F), each equation has form > a;x; = b with a1,...,an,b € Z

© if forsome ) a;x; = b € F the gcd(a1, ..., an) does not divide b, return “unsat”
O selection: if no equation is marked, then mark one; assume itis > ajx; = b
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Diophantine Equation Solver of Griggio - Algorithm

© if F = () then return “sat” with solved form S

® F := normalize(F), each equation has form > a;x; = b with a1,...,an,b € Z

© if forsome ) a;x; = b € F the gcd(a1, ..., an) does not divide b, return “unsat”
O selection: if no equation is marked, then mark one; assume itis > ajx; = b

© choose k such that ay has smallest absolute value among all a;
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Diophantine Equation Solver of Griggio - Algorithm

© if F = () then return “sat” with solved form S

® F := normalize(F), each equation has form > a;x; = b with a1,...,an,b € Z

© if forsome ) a;x; = b € F the gcd(a1, ..., an) does not divide b, return “unsat”
O selection: if no equation is marked, then mark one; assume itis > ajx; = b

© choose k such that ay has smallest absolute value among all a;
O iflag| =1
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Diophantine Equation Solver of Griggio - Algorithm

© if F = () then return “sat” with solved form S

® F := normalize(F), each equation has form > a;x; = b with a1,...,an,b € Z

© if forsome ) a;x; = b € F the gcd(a1, ..., an) does not divide b, return “unsat”
O selection: if no equation is marked, then mark one; assume itis > ajx; = b

© choose k such that ay has smallest absolute value among all a;

O iflag| =1
® remove marked equation from F

B universitat i " o lnaEl
hhebruck SS 2024 Constraint Solving lecture 9 5. Equality Elimination 24/34



Diophantine Equation Solver of Griggio - Algorithm

© if F = () then return “sat” with solved form S

® F := normalize(F), each equation has form > a;x; = b with a1,...,an,b € Z

© if forsome ) a;x; = b € F the gcd(a1, ..., an) does not divide b, return “unsat”
O selection: if no equation is marked, then mark one; assume itis > ajx; = b

© choose k such that ay has smallest absolute value among all a;

O iflag| =1
® remove marked equation from F
* reorder equation to have shape (eq) : xx = (b — >, aixi)
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Diophantine Equation Solver of Griggio - Algorithm

© if F = () then return “sat” with solved form S

® F := normalize(F), each equation has form > a;x; = b with a1,...,an,b € Z

© if forsome ) a;x; = b € F the gcd(a1, ..., an) does not divide b, return “unsat”
O selection: if no equation is marked, then mark one; assume itis > ajx; = b

© choose k such that ay has smallest absolute value among all a;
O iflag| =1

® remove marked equation from F

* reorder equation to have shape (eq) : xx = (b — >, aixi)

® S:=(eq):S
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Diophantine Equation Solver of Griggio - Algorithm

© if F = () then return “sat” with solved form S

® F := normalize(F), each equation has form > a;x; = b with a1,...,an,b € Z

© if forsome ) a;x; = b € F the gcd(a1, ..., an) does not divide b, return “unsat”
O selection: if no equation is marked, then mark one; assume itis > ajx; = b

© choose k such that ay has smallest absolute value among all a;
O iflag| =1

® remove marked equation from F

* reorder equation to have shape (eq) : xx = (b — >, aixi)
S:=(eq):S
® use (eq) as substitution to eliminate xx in F
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Diophantine Equation Solver of Griggio - Algorithm

© if F = () then return “sat” with solved form S
® F := normalize(F), each equation has form > a;x; = b with a1,...,an,b € Z
© if forsome ) a;x; = b € F the gcd(a1, ..., an) does not divide b, return “unsat”
O selection: if no equation is marked, then mark one; assume itis > ajx; = b
© choose k such that ay has smallest absolute value among all a;
O iflag| =1

® remove marked equation from F

* reorder equation to have shape (eq) : xx = (b — >, aixi)
S:=(eq):S
use (eq) as substitution to eliminate x, in F
® continue with step 1
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Diophantine Equation Solver of Griggio - Algorithm

© if F = () then return “sat” with solved form S
® F := normalize(F), each equation has form > a;x; = b with a1,...,an,b € Z
© if forsome ) a;x; = b € F the gcd(a1, ..., an) does not divide b, return “unsat”
O selection: if no equation is marked, then mark one; assume itis > ajx; = b
© choose k such that ay has smallest absolute value among all a;
O iflag| =1

® remove marked equation from F

* reorder equation to have shape (eq) : xx = (b — >, aixi)
S:=(eq):S
® use (eq) as substitution to eliminate xi in F
® continue with step 1

@ otherwise, handle case |ax| > 1 (cf. slide 26) and continue with step 1
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e F={x=1%y+14z+y=2},S=]]
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*F={x=gy+l4z+y=2},5=]]
® normalization: F = {6x —y = 6,4z +y = 2}
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e F={x=3y+1,4z+y=2},5=]]
® normalization: F = {6x —y = 6,4z +y = 2}
® selection: 6x — y = 6 gets marked
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(Example |
F={x=1y+14z+y=2}5=]]

normalization: F = {6x —y =6,4z+y = 2}

selection: 6x — y = 6 gets marked

reordering: y = 6x — 6
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(Example |
F={x=1y+14z+y=2}5=]]

normalization: F = {6x —y =6,4z+y = 2}

selection: 6x — y = 6 gets marked

reordering: y = 6x — 6

updates: S=[y = 6x — 6], F = {4z+ (6x — 6) = 2}
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e F={x=1%y+14z+y=2},S=]]
® normalization: F = {6x —y = 6,4z +y = 2}
® selection: 6x — y = 6 gets marked
® reordering: y = 6x — 6

e updates: S=[y=6x—6], F={4z+ (6x —6) = 2}
® normalization: F = {2z 4 3x = 4}
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(Example |
F={x=1y+14z+y=2}5=]]

normalization: F = {6x —y =6,4z+y = 2}

selection: 6x — y = 6 gets marked

reordering: y = 6x — 6

updates: S=[y = 6x — 6], F = {4z+ (6x — 6) = 2}

normalization: F = {2z + 3x = 4}

selection: 2z + 3x = 4 gets marked
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F={x=1y+14z+y=2}5=]]

normalization: F = {6x —y =6,4z+y = 2}
selection: 6x — y = 6 gets marked

reordering: y = 6x — 6

updates: S=[y = 6x — 6], F = {4z+ (6x — 6) = 2}
normalization: F = {2z + 3x = 4}

selection: 2z + 3x = 4 gets marked

® step 7 required
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Diophantine Equation Solver - Case |ai| > 1

® we can write any integer number c as c?ax + ¢ where ¢? and ¢ are quotient and
remainder when dividing ¢ by ax

° hence Za,-x,- =b = axk + Za,x,- =b
ik
— S 4 Z(af’ak +al)x; = bJag + b’
ik
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Diophantine Equation Solver - Case |ai| > 1

® we can write any integer number c as c?ax + ¢ where ¢? and ¢ are quotient and
remainder when dividing ¢ by ax

° hence Za,-x,- =b = axk + Za,x,- =b
ik
— S 4 Z(af’ak +al)x; = bJag + b’
ik
= ak(xk = (Z af’x,) — bq) 2 Zafx,' =b"
ik ik
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Diophantine Equation Solver - Case |ax| > 1

® we can write any integer number c as c?ax + ¢ where ¢? and ¢ are quotient and
remainder when dividing ¢ by ax

° hence Za,-x,- =b = axk + Za,x,- =b
ik
— S 4 Z(a?ak +al)x; = bJag + b’
ik
= ak(xk = (Z af’x,-) — bq) 2 Zafx,' =b"
ik ik

e introduce fresh variable x; to obtain equation (eq) that is always solvable

Xk = —((Z anX,') = bq) —+ Xt (eq)
ik

B universitat i . Iminasl
hhebruck SS 2024 Constraint Solving lecture 9 5. Equality Elimination 26/34



Diophantine Equation Solver - Case |ax| > 1

® we can write any integer number c as c?ax + ¢ where ¢? and ¢ are quotient and
remainder when dividing ¢ by ax

° hence Za,-x,- =b = axk + Za,x,- =b
ik
— S 4 Z(a?ak +al)x; = bJag + b’
ik
= ak(xk = (Z af’x,-) — bq) 2 Zafx,' =b"
ik ik

e introduce fresh variable x; to obtain equation (eq) that is always solvable
Xk = —((Z a,qx,-) = bq) —+ Xt (eq)
i#k
e update S := (eq) : S and eliminate xi in F by substituting with (eq) as in step 6
(note that the marker stays on the previously marked equation)
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Example (continued)

* marked equationis 2z+3x =4, i.e,2(z+ (x—2))+x=0
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Example (continued)

* marked equationis 2z+3x =4, i.e,2(z+ (x—2))+x=0
® introduce fresh variable u and add equation to S, so
S=[z=—-(x—2)+u, y=6x—6]

B universitat i i " fonir ot
B innsbruck SS 2024 Constraint Solving lecture 9 5. Equality Elimination 2734



Example (continued)

* marked equationis 2z+3x =4, i.e,2(z+ (x—2))+x=0

® introduce fresh variable u and add equation to S, so
S=[z=—(x—2)+u, y=6x—6]

e substituting in F delivers 2(—(x —2)+ (x —2)+u) +x =0, i.e., F={2u + x = 0}
(and the marker is still on this equation)
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Example (continued)

* marked equationis 2z+3x =4, i.e,2(z+ (x—2))+x=0

® introduce fresh variable u and add equation to S, so
S=[z=—(x—2)+u, y=6x—6]

e substituting in F delivers 2(—(x —2)+ (x —2)+u) +x =0, i.e., F={2u + x = 0}
(and the marker is still on this equation)

® reorder 2u + x = 0 to x = —2u and update S and F, so
S=[x=-2u,z=—(x—2)+u,y=6x—6]landF=10
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Example (continued)

* marked equationis 2z+3x =4, i.e,2(z+ (x—2))+x=0

® introduce fresh variable u and add equation to S, so
S=[z=—-(x—2)+u, y=6x—6]

e substituting in F delivers 2(—(x —2)+ (x —2)+u) +x =0, i.e., F={2u + x = 0}
(and the marker is still on this equation)

® reorder 2u + x = 0 to x = —2u and update S and F, so
S=[x=-2u,z=—(x—2)4+u,y=6x—6]and F =10

® final result
® initial equations {x = %y + 1,4z +y = 2} are equisatisfiable to final S,
® S s trivially solvable as it is in solved form
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Example (continued)

* marked equationis 2z+3x =4, i.e,2(z+ (x—2))+x=0

® introduce fresh variable u and add equation to S, so
S=[z=—-(x—2)+u, y=6x—6]

e substituting in F delivers 2(—(x —2)+ (x —2)+u) +x =0, i.e., F={2u + x = 0}
(and the marker is still on this equation)

® reorder 2u + x = 0 to x = —2u and update S and F, so
S=[x=-2u,z=—(x—2)4+u,y=6x—6]and F =10

® final result
® initial equations {x = %y + 1,4z +y = 2} are equisatisfiable to final S,
® S s trivially solvable as it is in solved form
® note that S can be applied in two ways

® on symbolic values: translate constraints (e.g., inequalities)
apply equations starting with end of S
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Example (continued)

* marked equationis 2z+3x =4, i.e,2(z+ (x—2))+x=0
® introduce fresh variable u and add equation to S, so
S=[z=—-(x—2)+u, y=6x—6]
e substituting in F delivers 2(—(x —2)+ (x —2)+u) +x =0, i.e., F={2u + x = 0}
(and the marker is still on this equation)
® reorder 2u + x = 0 to x = —2u and update S and F, so
S=[x=-2u,z=—(x—2)4+u,y=6x—6]and F =10
® final result
® initial equations {x = %y + 1,4z +y = 2} are equisatisfiable to final S,
® S s trivially solvable as it is in solved form
® note that S can be applied in two ways
® on symbolic values: translate constraints (e.g., inequalities)
apply equations starting with end of S
® on concrete value: translate solution (e.g., from a solution of inequalities)
compute values by equations starting at beginning of S
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Let E be a set of linear equations
® the Diophantine equation solver terminates on input E

B universitat i . Imlnasl
hhebruck SS 2024 Constraint Solving lecture 9 5. Equality Elimination 28/34



Theorem

Let E be a set of linear equations

® the Diophantine equation solver terminates on input E
e jfthe result on input E is “unsat”, then E is not solvable in Z
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Theorem

Let E be a set of linear equations

® the Diophantine equation solver terminates on input E
e jfthe result on input E is “unsat”, then E is not solvable in Z
e jfthe result on input E is “sat” with answer S, then

® F and S are equisatisfiable in 7,

® Sisin solved form, and

® constraints and solutions can be translated via S

| | universitet
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Application: Combine Algorithms for an Improved LIA Solver

input: set of linear inequalities
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Application: Combine Algorithms for an Improved LIA Solver

input: set of linear inequalities
@ tighten bounds if possible (Section 2)
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Application: Combine Algorithms for an Improved LIA Solver

input: set of linear inequalities
@ tighten bounds if possible (Section 2)

@ split inequalities into equalities E and inequalities I (Section 4)
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Application: Combine Algorithms for an Improved LIA Solver

input: set of linear inequalities
@ tighten bounds if possible (Section 2)
@ split inequalities into equalities E and inequalities I (Section 4)
© if Diophantine equation solver on E returns “unsat”, return “unsat” (Section 5)
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Application: Combine Algorithms for an Improved LIA Solver

input: set of linear inequalities
@ tighten bounds if possible (Section 2)
@ split inequalities into equalities E and inequalities I (Section 4)
© if Diophantine equation solver on E returns “unsat”, return “unsat” (Section 5)
@ otherwise obtain solution S and apply substitution S on I (symbolically)
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Application: Combine Algorithms for an Improved LIA Solver

input: set of linear inequalities
@ tighten bounds if possible (Section 2)
@ split inequalities into equalities E and inequalities I (Section 4)
© if Diophantine equation solver on E returns “unsat”, return “unsat” (Section 5)
@ otherwise obtain solution S and apply substitution S on I (symbolically)
© try to tighten I again
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Application: Combine Algorithms for an Improved LIA Solver

input: set of linear inequalities
@ tighten bounds if possible (Section 2)
@ split inequalities into equalities E and inequalities I (Section 4)
© if Diophantine equation solver on E returns “unsat”, return “unsat” (Section 5)
@ otherwise obtain solution S and apply substitution S on I (symbolically)
© try to tighten I again
0O potentially detect new equalities and go back to step 2
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Application: Combine Algorithms for an Improved LIA Solver

input: set of linear inequalities
@ tighten bounds if possible (Section 2)
@ split inequalities into equalities E and inequalities I (Section 4)
© if Diophantine equation solver on E returns “unsat”, return “unsat” (Section 5)
@ otherwise obtain solution S and apply substitution S on I (symbolically)
© try to tighten I again
0O potentially detect new equalities and go back to step 2
@ if simplex on | returns “unsat”, return “unsat”
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Application: Combine Algorithms for an Improved LIA Solver

input: set of linear inequalities
@ tighten bounds if possible (Section 2)
@ split inequalities into equalities E and inequalities I (Section 4)
© if Diophantine equation solver on E returns “unsat”, return “unsat” (Section 5)
@ otherwise obtain solution S and apply substitution S on I (symbolically)
© try to tighten I again
0O potentially detect new equalities and go back to step 2
@ if simplex on I returns “unsat”, return “unsat”
@ if unit-cube test on I finds solution then store it and go to step 10 (Section 3)
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Application: Combine Algorithms for an Improved LIA Solver

input: set of linear inequalities
@ tighten bounds if possible (Section 2)
@ split inequalities into equalities E and inequalities I (Section 4)
© if Diophantine equation solver on E returns “unsat”, return “unsat” (Section 5)
@ otherwise obtain solution S and apply substitution S on I (symbolically)
© try to tighten I again
0O potentially detect new equalities and go back to step 2
@ if simplex on I returns “unsat”, return “unsat”
@ if unit-cube test on I finds solution then store it and go to step 10 (Section 3)
© apply branch-and-bound on I and either store solution or return “unsat”
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Application: Combine Algorithms for an Improved LIA Solver

input: set of linear inequalities
@ tighten bounds if possible (Section 2)
@ split inequalities into equalities E and inequalities I (Section 4)
© if Diophantine equation solver on E returns “unsat”, return “unsat” (Section 5)
@ otherwise obtain solution S and apply substitution S on I (symbolically)
© try to tighten I again
0O potentially detect new equalities and go back to step 2
@ if simplex on I returns “unsat”, return “unsat”
@ if unit-cube test on I finds solution then store it and go to step 10 (Section 3)
© apply branch-and-bound on I and either store solution or return “unsat”

i output solution where S is used to compute values of further variables
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Example (for improved LIA solver)

® input
’ 2x1 < 5x3
5x3 < 2x1
X7 = 3Xg4
2X1 +X2 +x3 2> 7
2xX1+X2 +x3<8
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Example (for improved LIA solver)

® input
’ 2X1 < 5x3
5X3 < 2X1
X2 = 3Xg4
2X1 +X2 +x3 2> 7
2X1 +Xx2 +x3 <8

e tightening is not applicable on input constraints

M universitat i i " fonin ot
B innsbruck SS 2024 Constraint Solving lecture 9 5. Equality Elimination 3034



Example (for improved LIA solver)

® input
’ 2x1 < 5x3
5x3 < 2x1
X7 = 3Xg4
2X1 +X2 +x3 2> 7
2X1 +Xx2 +x3 <8

e tightening is not applicable on input constraints
® equation detection splits constraints into

E = {2x1 = 5x3,X2 = 3xa}

and
/:{7 < 2X71 + X2 + X3 SS}
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Example (continued)

* Diophantine equation solver on E = {2x; = 5x3,x2 = 3x4} delivers solved form S
and introduces new variable x5

SiE [X3 = 2Xs5, X1 = 2X3 + X5, X3 = 3X4]
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Example (continued)

* Diophantine equation solver on E = {2x; = 5x3,x2 = 3x4} delivers solved form S
and introduces new variable x5

SiE [X3 = 2Xs5, X1 = 2X3 + X5, X3 = 3X4]

® Sis used as substitution to change I = {7 < 2x; + x2 + x3 < 8} into

| = {7 < 2(2(2X5) -|-X5) + 3x4 + 2Xx5 < 8}
= {7 < 12x5 + 3x4 < 8}
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Example (continued)

* Diophantine equation solver on E = {2x; = 5x3,x2 = 3x4} delivers solved form S
and introduces new variable x5

SiE [X3 = 2Xs5, X1 = 2X3 + X5, X3 = 3X4]

® Sis used as substitution to change I = {7 < 2x; + x2 + x3 < 8} into
| = {7 < 2(2(2X5) -|-X5) + 3x4 + 2Xx5 < 8}
= {7 < 12xs5 + 3x4 < 8}
e tightening is now applicable and yields
I:{3§4X5+X4§2}
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Example (continued)

* Diophantine equation solver on E = {2x; = 5x3,x2 = 3x4} delivers solved form S
and introduces new variable x5

SiE [X3 = 2Xs5, X1 = 2X3 + X5, X3 = 3X4]

® Sis used as substitution to change I = {7 < 2x; + x2 + x3 < 8} into

| = {7 < 2(2(2X5) -|-X5) + 3x4 + 2Xx5 < 8}
= {7 < 12x5 + 3x4 < 8}

e tightening is now applicable and yields
I:{3§4X5+X4§2}

® simplex now easily detects unsat of /
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Example (continued)

* Diophantine equation solver on E = {2x; = 5x3,x2 = 3x4} delivers solved form S
and introduces new variable x5

SiE [X3 = 2Xs5, X1 = 2X3 + X5, X3 = 3X4]

S is used as substitution to change | = {7 < 2x; + x2 + x3 < 8} into
| = {7 < 2(2(2X5) -|-X5) + 3x4 + 2Xx5 < 8}
= {7 < 12xs5 + 3x4 < 8}
e tightening is now applicable and yields
I:{3§4X5+X4§2}

simplex now easily detects unsat of /
(solution of / for x4 and x5 would be extensible to x3, x1, x2 via S)
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Final Remarks

® easy to see: T-solver for LIA is much more complex than one for LRA
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Final Remarks

® easy to see: T-solver for LIA is much more complex than one for LRA
® not discussed

® how to make LIA-solver incremental in DPLL(T) approach
® how to generate small unsatisfiable cores for DPLL(T) approach
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Final Remarks

® easy to see: T-solver for LIA is much more complex than one for LRA
® not discussed
® how to make LIA-solver incremental in DPLL(T) approach
® how to generate small unsatisfiable cores for DPLL(T) approach
e strategy used in DPLL(T) solvers for LIA
® utilize (incomplete) LRA-reasoning as much as possible, and
® only invoke full LIA-solver when a complete Boolean model has been found
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Outline

6. Further Reading
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Further Reading

@ Alberto Griggio

A Practical Approach to Satisfiability Modulo Linear Integer Arithmetic
Journal on Satisfiability, Boolean Modeling and Computation, volume 8, pages 1-27, 2012.

@ Martin Bromberger and Christoph Weidenbach

New techniques for linear arithmetic: cubes and equalities
Formal Methods in System Design, volume 51, pages 433-461, 2017.

® cube ® implied equality
® Diophantine equation solver ® tightening

® equality basis algorithm
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