

SS 2024 lecture 9

Constraint Solving

René Thiemann and Fabian Mitterwallner based on a previous course by Aart Middeldorp

Outline

- **1. Summary of Previous Lecture**
- 2. Tightening
- 3. Cubes
- 4. Equality Detection
- 5. Equality Elimination
- 6. Further Reading

Example (Application of Linear Integer Arithmetic: Termination Proving)

- consider program
- model loop-iteration as formula φ using pre-variables \vec{x} and post-variables \vec{x}'
- prove termination by choosing expression *e* and integer constant *f* and show that two LIA problems are unsatisfiable

•
$$arphi \wedge e(ec{x}) < e(ec{x}') + 1$$

•
$$\varphi \wedge e(\vec{x}) < f$$

 $(\neg bounded)$

• for certain programs, reasoning over integers is essential

Example (Application of Linear Integer Arithmetic: Termination Proving)

- consider program
- model loop-iteration as formula φ using pre-variables \vec{x} and post-variables \vec{x}'
- prove termination by choosing expression *e* and integer constant *f* and show that two LIA problems are unsatisfiable

•
$$\varphi \wedge e(\vec{x}) < e(\vec{x}') + 1$$

•
$$\varphi \wedge e(\vec{x}) < f$$

$$(\neg decrease)$$

 $(\neg bounded)$

• for certain programs, reasoning over integers is essential

Branch-and-Bound Algorithm

- core idea for finding integral solution
 - simplex algorithm is used to find real solution v or detect unsat in $\mathbb R$
 - whenever $q:=v(x)\notin\mathbb{Z}$, consider two possibilities: add $x\leq \lfloor q
 floor$ or $\lceil q
 ceil\leq x$
- small model property is required for termination: obtain finite search space

Theorem (Small Model Property)

if LIA formula ψ has solution over $\mathbb Z$ then it has a solution v with

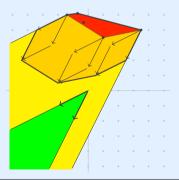
$$|v(x)| \leq bound(\psi) := (n+1) \cdot \sqrt{n^n} \cdot c^n$$

for all x where

- *n*: number of variables in ψ
- c: maximal absolute value of numbers in ψ

Proof Idea of Small Model Property

- 1 convert conjunctive LIA formula ψ into form $A\vec{x} \leq \vec{b}$
- 2 represent polyhedron $\underbrace{\{\vec{x} \mid A\vec{x} \leq \vec{b}\}}_{yellow}$ as polyhedron $P = \underbrace{hull(X)}_{red} + \underbrace{cone(V)}_{green}$
- Show that P has small integral solutions (orange), depending on X and V
- approximate entries of vectors in X and V to obtain small model property



Outline

1. Summary of Previous Lecture

- 3. Cubes
- 4. Equality Detection
- 5. Equality Elimination
- 6. Further Reading

- consider inequality $\sum a_i x_i \bowtie b$ with $\bowtie \in \{<, \le\}$, and $a_1, \ldots, a_n, b \in \mathbb{Z}$
- tightening preprocesses such inequality in a way that preserves integer solutions (but removes solutions in \mathbb{R})
- impact: tightening helps to obtain unsatisfiability in $\ensuremath{\mathbb{R}}$

- consider inequality $\sum a_i x_i \bowtie b$ with $\bowtie \in \{<, \le\}$, and $a_1, \ldots, a_n, b \in \mathbb{Z}$
- tightening preprocesses such inequality in a way that preserves integer solutions (but removes solutions in \mathbb{R})
- impact: tightening helps to obtain unsatisfiability in ${\mathbb R}$
- last lecture: tightening of strict inequalities $\sum a_i x_i < b$ to $\sum a_i x_i \leq b 1$
 - 2 < 517x + 2y < 3 can be tightened to $3 \le 517x + 2y \le 2$, trivially unsat via simplex

- consider inequality $\sum a_i x_i \bowtie b$ with $\bowtie \in \{<, \le\}$, and $a_1, \ldots, a_n, b \in \mathbb{Z}$
- tightening preprocesses such inequality in a way that preserves integer solutions (but removes solutions in \mathbb{R})
- impact: tightening helps to obtain unsatisfiability in ${\mathbb R}$
- last lecture: tightening of strict inequalities $\sum a_i x_i < b$ to $\sum a_i x_i \leq b 1$
 - 2 < 517x + 2y < 3 can be tightened to $3 \le 517x + 2y \le 2$, trivially unsat via simplex
- tightening of weak inequalities
 - let $g = \gcd(a_1, \ldots, a_n)$

- consider inequality $\sum a_i x_i \bowtie b$ with $\bowtie \in \{<, \le\}$, and $a_1, \ldots, a_n, b \in \mathbb{Z}$
- tightening preprocesses such inequality in a way that preserves integer solutions (but removes solutions in \mathbb{R})
- impact: tightening helps to obtain unsatisfiability in ${\mathbb R}$
- last lecture: tightening of strict inequalities $\sum a_i x_i < b$ to $\sum a_i x_i \leq b 1$
 - 2 < 517x + 2y < 3 can be tightened to $3 \le 517x + 2y \le 2$, trivially unsat via simplex
- tightening of weak inequalities
 - let $g = \gcd(a_1, \ldots, a_n)$
 - if *b* is not divisible by *g* then tighten $\sum a_i x_i \le b$ to $\sum \frac{a_i}{g} x_i \le \lfloor \frac{b}{g} \rfloor$

- consider inequality $\sum a_i x_i \bowtie b$ with $\bowtie \in \{<, \le\}$, and $a_1, \ldots, a_n, b \in \mathbb{Z}$
- tightening preprocesses such inequality in a way that preserves integer solutions (but removes solutions in \mathbb{R})
- impact: tightening helps to obtain unsatisfiability in ${\mathbb R}$
- last lecture: tightening of strict inequalities $\sum a_i x_i < b$ to $\sum a_i x_i \leq b 1$
 - 2 < 517x + 2y < 3 can be tightened to $3 \le 517x + 2y \le 2$, trivially unsat via simplex
- tightening of weak inequalities
 - let $g = \gcd(a_1, \ldots, a_n)$
 - if *b* is not divisible by *g* then tighten $\sum a_i x_i \le b$ to $\sum \frac{a_i}{g} x_i \le \lfloor \frac{b}{g} \rfloor$
- example from last lecture
 - tighten $1 \le 3x 3y \le 2$ to $\lfloor \frac{1}{3} \rfloor \le x y \le \lfloor \frac{2}{3} \rfloor$
 - result $1 \le x y \le 0$ is unsat by simplex

Outline

- **1. Summary of Previous Lecture**
- 2. Tightening

3. Cubes

- 4. Equality Detection
- 5. Equality Elimination
- 6. Further Reading

- searching for integral solutions \vec{x} for polyhedron *P* described as $A\vec{x} \leq \vec{b}$ via branch-and-bound algorithm is expensive
- idea: use sufficient criterion that sometimes quickly finds integral solution of P

- searching for integral solutions \vec{x} for polyhedron *P* described as $A\vec{x} \leq \vec{b}$ via branch-and-bound algorithm is expensive
- idea: use sufficient criterion that sometimes quickly finds integral solution of P

- searching for integral solutions \vec{x} for polyhedron *P* described as $A\vec{x} \leq \vec{b}$ via branch-and-bound algorithm is expensive
- idea: use sufficient criterion that sometimes quickly finds integral solution of P
- core idea of the cube-test: if there is some cube C with edge-length ≥ 1 that is completely contained in P, then P contains an integral solution

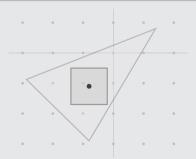
Example

- consider polyhedron *P*, the triangle
- none of the corners is integral, hence BB will require some iterations

- searching for integral solutions \vec{x} for polyhedron *P* described as $A\vec{x} \leq \vec{b}$ via branch-and-bound algorithm is expensive
- idea: use sufficient criterion that sometimes quickly finds integral solution of P
- core idea of the cube-test: if there is some cube C with edge-length ≥ 1 that is completely contained in P, then P contains an integral solution

Example

- consider polyhedron *P*, the triangle
- none of the corners is integral, hence BB will require some iterations
- cube *C*, the square, is contained in *P* and has edge-length 1.2
- hence *C* contains an integral solution, which can be calculated from the center point of *C*



Definition of Cubes

 $\mathsf{cube}_s(\vec{z})$ is the cube with center $\vec{z} \in \mathbb{R}^n$ and size $s \in \mathbb{R}_{\geq 0}$

$$\mathsf{cube}_s(ec{z}) = \{ec{x} \in \mathbb{R}^n \mid orall i \in \{1,\dots,n\}. \ |x_i - z_i| \leq s\}$$

Definition of Cubes

 $\mathsf{cube}_s(\vec{z})$ is the cube with center $\vec{z} \in \mathbb{R}^n$ and size $s \in \mathbb{R}_{\geq 0}$

$$\mathsf{cube}_s(ec{z}) = \{ec{x} \in \mathbb{R}^n \mid orall i \in \{1,\ldots,n\}. \ |x_i - z_i| \leq s\}$$

Lemma

if $s \geq 1/2$ then ${
m cube}_s(ec{z})$ contains an integral vector $ec{p}$

Definition of Cubes

 $\mathsf{cube}_{s}(\vec{z})$ is the cube with center $\vec{z} \in \mathbb{R}^{n}$ and size $s \in \mathbb{R}_{\geq 0}$

$$\mathsf{cube}_s(ec{z}) = \{ec{x} \in \mathbb{R}^n \mid orall i \in \{1,\ldots,n\}. \ |x_i - z_i| \leq s\}$$

Lemma

if $s \geq 1/2$ then ${
m cube}_s(ec{z})$ contains an integral vector $ec{p}$

Proof

choose \vec{p} where $p_i = \lfloor z_i \rfloor$, i.e., rounding z_i to the nearest integer

Example

the center of the cube on slide 9 is $\vec{z} = (-0.8, -1.1)^t$, so we compute $\vec{p} = (-1, -1)^t$

Cube Inclusion

- consider some polyhedron $\textit{P} = \{ ec{x} \mid A ec{x} \leq ec{b} \}$ for some $A \in \mathbb{R}^{m imes n}$ and $ec{b} \in \mathbb{R}^m$
- we are interested in whether *P* contains a cube of size *s*, formally:

$$\exists \vec{z}. \operatorname{cube}_{s}(\vec{z}) \subseteq \{ \vec{x} \mid A\vec{x} \le \vec{b} \}$$

$$(1)$$

Cube Inclusion

- consider some polyhedron $P = \{\vec{x} \mid A\vec{x} \leq \vec{b}\}$ for some $A \in \mathbb{R}^{m \times n}$ and $\vec{b} \in \mathbb{R}^m$
- we are interested in whether *P* contains a cube of size *s*, formally:

$$\exists \vec{z}. \operatorname{cube}_{s}(\vec{z}) \subseteq \{ \vec{x} \mid A\vec{x} \leq \vec{b} \}$$
 (1)

Lemma (Cube Inclusion for Single Inequality)

For a single inequality $\vec{a} \cdot \vec{x} \leq c$ with $\vec{a} \in \mathbb{R}^n$, $c \in \mathbb{R}$ there is the equivalence:

$$\operatorname{cube}_{s}(\vec{z}) \subseteq \{\vec{x} \mid \vec{a} \cdot \vec{x} \leq c\} \quad iff \quad \vec{a} \cdot \vec{z} \leq c - s \sum_{i=1}^{n} |a_{i}|$$
 (2)

Cube Inclusion

- consider some polyhedron $P = \{ \vec{x} \mid A\vec{x} \leq \vec{b} \}$ for some $A \in \mathbb{R}^{m \times n}$ and $\vec{b} \in \mathbb{R}^m$
- we are interested in whether *P* contains a cube of size *s*, formally:

$$\exists \vec{z}. \operatorname{cube}_{s}(\vec{z}) \subseteq \{ \vec{x} \mid A\vec{x} \leq \vec{b} \}$$
 (1)

Lemma (Cube Inclusion for Single Inequality)

For a single inequality $\vec{a} \cdot \vec{x} \leq c$ with $\vec{a} \in \mathbb{R}^n$, $c \in \mathbb{R}$ there is the equivalence:

$$ext{cube}_s(ec{z}) \subseteq \{ec{x} \mid ec{a} \cdot ec{x} \le c\} \quad iff \quad ec{a} \cdot ec{z} \le c - s \sum_{i=1}^n |a_i|$$
 (2)

Corollary

$$\textit{Cube inclusion (1) is satisfied iff } A\vec{z} \leq \vec{b} - s \cdot \begin{pmatrix} |A_{11}| + \ldots + |A_{1n}| \\ & \ddots & \\ |A_{m1}| + \ldots + |A_{mn}| \end{pmatrix} \textit{ has solution } \vec{z} \in \mathbb{R}^n$$

We assume

(A)
$$ec{x} \in ext{cube}_s(ec{z})$$
 and (B) $ec{a} \cdot ec{z} \leq c - s \sum_{i=1}^n |a_i|$

and prove $\vec{a} \cdot \vec{x} \leq c$ as follows:

 $\vec{a} \cdot \vec{x}$

We assume

(A)
$$ec{x} \in ext{cube}_s(ec{z})$$
 and (B) $ec{a} \cdot ec{z} \leq c - s \sum_{i=1}^n |a_i|$

$$\vec{a}\cdot\vec{x}=\vec{a}\cdot(\vec{z}+(\vec{x}-\vec{z}))=\vec{a}\cdot\vec{z}+\vec{a}\cdot(\vec{x}-\vec{z})$$

We assume

(A)
$$ec{x} \in ext{cube}_s(ec{z})$$
 and (B) $ec{a} \cdot ec{z} \leq c - s \sum_{i=1}^n |a_i|$

$$egin{array}{ll} ec{a} \cdot ec{x} = ec{a} \cdot (ec{z} + (ec{x} - ec{z})) = ec{a} \cdot ec{z} + ec{a} \cdot (ec{x} - ec{z}) \ & \leq \left(c - s \sum_{i=1}^n |eta_i|
ight) + ec{a} \cdot (ec{x} - ec{z}) \end{array}$$

We assume

(A)
$$ec{x} \in ext{cube}_s(ec{z})$$
 and (B) $ec{a} \cdot ec{z} \leq c - s \sum_{i=1}^n |a_i|$

$$egin{array}{ll} ec{a}\cdotec{x} &= ec{a}\cdot(ec{z}+(ec{x}-ec{z})) = ec{a}\cdotec{z}+ec{a}\cdot(ec{x}-ec{z}) \ & \leq \left(c-s\sum_{i=1}^n|a_i|
ight)+ec{a}\cdot(ec{x}-ec{z}) = c-s\sum_{i=1}^n|a_i|+\sum_{i=1}^na_i\cdot(x_i-z_i) \end{array}$$

We assume

(A)
$$ec{x} \in ext{cube}_s(ec{z})$$
 and (B) $ec{a} \cdot ec{z} \leq c - s \sum_{i=1}^n |a_i|$

$$egin{aligned} ec{a} \cdot ec{x} &= ec{a} \cdot (ec{z} + (ec{x} - ec{z})) = ec{a} \cdot ec{z} + ec{a} \cdot (ec{x} - ec{z}) \ & \leq \left(c - s \sum_{i=1}^n |a_i|
ight) + ec{a} \cdot (ec{x} - ec{z}) = c - s \sum_{i=1}^n |a_i| + \sum_{i=1}^n a_i \cdot (x_i - z_i) \ & \leq c - s \sum_{i=1}^n |a_i| + \sum_{i=1}^n |a_i| \cdot |x_i - z_i| \end{aligned}$$

We assume

(A)
$$ec{x} \in ext{cube}_s(ec{z})$$
 and (B) $ec{a} \cdot ec{z} \leq c - s \sum_{i=1}^n |a_i|$

$$egin{aligned} ec{a} \cdot ec{x} &= ec{a} \cdot (ec{z} + (ec{x} - ec{z})) = ec{a} \cdot ec{z} + ec{a} \cdot (ec{x} - ec{z}) \ &\leq \left(c - s \sum_{i=1}^n |a_i|
ight) + ec{a} \cdot (ec{x} - ec{z}) = c - s \sum_{i=1}^n |a_i| + \sum_{i=1}^n a_i \cdot (x_i - z_i) \ &\leq c - s \sum_{i=1}^n |a_i| + \sum_{i=1}^n |a_i| \cdot |x_i - z_i| \ &\leq c - s \sum_{i=1}^n |a_i| + \sum_{i=1}^n |a_i| \cdot s = c \end{aligned}$$

- a unit-cube has edge-length 1, i.e., s = 1/2
- testing the unit-cube inclusion is possible via one invocation of simplex by checking existence of \vec{z} for inequalities

$$Aec{z} \leq ec{b} - rac{1}{2} \cdot egin{pmatrix} |A_{11}| + \ldots + |A_{1n}| \ & \ldots \ & |A_{m1}| + \ldots + |A_{mn}| \end{pmatrix}$$

- a unit-cube has edge-length 1, i.e., s = 1/2
- testing the unit-cube inclusion is possible via one invocation of simplex by checking existence of \vec{z} for inequalities

$$egin{aligned} Aec{z} &\leq ec{b} - rac{1}{2} \cdot egin{pmatrix} |A_{11}| + \ldots + |A_{1n}| \ & \ldots \ & |A_{m1}| + \ldots + |A_{mn}| \end{pmatrix} \end{aligned}$$

Remarks

• the unit-cube test is just a sufficient criterion for integral solution of $Aec{x}\leqec{b}$

- a unit-cube has edge-length 1, i.e., s = 1/2
- testing the unit-cube inclusion is possible via one invocation of simplex by checking existence of \vec{z} for inequalities

$$egin{aligned} Aec{z} &\leq ec{b} - rac{1}{2} \cdot egin{pmatrix} |A_{11}| + \ldots + |A_{1n}| \ & \ldots \ & |A_{m1}| + \ldots + |A_{mn}| \end{pmatrix} \end{aligned}$$

Remarks

- the unit-cube test is just a sufficient criterion for integral solution of $Aec{x}\leqec{b}$
- the unit-cube test always fails on constraints that contain (or imply) equalities, e.g., $\ldots \wedge y' = y - 1 + x_1 \wedge \ldots \wedge x_1 \ge 2x_2 \wedge x_2 \ge x_1 \wedge x_1 \ge 0 \wedge \ldots$

- a unit-cube has edge-length 1, i.e., s = 1/2
- testing the unit-cube inclusion is possible via one invocation of simplex by checking existence of \vec{z} for inequalities

$$egin{aligned} Aec{z} &\leq ec{b} - rac{1}{2} \cdot egin{pmatrix} |A_{11}| + \ldots + |A_{1n}| \ & \ldots \ & |A_{m1}| + \ldots + |A_{mn}| \end{pmatrix} \end{aligned}$$

Remarks

- the unit-cube test is just a sufficient criterion for integral solution of $Aec{x} \leq ec{b}$
- the unit-cube test always fails on constraints that contain (or imply) equalities, e.g., $\ldots \wedge y' = y - 1 + x_1 \wedge \ldots \wedge x_1 \ge 2x_2 \wedge x_2 \ge x_1 \wedge x_1 \ge 0 \wedge \ldots$
- increase applicability as follows
 - first detect all implied equalities
 - then eliminate equalities (or detect unsat purely from equalities, e.g., from 2x = 1)
 - afterwards achieve higher success rate of unit-cube test (and lower bounds for BB)

Outline

- **1. Summary of Previous Lecture**
- 2. Tightening
- 3. Cubes

4. Equality Detection

- 5. Equality Elimination
- 6. Further Reading

Definition (Implied Equalities)

- consider set of inequalities $Aec{x} \leq ec{b}$ where the *i*-th inequality has form $ec{a}_i \cdot ec{x} \leq b_i$
- $A\vec{x} \leq \vec{b}$ implies equality $\vec{c} \cdot \vec{x} = d$ if every solution $\vec{x} \in \mathbb{R}^n$ of $A\vec{x} \leq \vec{b}$ satisfies $\vec{c} \cdot \vec{x} = d$

Definition (Implied Equalities)

- consider set of inequalities $Aec{x}\leqec{b}$ where the *i*-th inequality has form $ec{a}_i\cdotec{x}\leq b_i$
- $A\vec{x} \leq \vec{b}$ implies equality $\vec{c} \cdot \vec{x} = d$ if every solution $\vec{x} \in \mathbb{R}^n$ of $A\vec{x} \leq \vec{b}$ satisfies $\vec{c} \cdot \vec{x} = d$

Observation

if $A\vec{x} < \vec{b}$ is satisfiable, then no equality $\vec{a}_i \cdot \vec{x} = b_i$ is implied

Definition (Implied Equalities)

- consider set of inequalities $Aec{x}\leqec{b}$ where the *i*-th inequality has form $ec{a}_i\cdotec{x}\leq b_i$
- $A\vec{x} \leq \vec{b}$ implies equality $\vec{c} \cdot \vec{x} = d$ if every solution $\vec{x} \in \mathbb{R}^n$ of $A\vec{x} \leq \vec{b}$ satisfies $\vec{c} \cdot \vec{x} = d$

Observation

if $A\vec{x} < \vec{b}$ is satisfiable, then no equality $\vec{a}_i \cdot \vec{x} = b_i$ is implied

Further Results

- interestingly, also the other direction is satisfied
 - assume $A\vec{x} < \vec{b}$ is unsatisfiable
 - then there is some minimal unsatisfiable subset *I* such that $\bigwedge_{i \in I} \vec{a}_i \cdot \vec{x} < b_i$ is unsatisfiable (obtained by a single simplex invocation)
 - lemma: for every $i \in I$, the *i*-th equality $\vec{a}_i \cdot \vec{x} = b_i$ is implied

Definition (Implied Equalities)

- consider set of inequalities $Aec{x}\leqec{b}$ where the *i*-th inequality has form $ec{a}_i\cdotec{x}\leq b_i$
- $A\vec{x} \leq \vec{b}$ implies equality $\vec{c} \cdot \vec{x} = d$ if every solution $\vec{x} \in \mathbb{R}^n$ of $A\vec{x} \leq \vec{b}$ satisfies $\vec{c} \cdot \vec{x} = d$

Observation

if $A\vec{x} < \vec{b}$ is satisfiable, then no equality $\vec{a}_i \cdot \vec{x} = b_i$ is implied

Further Results

- interestingly, also the other direction is satisfied
 - assume $A\vec{x} < \vec{b}$ is unsatisfiable
 - then there is some minimal unsatisfiable subset *I* such that $\bigwedge_{i \in I} \vec{a}_i \cdot \vec{x} < b_i$ is unsatisfiable (obtained by a single simplex invocation)
 - lemma: for every $i \in I$, the *i*-th equality $\vec{a}_i \cdot \vec{x} = b_i$ is implied
- overall: given $A\vec{x} \leq \vec{b}$ with one simplex invocation it is possible to
 - either get access to an implied equality
 - or figure out that no such equality exists

- the task is to iteratively deduce all equalities for (satisfiable) constraints $A\vec{x} \leq \vec{b}$
- in each iteration, one equality is added and one variable is eliminated

- the task is to iteratively deduce all equalities for (satisfiable) constraints $A\vec{x} \leq \vec{b}$
- in each iteration, one equality is added and one variable is eliminated
- throughout the algorithm *E* stores equalities, and $A'\vec{x} \leq \vec{b}'$ is a set of inequalities
- initialize $E := \emptyset$
- delete all trivial inequalities from $Aec{x}\leqec{b}$, the result is the initial A' and $ec{b}'$

- the task is to iteratively deduce all equalities for (satisfiable) constraints $A\vec{x} \leq \vec{b}$
- in each iteration, one equality is added and one variable is eliminated
- throughout the algorithm *E* stores equalities, and $A'ec{x} \leq ec{b}'$ is a set of inequalities
- initialize $E := \emptyset$
- delete all trivial inequalities from $A\vec{x} \leq \vec{b}$, the result is the initial A' and \vec{b}'
- while $simplex(A'\vec{x} < \vec{b}')$ delivers minimal unsat core *I*
 - choose any equality $ec{a}'_i \cdot ec{x} = b'_i$ for $i \in I$

- the task is to iteratively deduce all equalities for (satisfiable) constraints $A\vec{x} \leq \vec{b}$
- in each iteration, one equality is added and one variable is eliminated
- throughout the algorithm *E* stores equalities, and $A'ec{x} \leq ec{b}'$ is a set of inequalities
- initialize $E := \emptyset$
- delete all trivial inequalities from $A\vec{x} \leq \vec{b}$, the result is the initial A' and \vec{b}'
- while $simplex(A'\vec{x} < \vec{b}')$ delivers minimal unsat core *I*
 - choose any equality $ec{a}'_i \cdot ec{x} = b'_i$ for $i \in I$
 - choose any j such that $A'_{ij} \neq 0$
 - reorder equation to obtain equation (e_j) of the form $x_j = rac{b_i}{A'_{ij}} \sum_{k
 eq j} rac{A'_{ik}}{A'_{ij}} x_k$

- the task is to iteratively deduce all equalities for (satisfiable) constraints $A\vec{x} \leq \vec{b}$
- in each iteration, one equality is added and one variable is eliminated
- throughout the algorithm *E* stores equalities, and $A'ec{x} \leq ec{b}'$ is a set of inequalities
- initialize $E := \emptyset$
- delete all trivial inequalities from $Aec{x}\leqec{b}$, the result is the initial A' and $ec{b}'$
- while $simplex(A'\vec{x} < \vec{b}')$ delivers minimal unsat core *I*
 - choose any equality $ec{a}'_i \cdot ec{x} = b'_i$ for $i \in I$
 - choose any j such that $A'_{ij} \neq 0$
 - reorder equation to obtain equation (e_j) of the form $x_j = \frac{b_i}{A'_{ii}} \sum_{k \neq j} \frac{A'_{ik}}{A'_{ij}} x_k$
 - eliminate x_j from $A'\vec{x} \leq \vec{b}'$ and from E by using (e_j) as substitution
 - add (*e_j*) to *E*
 - remove trivial equations from $A'\vec{x} \leq \vec{b}'$ after simplifications

- the task is to iteratively deduce all equalities for (satisfiable) constraints $A\vec{x} \leq \vec{b}$
- in each iteration, one equality is added and one variable is eliminated
- throughout the algorithm *E* stores equalities, and $A'ec{x}\leqec{b}'$ is a set of inequalities
- initialize $E := \emptyset$
- delete all trivial inequalities from $Aec{x}\leqec{b}$, the result is the initial A' and $ec{b}'$
- while $simplex(A'\vec{x} < \vec{b}')$ delivers minimal unsat core *I*
 - choose any equality $ec{a}'_i \cdot ec{x} = b'_i$ for $i \in I$
 - choose any j such that $A'_{ij} \neq 0$
 - reorder equation to obtain equation (e_j) of the form $x_j = \frac{b_i}{A'_{ii}} \sum_{k \neq j} \frac{A'_{ik}}{A'_{ij}} x_k$
 - eliminate x_j from $A'\vec{x} \leq \vec{b}'$ and from E by using (e_j) as substitution
 - add (*e_j*) to *E*
 - remove trivial equations from $A'\vec{x} \leq \vec{b}'$ after simplifications
- return *E* and the final $A'ec{x} \leq ec{b}'$

Lemma

- $Aec{x} \leq ec{b}$ is equivalent to $E \cup A'ec{x} \leq ec{b}'$ throughout the algorithm
- the final set E is even an equality basis, i.e., every implied equality $\vec{c} \cdot \vec{x} = d$ of $A\vec{x} \le \vec{b}$ is a linear combination of equations in E

Example

• initial constraints

$$y' - y - x_1 \le -1$$

 $y - y' + x_1 \le 1$
 $2x_2 - x_1 \le 0$
 $x_1 - x_2 \le 0$
 $-x_1 \le 0$
 $z - y + 2y' - x_2 \le 5$

Example

- initial constraints $y' y x_1 \le -1$ $y - y' + x_1 \le 1$ $2x_2 - x_1 \le 0$ $x_1 - x_2 \le 0$ $-x_1 \le 0$ $z - y + 2y' - x_2 \le 5$
- simplex on strict inequalities detects equality $y' y x_1 = -1$, so $y' = y + x_1 1$

Example

initial constraints

$$egin{aligned} y'-y-x_1 &\leq -1 \ y-y'+x_1 &\leq 1 \ 2x_2-x_1 &\leq 0 \ x_1-x_2 &\leq 0 \ -x_1 &\leq 0 \ -y+2y'-x_2 &\leq 5 \end{aligned}$$

simplex on strict inequalities detects equality y' - y - x₁ = -1, so y' = y + x₁ - 1
hence E = {y' = y + x₁ - 1} and inequalities become

Ζ

$$\begin{array}{ll} (y+x_1-1)-y-x_1 \leq -1 & \text{is simplified and deleted} & -1 \leq -1 \\ y-(y+x_1-1)+x_1 \leq 1 & \text{is simplified and deleted} & 1 \leq 1 \\ 2x_2-x_1 \leq 0 & & \\ x_1-x_2 \leq 0 & & \\ -x_1 \leq 0 & & \\ r-y+2(y+x_1-1)-x_2 \leq 5 & \text{is simplified to} & z+y+2x_1-x_2 \leq 7 \end{array}$$

• $E = \{y' = y + x_1 - 1\}$ and inequalities $\{2x_2 - x_1 \le 0, x_1 - x_2 \le 0, -x_1 \le 0, z + y + 2x_1 - x_2 \le 7\}$

- $E = \{y' = y + x_1 1\}$ and inequalities $\{2x_2 - x_1 \le 0, x_1 - x_2 \le 0, -x_1 \le 0, z + y + 2x_1 - x_2 \le 7\}$
- simplex on strict inequalities detects equality $x_1 x_2 = 0$, so $x_1 = x_2$

- $E = \{y' = y + x_1 1\}$ and inequalities $\{2x_2 - x_1 \le 0, x_1 - x_2 \le 0, -x_1 \le 0, z + y + 2x_1 - x_2 \le 7\}$
- simplex on strict inequalities detects equality $x_1 x_2 = 0$, so $x_1 = x_2$
- after substitution and simplification get $E = \{y' = y + x_2 - 1, x_1 = x_2\}$ and

inequalities $\{x_2 \le 0, -x_2 \le 0, z+y+x_2 \le 7\}$

- $E = \{y' = y + x_1 1\}$ and inequalities $\{2x_2 - x_1 \le 0, x_1 - x_2 \le 0, -x_1 \le 0, z + y + 2x_1 - x_2 \le 7\}$
- simplex on strict inequalities detects equality $x_1 x_2 = 0$, so $x_1 = x_2$
- after substitution and simplification get $E = \{y' = y + x_2 - 1, x_1 = x_2\}$ and inequalities $\{x_2 < 0, -x_2 < 0, z + y + x_2 < 7\}$
- simplex on strict inequalities detects equality $x_2 = 0$

- $E = \{y' = y + x_1 1\}$ and inequalities $\{2x_2 - x_1 \le 0, x_1 - x_2 \le 0, -x_1 \le 0, z + y + 2x_1 - x_2 \le 7\}$
- simplex on strict inequalities detects equality $x_1 x_2 = 0$, so $x_1 = x_2$
- after substitution and simplification get

 $E = \{y' = y + x_2 - 1, \mathbf{x_1} = \mathbf{x_2}\} \text{ and}$ inequalities $\{x_2 \le 0, -x_2 \le 0, z + y + x_2 \le 7\}$

- simplex on strict inequalities detects equality $x_2 = 0$
- after substitution and simplification get $E = \{y' = y 1, x_1 = 0, x_2 = 0\}$ and inequalities $\{z + y \le 7\}$

- $E = \{y' = y + x_1 1\}$ and inequalities $\{2x_2 - x_1 \le 0, x_1 - x_2 \le 0, -x_1 \le 0, z + y + 2x_1 - x_2 \le 7\}$
- simplex on strict inequalities detects equality $x_1 x_2 = 0$, so $x_1 = x_2$
- after substitution and simplification get

 $E = \{y' = y + x_2 - 1, \mathbf{x_1} = \mathbf{x_2}\} \text{ and}$ inequalities $\{x_2 \le 0, -x_2 \le 0, z + y + x_2 \le 7\}$

- simplex on strict inequalities detects equality $x_2 = 0$
- after substitution and simplification get $E = \{y' = y 1, x_1 = 0, x_2 = 0\}$ and inequalities $\{z + y \le 7\}$
- no further equalities are detected

- $E = \{y' = y + x_1 1\}$ and inequalities $\{2x_2 - x_1 \le 0, x_1 - x_2 \le 0, -x_1 \le 0, z + y + 2x_1 - x_2 \le 7\}$
- simplex on strict inequalities detects equality $x_1 x_2 = 0$, so $x_1 = x_2$
- after substitution and simplification get

 $E = \{y' = y + x_2 - 1, \mathbf{x_1} = \mathbf{x_2}\} \text{ and}$ inequalities $\{x_2 \le 0, -x_2 \le 0, z + y + x_2 \le 7\}$

- simplex on strict inequalities detects equality $x_2 = 0$
- after substitution and simplification get $E = \{y' = y 1, x_1 = 0, x_2 = 0\}$ and inequalities $\{z + y \le 7\}$
- no further equalities are detected
- finally simplex can be used to find solution of $z + y \le 7$ for variables y and z, and E determines the values for all other variables

Final Remarks

- the algorithm detects equalities over $\ensuremath{\mathbb{R}}$
- given the final set *E* and final inequalities *I*, one can always easily transform real solutions of *I* to real solutions of the initial constraints by using *E*

Outline

- **1. Summary of Previous Lecture**
- 2. Tightening
- 3. Cubes
- 4. Equality Detection

5. Equality Elimination

6. Further Reading

- given LIA or LRA constraints φ over variables X, compute set of equations E and inequalities ψ such that
 - $X = Y \uplus Z$

- given LIA or LRA constraints φ over variables X, compute set of equations E and inequalities ψ such that
 - $X = Y \uplus Z$
 - ψ only uses variables in Z
 - every equation in *E* has form $y = e_y$ with $y \in Y$ and e_y linear expression over variables *Z*
 - for every $y \in Y$ there is exactly one equation $y = e_y$ in E

- given LIA or LRA constraints φ over variables X, compute set of equations E and inequalities ψ such that
 - $X = Y \uplus Z$
 - ψ only uses variables in Z
 - every equation in *E* has form $y = e_y$ with $y \in Y$ and e_y linear expression over variables *Z*
 - for every $y \in Y$ there is exactly one equation $y = e_y$ in E
 - φ is equivalent to $\psi \land \bigwedge_{y=e_y \in E} y = e_y$

- given LIA or LRA constraints φ over variables X, compute set of equations E and inequalities ψ such that
 - $X = Y \uplus Z$
 - ψ only uses variables in Z
 - every equation in *E* has form $y = e_y$ with $y \in Y$ and e_y linear expression over variables *Z*
 - for every $y \in Y$ there is exactly one equation $y = e_y$ in E
 - φ is equivalent to $\psi \land \bigwedge_{y=e_y \in E} y = e_y$
- remarks
 - e_y does not necessarily have integer coefficients, e.g., $y = \frac{3}{2}z + 5$
 - consequently, integer solutions of ψ cannot always be extended to integer solutions of φ

- given LIA or LRA constraints φ over variables X, compute set of equations E and inequalities ψ such that
 - $X = Y \uplus Z$
 - ψ only uses variables in Z
 - every equation in *E* has form $y = e_y$ with $y \in Y$ and e_y linear expression over variables *Z*
 - for every $y \in Y$ there is exactly one equation $y = e_y$ in E
 - φ is equivalent to $\psi \land \bigwedge_{y=e_y \in E} y = e_y$
- remarks
 - e_y does not necessarily have integer coefficients, e.g., $y = \frac{3}{2}z + 5$
 - consequently, integer solutions of ψ cannot always be extended to integer solutions of φ

• if
$$v(z) = 4$$
 then $v(y) = \frac{3}{2} \cdot 4 + 5 = 9 \in \mathbb{Z}$

- given LIA or LRA constraints φ over variables X, compute set of equations E and inequalities ψ such that
 - $X = Y \uplus Z$
 - ψ only uses variables in Z
 - every equation in *E* has form $y = e_y$ with $y \in Y$ and e_y linear expression over variables *Z*
 - for every $y \in Y$ there is exactly one equation $y = e_y$ in E
 - φ is equivalent to $\psi \land \bigwedge_{y=e_y \in E} y = e_y$
- remarks
 - e_y does not necessarily have integer coefficients, e.g., $y = \frac{3}{2}z + 5$
 - consequently, integer solutions of ψ cannot always be extended to integer solutions of φ

• if
$$v(z) = 4$$
 then $v(y) = \frac{3}{2} \cdot 4 + 5 = 9 \in \mathbb{Z}$

• if v(z) = 1 then $v(y) = \frac{3}{2} + 9 \notin \mathbb{Z}$

- given LIA or LRA constraints φ over variables X, compute set of equations E and inequalities ψ such that
 - $X = Y \uplus Z$
 - ψ only uses variables in Z
 - every equation in *E* has form $y = e_y$ with $y \in Y$ and e_y linear expression over variables *Z*
 - for every $y \in Y$ there is exactly one equation $y = e_y$ in E
 - φ is equivalent to $\psi \land \bigwedge_{y=e_y \in E} y = e_y$
- remarks
 - e_y does not necessarily have integer coefficients, e.g., $y = \frac{3}{2}z + 5$
 - consequently, integer solutions of ψ cannot always be extended to integer solutions of φ

• if
$$v(z) = 4$$
 then $v(y) = \frac{3}{2} \cdot 4 + 5 = 9 \in \mathbb{Z}$

- if v(z) = 1 then $v(y) = \frac{3}{2} + 9 \notin \mathbb{Z}$
- upcoming: algorithm to convert E in a way that
 - integer solutions can always be extended via resulting equations, or
 - it is detected that *E* itself is not solvable in the integers
 - remark: additional variables may be required, hence only obtain equisatisfiability

- input: set E of linear equalities
- output: "unsat" or "sat" with list of equations in solved form
- solved form
 - list of equations of the shape $x = e_x$ with e_x linear expression with integer coefficients
 - no cyclic dependencies: e_x in list $[\ldots, x = e_x, \ldots, y = e_y, \ldots]$ does neither contain x nor y

- input: set E of linear equalities
- output: "unsat" or "sat" with list of equations in solved form
- solved form
 - list of equations of the shape $x = e_x$ with e_x linear expression with integer coefficients
 - no cyclic dependencies: e_x in list $[\ldots, x = e_x, \ldots, y = e_y, \ldots]$ does neither contain x nor y
- **S** is list of equations that will become part of solution, initially S = []

- input: set E of linear equalities
- output: "unsat" or "sat" with list of equations in solved form
- solved form
 - list of equations of the shape $x = e_x$ with e_x linear expression with integer coefficients
 - no cyclic dependencies: e_x in list $[\ldots, x = e_x, \ldots, y = e_y, \ldots]$ does neither contain x nor y
- **S** is list of equations that will become part of solution, initially S = []
- **F** is a set of equations that need to be processed, initially F = E

- input: set E of linear equalities
- output: "unsat" or "sat" with list of equations in solved form
- solved form
 - list of equations of the shape $x = e_x$ with e_x linear expression with integer coefficients
 - no cyclic dependencies: e_x in list $[\ldots, x = e_x, \ldots, y = e_y, \ldots]$ does neither contain x nor y
- **S** is list of equations that will become part of solution, initially S = []
- F is a set of equations that need to be processed, initially F = E
- processing is done equation by equation, and the selected equation is marked; initially no equation is marked

- input: set E of linear equalities
- output: "unsat" or "sat" with list of equations in solved form
- solved form
 - list of equations of the shape $x = e_x$ with e_x linear expression with integer coefficients
 - no cyclic dependencies: e_x in list $[\ldots, x = e_x, \ldots, y = e_y, \ldots]$ does neither contain x nor y
- **S** is list of equations that will become part of solution, initially S = []
- F is a set of equations that need to be processed, initially F = E
- processing is done equation by equation, and the selected equation is marked; initially no equation is marked
- normalize is a sub-algorithm that transforms each equation into form $\sum a_i x_i = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$, $gcd(a_1, \ldots, a_n, b) = 1$

• normalize
$$(2x - 6y - 14 = 0) = (x - 3y = 7)$$

• normalize
$$(x = \frac{1}{2}y + \frac{2}{3}) = (6x - 3y = 4)$$

Diophantine Equation Solver of Griggio – Algorithm

1 if $F = \emptyset$ then return "sat" with solved form *S*

Diophantine Equation Solver of Griggio – Algorithm

1 if $F = \emptyset$ then return "sat" with solved form *S*

2 F := normalize(F), each equation has form $\sum a_i x_i = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$

Diophantine Equation Solver of Griggio – Algorithm

- **1** if $F = \emptyset$ then return "sat" with solved form *S*
- **2** F := normalize(F), each equation has form $\sum a_i x_i = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$
- **3** if for some $\sum a_i x_i = b \in F$ the gcd (a_1, \ldots, a_n) does not divide *b*, return "unsat"

- **1** if $F = \emptyset$ then return "sat" with solved form *S*
- **2** F := normalize(F), each equation has form $\sum a_i x_i = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$
- **③** if for some $\sum a_i x_i = b \in F$ the gcd (a_1, \ldots, a_n) does not divide b, return "unsat"
- **4** selection: if no equation is marked, then mark one; assume it is $\sum a_i x_i = b$

- **1** if $F = \emptyset$ then return "sat" with solved form *S*
- **2** F := normalize(F), each equation has form $\sum a_i x_i = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$
- **③** if for some $\sum a_i x_i = b \in F$ the gcd (a_1, \ldots, a_n) does not divide b, return "unsat"
- **4** selection: if no equation is marked, then mark one; assume it is $\sum a_i x_i = b$
- **5** choose k such that a_k has smallest absolute value among all a_i

- **1** if $F = \emptyset$ then return "sat" with solved form *S*
- **2** F := normalize(F), each equation has form $\sum a_i x_i = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$
- **③** if for some $\sum a_i x_i = b \in F$ the gcd (a_1, \ldots, a_n) does not divide b, return "unsat"
- **4** selection: if no equation is marked, then mark one; assume it is $\sum a_i x_i = b$
- **5** choose k such that a_k has smallest absolute value among all a_i
- **6** if $|a_k| = 1$

- **1** if $F = \emptyset$ then return "sat" with solved form *S*
- **2** F := normalize(F), each equation has form $\sum a_i x_i = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$
- **③** if for some $\sum a_i x_i = b \in F$ the gcd (a_1, \ldots, a_n) does not divide b, return "unsat"
- **4** selection: if no equation is marked, then mark one; assume it is $\sum a_i x_i = b$
- **5** choose k such that a_k has smallest absolute value among all a_i
- 6 if |a_k| = 1
 - remove marked equation from F

- **1** if $F = \emptyset$ then return "sat" with solved form *S*
- **2** F := normalize(F), each equation has form $\sum a_i x_i = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$
- **③** if for some $\sum a_i x_i = b \in F$ the gcd (a_1, \ldots, a_n) does not divide b, return "unsat"
- **4** selection: if no equation is marked, then mark one; assume it is $\sum a_i x_i = b$
- **5** choose k such that a_k has smallest absolute value among all a_i
- **6** if $|a_k| = 1$
 - remove marked equation from F
 - reorder equation to have shape (eq) : $x_k = \pm (b \sum_{i \neq k} a_i x_i)$

- **1** if $F = \emptyset$ then return "sat" with solved form *S*
- **2** F := normalize(F), each equation has form $\sum a_i x_i = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$
- **③** if for some $\sum a_i x_i = b \in F$ the gcd (a_1, \ldots, a_n) does not divide b, return "unsat"
- **4** selection: if no equation is marked, then mark one; assume it is $\sum a_i x_i = b$
- **5** choose k such that a_k has smallest absolute value among all a_i
- 6 if |a_k| = 1
 - remove marked equation from F
 - reorder equation to have shape (eq) : $x_k = \pm (b \sum_{i \neq k} a_i x_i)$
 - *S* := (*eq*) : *S*

- **1** if $F = \emptyset$ then return "sat" with solved form *S*
- **2** F := normalize(F), each equation has form $\sum a_i x_i = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$
- **③** if for some $\sum a_i x_i = b \in F$ the gcd (a_1, \ldots, a_n) does not divide b, return "unsat"
- **4** selection: if no equation is marked, then mark one; assume it is $\sum a_i x_i = b$
- **5** choose k such that a_k has smallest absolute value among all a_i
- 6 if |a_k| = 1
 - remove marked equation from F
 - reorder equation to have shape (eq) : $x_k = \pm (b \sum_{i \neq k} a_i x_i)$
 - *S* := (*eq*) : *S*
 - use (*eq*) as substitution to eliminate x_k in F

- **1** if $F = \emptyset$ then return "sat" with solved form *S*
- **2** F := normalize(F), each equation has form $\sum a_i x_i = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$
- **③** if for some $\sum a_i x_i = b \in F$ the gcd (a_1, \ldots, a_n) does not divide b, return "unsat"
- **4** selection: if no equation is marked, then mark one; assume it is $\sum a_i x_i = b$
- **5** choose k such that a_k has smallest absolute value among all a_i
- 6 if |a_k| = 1
 - remove marked equation from F
 - reorder equation to have shape (eq) : $x_k = \pm (b \sum_{i \neq k} a_i x_i)$
 - *S* := (*eq*) : *S*
 - use (eq) as substitution to eliminate x_k in F
 - continue with step 1

- **1** if $F = \emptyset$ then return "sat" with solved form *S*
- **2** F := normalize(F), each equation has form $\sum a_i x_i = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$
- **③** if for some $\sum a_i x_i = b \in F$ the gcd (a_1, \ldots, a_n) does not divide b, return "unsat"
- **4** selection: if no equation is marked, then mark one; assume it is $\sum a_i x_i = b$
- **5** choose k such that a_k has smallest absolute value among all a_i
- 6 if |a_k| = 1
 - remove marked equation from F
 - reorder equation to have shape (eq) : $x_k = \pm (b \sum_{i \neq k} a_i x_i)$
 - *S* := (*eq*) : *S*
 - use (*eq*) as substitution to eliminate x_k in F
 - continue with step 1

 \bigcirc otherwise, handle case $|a_k| > 1$ (cf. slide 26) and continue with step 1

•
$$F = \{x = \frac{1}{6}y + 1, 4z + y = 2\}, S = []$$

•
$$F = \{x = \frac{1}{6}y + 1, 4z + y = 2\}, S = []$$

• normalization:
$$F = \{6x - y = 6, 4z + y = 2\}$$

•
$$F = \{x = \frac{1}{6}y + 1, 4z + y = 2\}, S = []$$

- normalization: $F = \{6x y = 6, 4z + y = 2\}$
- selection: 6x y = 6 gets marked

•
$$F = \{x = \frac{1}{6}y + 1, 4z + y = 2\}, S = []$$

- normalization: $F = \{6x y = 6, 4z + y = 2\}$
- selection: 6x y = 6 gets marked
- reordering: y = 6x 6

•
$$F = \{x = \frac{1}{6}y + 1, 4z + y = 2\}, S = []$$

- normalization: $F = \{6x y = 6, 4z + y = 2\}$
- selection: 6x y = 6 gets marked
- reordering: y = 6x 6

• updates:
$$S = [y = 6x - 6]$$
, $F = \{4z + (6x - 6) = 2\}$

•
$$F = \{x = \frac{1}{6}y + 1, 4z + y = 2\}, S = []$$

- normalization: $F = \{6x y = 6, 4z + y = 2\}$
- selection: 6x y = 6 gets marked
- reordering: y = 6x 6
- updates: S = [y = 6x 6], $F = \{4z + (6x 6) = 2\}$
- normalization: $F = \{2z + 3x = 4\}$

•
$$F = \{x = \frac{1}{6}y + 1, 4z + y = 2\}, S = []$$

- normalization: $F = \{6x y = 6, 4z + y = 2\}$
- selection: 6x y = 6 gets marked
- reordering: y = 6x 6
- updates: S = [y = 6x 6], $F = \{4z + (6x 6) = 2\}$
- normalization: $F = \{2z + 3x = 4\}$
- selection: 2z + 3x = 4 gets marked

•
$$F = \{x = \frac{1}{6}y + 1, 4z + y = 2\}, S = []$$

- normalization: $F = \{6x y = 6, 4z + y = 2\}$
- selection: 6x y = 6 gets marked
- reordering: y = 6x 6
- updates: S = [y = 6x 6], $F = \{4z + (6x 6) = 2\}$
- normalization: $F = \{2z + 3x = 4\}$
- selection: 2z + 3x = 4 gets marked
- step 7 required

- we can write any integer number c as $c^q a_k + c^r$ where c^q and c^r are quotient and remainder when dividing c by a_k
- hence

$$egin{aligned} & \sum a_i x_i = b \equiv a_k x_k + \sum_{i
eq k} a_i x_i = b \ & \equiv a_k x_k + \sum_{i
eq k} (a_i^q a_k + a_i^r) x_i = b^q a_k + b^r \end{aligned}$$

- we can write any integer number c as $c^q a_k + c^r$ where c^q and c^r are quotient and remainder when dividing c by a_k
- hence

$$egin{aligned} a_i x_i &= b \equiv a_k x_k + \sum_{i
eq k} a_i x_i = b \ &\equiv a_k x_k + \sum_{i
eq k} (a_i^q a_k + a_i^r) x_i = b^q a_k + b^r \ &\equiv a_k ig(x_k + (\sum_{i
eq k} a_i^q x_i) - b^q ig) + \sum_{i
eq k} a_i^r x_i = b^r \end{aligned}$$

- we can write any integer number c as $c^q a_k + c^r$ where c^q and c^r are quotient and remainder when dividing c by a_k
- hence

$$\sum_{i \neq k} a_i x_i = b \equiv a_k x_k + \sum_{i \neq k} a_i x_i = b$$

 $\equiv a_k x_k + \sum_{i \neq k} (a_i^q a_k + a_i^r) x_i = b^q a_k + b^r$
 $\equiv a_k (x_k + (\sum_{i \neq k} a_i^q x_i) - b^q) + \sum_{i \neq k} a_i^r x_i = b^r$

introduce fresh variable x_t to obtain equation (eq) that is always solvable

$$x_k = -\left(\left(\sum_{i \neq k} a_i^q x_i\right) - b^q\right) + x_t \tag{eq}$$

- we can write any integer number c as $c^q a_k + c^r$ where c^q and c^r are quotient and remainder when dividing c by a_k
- hence

$$egin{aligned} a_i x_i &= b \equiv a_k x_k + \sum_{i
eq k} a_i x_i = b \ &\equiv a_k x_k + \sum_{i
eq k} (a_i^q a_k + a_i^r) x_i = b^q a_k + b^r \ &\equiv a_k ig(x_k + (\sum_{i
eq k} a_i^q x_i) - b^q ig) + \sum_{i
eq k} a_i^r x_i = b^r \end{aligned}$$

introduce fresh variable x_t to obtain equation (eq) that is always solvable

$$x_k = -\left(\left(\sum_{i \neq k} a_i^q x_i\right) - b^q\right) + x_t \tag{eq}$$

 update S := (eq) : S and eliminate x_k in F by substituting with (eq) as in step 6 (note that the marker stays on the previously marked equation)

• marked equation is 2z + 3x = 4, i.e., 2(z + (x - 2)) + x = 0

- marked equation is 2z + 3x = 4, i.e., 2(z + (x 2)) + x = 0
- introduce fresh variable *u* and add equation to *S*, so S = [z = -(x 2) + u, y = 6x 6]

- marked equation is 2z + 3x = 4, i.e., 2(z + (x 2)) + x = 0
- introduce fresh variable *u* and add equation to *S*, so S = [z = -(x 2) + u, y = 6x 6]
- substituting in F delivers 2(-(x-2) + (x-2) + u) + x = 0, i.e., $F = \{2u + x = 0\}$ (and the marker is still on this equation)

- marked equation is 2z + 3x = 4, i.e., 2(z + (x 2)) + x = 0
- introduce fresh variable *u* and add equation to *S*, so S = [z = -(x 2) + u, y = 6x 6]
- substituting in F delivers 2(-(x-2) + (x-2) + u) + x = 0, i.e., $F = \{2u + x = 0\}$ (and the marker is still on this equation)
- reorder 2u + x = 0 to x = -2u and update S and F, so

$$S = [x = -2u, z = -(x - 2) + u, y = 6x - 6]$$
 and $F = \emptyset$

- marked equation is 2z + 3x = 4, i.e., 2(z + (x 2)) + x = 0
- introduce fresh variable *u* and add equation to *S*, so S = [z = -(x 2) + u, y = 6x 6]
- substituting in F delivers 2(-(x-2) + (x-2) + u) + x = 0, i.e., $F = \{2u + x = 0\}$ (and the marker is still on this equation)
- reorder 2u + x = 0 to x = -2u and update *S* and *F*, so S = [x = -2u, z = -(x-2) + u, y = 6x 6] and $F = \emptyset$
- final result
 - initial equations $\{x = \frac{1}{6}y + 1, 4z + y = 2\}$ are equisatisfiable to final *S*,
 - *S* is trivially solvable as it is in solved form

- marked equation is 2z + 3x = 4, i.e., 2(z + (x 2)) + x = 0
- introduce fresh variable *u* and add equation to *S*, so S = [z = -(x 2) + u, y = 6x 6]
- substituting in F delivers 2(-(x-2) + (x-2) + u) + x = 0, i.e., $F = \{2u + x = 0\}$ (and the marker is still on this equation)
- reorder 2u + x = 0 to x = -2u and update S and F, so S = [x = -2u, z = -(x 2) + u, y = 6x 6] and $F = \emptyset$
- final result
 - initial equations $\{x = \frac{1}{6}y + 1, 4z + y = 2\}$ are equisatisfiable to final *S*,
 - S is trivially solvable as it is in solved form
 - note that S can be applied in two ways
 - on symbolic values: translate constraints (e.g., inequalities) apply equations starting with end of *S*

- marked equation is 2z + 3x = 4, i.e., 2(z + (x 2)) + x = 0
- introduce fresh variable *u* and add equation to *S*, so S = [z = -(x 2) + u, y = 6x 6]
- substituting in F delivers 2(-(x-2) + (x-2) + u) + x = 0, i.e., $F = \{2u + x = 0\}$ (and the marker is still on this equation)
- reorder 2u + x = 0 to x = -2u and update S and F, so $S = \begin{bmatrix} x = -2u, z = -(x - 2) + u, y = 6x - 6 \end{bmatrix}$ and $F = \emptyset$

$$5 = [x = -2u, z = -(x - 2) + u, y = 6x - 6]$$
 and

- final result
 - initial equations $\{x = \frac{1}{6}y + 1, 4z + y = 2\}$ are equisatisfiable to final *S*,
 - S is trivially solvable as it is in solved form
 - note that S can be applied in two ways
 - on symbolic values: translate constraints (e.g., inequalities) apply equations starting with end of S
 - on concrete value: translate solution (e.g., from a solution of inequalities) compute values by equations starting at beginning of *S*

Theorem

Let E be a set of linear equations

• the Diophantine equation solver terminates on input E

Theorem

Let E be a set of linear equations

- the Diophantine equation solver terminates on input E
- if the result on input E is "unsat", then E is not solvable in $\mathbb Z$

Theorem

Let E be a set of linear equations

- the Diophantine equation solver terminates on input E
- if the result on input E is "unsat", then E is not solvable in $\mathbb Z$
- if the result on input E is "sat" with answer S, then
 - *E* and *S* are equisatisfiable in \mathbb{Z} ,
 - S is in solved form, and
 - constraints and solutions can be translated via S

input: set of linear inequalities

1 tighten bounds if possible (Section 2)

- 1 tighten bounds if possible (Section 2)
- 2 split inequalities into equalities *E* and inequalities *I* (Section 4)

- 1 tighten bounds if possible (Section 2)
- 2 split inequalities into equalities *E* and inequalities *I* (Section 4)
- (3) if Diophantine equation solver on *E* returns "unsat", return "unsat" (Section 5)

- 1 tighten bounds if possible (Section 2)
- 2 split inequalities into equalities *E* and inequalities *I* (Section 4)
- (3) if Diophantine equation solver on *E* returns "unsat", return "unsat" (Section 5)
- Otherwise obtain solution S and apply substitution S on I (symbolically)

- 1 tighten bounds if possible (Section 2)
- 2 split inequalities into equalities *E* and inequalities *I* (Section 4)
- (3) if Diophantine equation solver on *E* returns "unsat", return "unsat" (Section 5)
- Otherwise obtain solution S and apply substitution S on I (symbolically)
- Itry to tighten I again

- 1 tighten bounds if possible (Section 2)
- 2 split inequalities into equalities *E* and inequalities *I* (Section 4)
- (3) if Diophantine equation solver on *E* returns "unsat", return "unsat" (Section 5)
- Otherwise obtain solution S and apply substitution S on I (symbolically)
- Itry to tighten I again
- 6 potentially detect new equalities and go back to step 2

- 1 tighten bounds if possible (Section 2)
- 2 split inequalities into equalities *E* and inequalities *I* (Section 4)
- (3) if Diophantine equation solver on *E* returns "unsat", return "unsat" (Section 5)
- Otherwise obtain solution S and apply substitution S on I (symbolically)
- Itry to tighten I again
- 6 potentially detect new equalities and go back to step 2
- if simplex on / returns "unsat", return "unsat"

- 1 tighten bounds if possible (Section 2)
- 2 split inequalities into equalities *E* and inequalities *I* (Section 4)
- (3) if Diophantine equation solver on *E* returns "unsat", return "unsat" (Section 5)
- Otherwise obtain solution S and apply substitution S on I (symbolically)
- Itry to tighten I again
- 6 potentially detect new equalities and go back to step 2
- if simplex on / returns "unsat", return "unsat"
- (3) if unit-cube test on *I* finds solution then store it and go to step 10 (Section 3)

- tighten bounds if possible (Section 2)
- 2 split inequalities into equalities *E* and inequalities *I* (Section 4)
- (3) if Diophantine equation solver on *E* returns "unsat", return "unsat" (Section 5)
- Otherwise obtain solution S and apply substitution S on I (symbolically)
- Itry to tighten I again
- 6 potentially detect new equalities and go back to step 2
- if simplex on / returns "unsat", return "unsat"
- (3) if unit-cube test on *I* finds solution then store it and go to step 10 (Section 3)
- o apply branch-and-bound on I and either store solution or return "unsat"

- 1 tighten bounds if possible (Section 2)
- 2 split inequalities into equalities *E* and inequalities *I* (Section 4)
- (3) if Diophantine equation solver on *E* returns "unsat", return "unsat" (Section 5)
- Otherwise obtain solution S and apply substitution S on I (symbolically)
- Itry to tighten I again
- 6 potentially detect new equalities and go back to step 2
- if simplex on / returns "unsat", return "unsat"
- (3) if unit-cube test on *I* finds solution then store it and go to step 10 (Section 3)
- o apply branch-and-bound on I and either store solution or return "unsat"
- ${f 10}$ output solution where S is used to compute values of further variables

Example (for improved LIA solver)

• input

$$2x_1 \leq 5x_3$$

 $5x_3 \leq 2x_1$
 $x_2 = 3x_4$
 $2x_1 + x_2 + x_3 \geq 7$
 $2x_1 + x_2 + x_3 \leq 8$

2x

Example (for improved LIA solver)

input

$$2x_1 \le 5x_3$$

 $5x_3 \le 2x_1$
 $x_2 = 3x_4$
 $1 + x_2 + x_3 \ge 7$
 $1 + x_2 + x_3 \le 8$

2x 2x

• tightening is not applicable on input constraints

Example (for improved LIA solver)

input

$$2x_1 \le 5x_3$$

 $5x_3 \le 2x_1$
 $x_2 = 3x_4$
 $1 + x_2 + x_3 \ge 7$
 $1 + x_2 + x_3 \le 8$

2*x* 2*x*

- tightening is not applicable on input constraints
- equation detection splits constraints into

$$E = \{2x_1 = 5x_3, x_2 = 3x_4\}$$

and

$$I = \{7 \le 2x_1 + x_2 + x_3 \le 8\}$$

• Diophantine equation solver on $E = \{2x_1 = 5x_3, x_2 = 3x_4\}$ delivers solved form *S* and introduces new variable x_5

$$S = [x_3 = 2x_5, x_1 = 2x_3 + x_5, x_2 = 3x_4]$$

• Diophantine equation solver on $E = \{2x_1 = 5x_3, x_2 = 3x_4\}$ delivers solved form S and introduces new variable x_5

$$S = [x_3 = 2x_5, x_1 = 2x_3 + x_5, x_2 = 3x_4]$$

• S is used as substitution to change $I = \{7 \le 2x_1 + x_2 + x_3 \le 8\}$ into

$$I = \{7 \le 2(2(2x_5) + x_5) + 3x_4 + 2x_5 \le 8\}$$
$$= \{7 \le 12x_5 + 3x_4 \le 8\}$$

• Diophantine equation solver on $E = \{2x_1 = 5x_3, x_2 = 3x_4\}$ delivers solved form S and introduces new variable x_5

$$S = [x_3 = 2x_5, x_1 = 2x_3 + x_5, x_2 = 3x_4]$$

• S is used as substitution to change $I = \{7 \le 2x_1 + x_2 + x_3 \le 8\}$ into

$$I = \{7 \le 2(2(2x_5) + x_5) + 3x_4 + 2x_5 \le 8\}$$

= $\{7 \le 12x_5 + 3x_4 \le 8\}$

tightening is now applicable and yields

$$I = \{3 \le 4x_5 + x_4 \le 2\}$$

• Diophantine equation solver on $E = \{2x_1 = 5x_3, x_2 = 3x_4\}$ delivers solved form S and introduces new variable x_5

$$S = [x_3 = 2x_5, x_1 = 2x_3 + x_5, x_2 = 3x_4]$$

• S is used as substitution to change $I = \{7 \le 2x_1 + x_2 + x_3 \le 8\}$ into

$$I = \{7 \le 2(2(2x_5) + x_5) + 3x_4 + 2x_5 \le 8\}$$

= $\{7 \le 12x_5 + 3x_4 \le 8\}$

tightening is now applicable and yields

$$I = \{3 \le 4x_5 + x_4 \le 2\}$$

simplex now easily detects unsat of I

• Diophantine equation solver on $E = \{2x_1 = 5x_3, x_2 = 3x_4\}$ delivers solved form *S* and introduces new variable x_5

$$S = [x_3 = 2x_5, x_1 = 2x_3 + x_5, x_2 = 3x_4]$$

• S is used as substitution to change $I = \{7 \le 2x_1 + x_2 + x_3 \le 8\}$ into

$$I = \{7 \le 2(2(2x_5) + x_5) + 3x_4 + 2x_5 \le 8\}$$

= $\{7 \le 12x_5 + 3x_4 \le 8\}$

tightening is now applicable and yields

$$I = \{3 \le 4x_5 + x_4 \le 2\}$$

- simplex now easily detects unsat of I
- (solution of I for x₄ and x₅ would be extensible to x₃, x₁, x₂ via S)

Final Remarks

• easy to see: T-solver for LIA is much more complex than one for LRA

Final Remarks

- easy to see: T-solver for LIA is much more complex than one for LRA
- not discussed
 - how to make LIA-solver incremental in DPLL(T) approach
 - how to generate small unsatisfiable cores for DPLL(T) approach

Final Remarks

- easy to see: T-solver for LIA is much more complex than one for LRA
- not discussed
 - how to make LIA-solver incremental in DPLL(T) approach
 - how to generate small unsatisfiable cores for DPLL(T) approach
- strategy used in DPLL(T) solvers for LIA
 - utilize (incomplete) LRA-reasoning as much as possible, and
 - only invoke full LIA-solver when a complete Boolean model has been found

Outline

- **1. Summary of Previous Lecture**
- 2. Tightening
- 3. Cubes
- 4. Equality Detection
- 5. Equality Elimination
- 6. Further Reading

Further Reading

Alberto Griggio

A Practical Approach to Satisfiability Modulo Linear Integer Arithmetic Journal on Satisfiability, Boolean Modeling and Computation, volume 8, pages 1–27, 2012.

Martin Bromberger and Christoph Weidenbach New techniques for linear arithmetic: cubes and equalities Formal Methods in System Design, volume 51, pages 433–461, 2017.

Important Concepts

- cube
- Diophantine equation solver
- equality basis algorithm

- implied equality
- tightening