

SS 2024 lecture 9

Constraint Solving

René Thiemann and Fabian Mitterwallner based on a previous course by Aart Middeldorp

Outline

- **1. Summary of Previous Lecture**
- 2. Tightening
- 3. Cubes
- 4. Equality Detection
- 5. Equality Elimination
- 6. Further Reading

universität SS 2024 Constraint Solving lecture 9

Example (Application of Linear Integer Arithmetic: Termination Proving)

- consider program
- model loop-iteration as formula φ using pre-variables \vec{x} and post-variables \vec{x}'
- prove termination by choosing expression *e* and integer constant *f* and show that two LIA problems are unsatisfiable
- $\varphi \wedge e(\vec{x}) < e(\vec{x}') + 1$
- $\varphi \wedge e(\vec{x}) < f$
- for certain programs, reasoning over integers is essential

Branch-and-Bound Algorithm

- core idea for finding integral solution
- simplex algorithm is used to find real solution v or detect unsat in $\mathbb R$
- whenever $q := v(x) \notin \mathbb{Z}$, consider two possibilities: add $x \leq \lfloor q \rfloor$ or $\lceil q \rceil \leq x$
- small model property is required for termination: obtain finite search space

Theorem (Small Model Property)

if LIA formula ψ has solution over \mathbbm{Z} then it has a solution v with

$$|v(x)| \leq bound(\psi) := (n+1) \cdot \sqrt{n^n} \cdot c^n$$

for all x where

• n: number of variables in ψ

• c: maximal absolute value of numbers in ψ

 $(\neg \text{ decrease})$

 $(\neg \text{ bounded})$

Proof Idea of Small Model Property

- 1 convert conjunctive LIA formula ψ into form $A\vec{x} \leq \vec{b}$
- **2** represent polyhedron $\underbrace{\{\vec{x} \mid A\vec{x} \leq \vec{b}\}}_{yellow}$ as polyhedron $P = \underbrace{hull(X)}_{red} + \underbrace{cone(V)}_{green}$
- Show that P has small integral solutions (orange), depending on X and V
- () approximate entries of vectors in X and V to obtain small model property

Outline

1. Summary of Previous Lecture

2. Tightening

- 3. Cubes
- 4. Equality Detection
- 5. Equality Elimination
- 6. Further Reading

universität SS 2024 Constraint Solving lecture 9 2. Tightening

Tightening

- consider inequality $\sum a_i x_i \bowtie b$ with $\bowtie \in \{<, \le\}$, and $a_1, \ldots, a_n, b \in \mathbb{Z}$
- tightening preprocesses such inequality in a way that preserves integer solutions (but removes solutions in \mathbb{R})
- impact: tightening helps to obtain unsatisfiability in ${\mathbb R}$
- last lecture: tightening of strict inequalities $\sum a_i x_i < b$ to $\sum a_i x_i \leq b 1$
 - 2 < 517x + 2y < 3 can be tightened to $3 \le 517x + 2y \le 2$, trivially unsat via simplex
- tightening of weak inequalities
 - let $g = \gcd(a_1, \ldots, a_n)$
- if *b* is not divisible by *g* then tighten $\sum a_i x_i \le b$ to $\sum \frac{a_i}{g} x_i \le \lfloor \frac{b}{g} \rfloor$
- example from last lecture
- tighten $1 \le 3x 3y \le 2$ to $\left\lceil \frac{1}{3} \right\rceil \le x y \le \left\lfloor \frac{2}{3} \right\rfloor$
- result $1 \le x y \le 0$ is unsat by simplex

Outline

- **1. Summary of Previous Lecture**
- 2. Tightening

3. Cubes

- 4. Equality Detection
- 5. Equality Elimination
- 6. Further Reading

Motivation

- searching for integral solutions \vec{x} for polyhedron *P* described as $A\vec{x} < \vec{b}$ via branch-and-bound algorithm is expensive
- idea: use sufficient criterion that sometimes quickly finds integral solution of P
- core idea of the cube-test: if there is some cube C with edge-length > 1 that is completely contained in P, then P contains an integral solution

Example

- consider polyhedron *P*, the triangle
- none of the corners is integral, hence BB will require some iterations
- cube C, the square, is contained in P and has edge-length 1.2
- hence C contains an integral solution, which can be calculated from the center point of C

universität innsbruck SS 2024 Constraint Solving lecture 9 3. Cubes

9/34

(1)

(2)

Definition of Cubes

cube_s(\vec{z}) is the cube with center $\vec{z} \in \mathbb{R}^n$ and size $s \in \mathbb{R}_{\geq 0}$

$$\mathsf{cube}_s(\vec{z}) = \{\vec{x} \in \mathbb{R}^n \mid \forall i \in \{1, \dots, n\}. |x_i - z_i| \leq s\}$$

Lemma

if $s \ge 1/2$ then cube_s(\vec{z}) contains an integral vector \vec{p}

Proof

choose \vec{p} where $p_i = |z_i|$, i.e., rounding z_i to the nearest integer

Example

the center of the cube on slide 9 is $\vec{z} = (-0.8, -1.1)^t$, so we compute $\vec{p} = (-1, -1)^t$

universität SS 2024 Constraint Solving lecture 9 3. Cubes 10/34

Cube Inclusion • consider some polyhedron $P = \{\vec{x} \mid A\vec{x} < \vec{b}\}$ for some $A \in \mathbb{R}^{m \times n}$ and $\vec{b} \in \mathbb{R}^m$ • we are interested in whether *P* contains a cube of size *s*, formally: $\exists \vec{z}. \operatorname{cube}_{s}(\vec{z}) \subset \{ \vec{x} \mid A\vec{x} < \vec{b} \}$ Lemma (Cube Inclusion for Single Inequality) For a single inequality $\vec{a} \cdot \vec{x} \leq c$ with $\vec{a} \in \mathbb{R}^n$, $c \in \mathbb{R}$ there is the equivalence: $\mathsf{cube}_s(\vec{z}) \subseteq \{\vec{x} \mid \vec{a} \cdot \vec{x} \le c\} \quad iff \quad \vec{a} \cdot \vec{z} \le c - s \sum_{i=1}^n |a_i|$ Corollary

Cube inclusion (1) is satisfied iff $A\vec{z} \leq \vec{b} - s \cdot$	$\begin{pmatrix} A_{11} + \ldots + A_{1n} \\ \\ \\ A_{m1} + \ldots + A_{mn} \end{pmatrix}$	has solution $ec{z} \in \mathbb{R}^n$
universität SS 2024 Constraint Solving Lecture 9 3. Cubes		11/34

universität innsbruck SS 2024 Constraint Solving lecture 9 3. Cubes

Proof of One Direction of the Cube Inclusion for Single Inequalities

We assume

(A)
$$ec{x} \in \mathsf{cube}_s(ec{z})$$
 and (B) $ec{a} \cdot ec{z} \leq c - s \sum_{i=1}^n |a_i|$

and prove $\vec{a} \cdot \vec{x} < c$ as follows:

$$\vec{a} \cdot \vec{x} = \vec{a} \cdot (\vec{z} + (\vec{x} - \vec{z})) = \vec{a} \cdot \vec{z} + \vec{a} \cdot (\vec{x} - \vec{z})$$

$$\stackrel{(B)}{\leq} \left(c - s \sum_{i=1}^{n} |a_i| \right) + \vec{a} \cdot (\vec{x} - \vec{z}) = c - s \sum_{i=1}^{n} |a_i| + \sum_{i=1}^{n} a_i \cdot (x_i - z_i)$$

$$\leq c - s \sum_{i=1}^{n} |a_i| + \sum_{i=1}^{n} |a_i| \cdot |x_i - z_i|$$

$$\stackrel{(A)}{\leq} c - s \sum_{i=1}^{n} |a_i| + \sum_{i=1}^{n} |a_i| \cdot s = c$$

universität innsbruck SS 2024 Constraint Solving lecture 9 3. Cubes

The Unit-Cube Test of Bromberger and Weidenbach

- a unit-cube has edge-length 1, i.e., s = 1/2
- testing the unit-cube inclusion is possible via one invocation of simplex by checking existence of \vec{z} for inequalities

$$Aec{z} \le ec{b} - rac{1}{2} \cdot egin{pmatrix} |A_{11}| + \ldots + |A_{1n}| \ & \ddots \ |A_{m1}| + \ldots + |A_{mn}| \end{pmatrix}$$

Remarks

- the unit-cube test is just a sufficient criterion for integral solution of $A\vec{x} \leq \vec{b}$
- the unit-cube test always fails on constraints that contain (or imply) equalities, e.g., $\ldots \wedge y' = y - 1 + x_1 \wedge \ldots \wedge x_1 \ge 2x_2 \wedge x_2 \ge x_1 \wedge x_1 \ge 0 \wedge \ldots$
- increase applicability as follows
- first detect all implied equalities
- then eliminate equalities (or detect unsat purely from equalities, e.g., from 2x = 1)
- afterwards achieve higher success rate of unit-cube test (and lower bounds for BB)

universität SS 2024 Constraint Solving lecture 9 3. Cubes

13/34

Outline

- **1. Summary of Previous Lecture**
- 2. Tightening
- 3. Cubes
- 4. Equality Detection
- 5. Equality Elimination
- 6. Further Reading

universität SS 2024 Constraint Solving lecture 9 4. Equality Detection

Definition (Implied Equalities)

- consider set of inequalities $A\vec{x} \leq \vec{b}$ where the *i*-th inequality has form $\vec{a}_i \cdot \vec{x} \leq b_i$
- $A\vec{x} \leq \vec{b}$ implies equality $\vec{c} \cdot \vec{x} = d$ if every solution $\vec{x} \in \mathbb{R}^n$ of $A\vec{x} \leq \vec{b}$ satisfies $\vec{c} \cdot \vec{x} = d$

Observation

if $A\vec{x} < \vec{b}$ is satisfiable, then no equality $\vec{a}_i \cdot \vec{x} = b_i$ is implied

Further Results

- interestingly, also the other direction is satisfied
 - assume $A\vec{x} < \vec{b}$ is unsatisfiable
 - then there is some minimal unsatisfiable subset *I* such that $\bigwedge_{i \in I} \vec{a}_i \cdot \vec{x} < b_i$ is unsatisfiable (obtained by a single simplex invocation)
 - lemma: for every $i \in I$, the *i*-th equality $\vec{a}_i \cdot \vec{x} = b_i$ is implied
- overall: given $A\vec{x} \leq \vec{b}$ with one simplex invocation it is possible to
 - either get access to an implied equality
 - or figure out that no such equality exists

Equality Basis Algorithm of Bromberger and Weidenbach

- the task is to iteratively deduce all equalities for (satisfiable) constraints $A\vec{x} \leq \vec{b}$
- in each iteration, one equality is added and one variable is eliminated
- throughout the algorithm *E* stores equalities, and $A'\vec{x} \leq \vec{b}'$ is a set of inequalities
- initialize $E := \emptyset$
- delete all trivial inequalities from $A\vec{x} \leq \vec{b}$, the result is the initial A' and \vec{b}'
- while $simplex(A'\vec{x} < \vec{b}')$ delivers minimal unsat core *I*
- choose any equality $\vec{a}'_i \cdot \vec{x} = b'_i$ for $i \in I$
- choose any *j* such that $A'_{ij} \neq 0$
- reorder equation to obtain equation (e_j) of the form $x_j = \frac{b_i}{A'_a} \sum_{k \neq j} \frac{A'_{ik}}{A'_a} x_k$
- eliminate x_j from $A'\vec{x} \leq \vec{b}'$ and from E by using (e_j) as substitution
- add (*e_j*) to *E*
- remove trivial equations from $A'\vec{x} \leq \vec{b}'$ after simplifications
- return *E* and the final $A'\vec{x} \leq \vec{b}'$

Lemma

- $A\vec{x} \leq \vec{b}$ is equivalent to $E \cup A'\vec{x} \leq \vec{b}'$ throughout the algorithm
- the final set *E* is even an equality basis, i.e., every implied equality $\vec{c} \cdot \vec{x} = d$ of $A\vec{x} \le \vec{b}$ is a linear combination of equations in *E*

Example			
 initial constraints 	$y'-y-x_1\leq -1$		
	$y-y'+x_1\leq 1$		
	$2x_2 - x_1 \leq 0$		
	$x_1 - x_2 \leq 0$		
	$-x_1 \leq 0$		
Ζ-	$-y+2y'-x_2\leq 5$		
• simplex on strict inequalities detects equality $y' - y - x_1 = -1$, so $y' = y + x_1 - 1$ • hence $E = \{y' = y + x_1 - 1\}$ and inequalities become			
$(y+x_1-1)-y-x_1\leq -1$	is simplified and deleted	$-1 \leq -1$	
$y-(y+x_1-1)+x_1\leq 1$	is simplified and deleted	$1 \leq 1$	
$2x_2 - x_1 \leq 0$			
$x_1 - x_2 \leq 0$			
$-x_1 \leq 0$			
$z-y+2(y+x_1-1)-x_2\leq 5$	is simplified to	$z+y+2x_1-x_2 \leq 7$	

universität SS 2024 Constraint Solving lecture 9 4. Equality Detection

17/34

universität SS 2024 Constraint Solving lecture 9 4. Equality Detectio

18/34

Example (continued)

- $E = \{y' = y + x_1 1\}$ and
- inequalities $\{2x_2 x_1 \le 0, x_1 x_2 \le 0, -x_1 \le 0, z + y + 2x_1 x_2 \le 7\}$
- simplex on strict inequalities detects equality $x_1 x_2 = 0$, so $x_1 = x_2$
- after substitution and simplification get
 - $\textit{E} = \{\textit{y}' = \textit{y} + \textit{x}_2 1, \textit{\textbf{x}_1} = \textit{\textbf{x}_2}\}$ and
- inequalities $\{x_2 \le 0, \ -x_2 \le 0, \ z+y+x_2 \le 7\}$
- simplex on strict inequalities detects equality $x_2 = 0$
- after substitution and simplification get

$$E = \{y' = y - 1, x_1 = 0, x_2 = 0\}$$
 and

inequalities $\{z + y \le 7\}$

- no further equalities are detected
- finally simplex can be used to find solution of $z + y \le 7$ for variables y and z, and E determines the values for all other variables

Final Remarks

• the algorithm detects equalities over ${\mathbb R}$

• given the final set *E* and final inequalities *I*, one can always easily transform real solutions of *I* to real solutions of the initial constraints by using *E*

Outline

- **1. Summary of Previous Lecture**
- 2. Tightening
- 3. Cubes
- 4. Equality Detection

5. Equality Elimination

6. Further Reading

Current Situation

- given LIA or LRA constraints φ over variables X, compute set of equations E and inequalities ψ such that
 - $X = Y \uplus Z$
 - ψ only uses variables in Z
 - every equation in *E* has form $y = e_y$ with $y \in Y$ and e_y linear expression over variables *Z*
 - for every $y \in Y$ there is exactly one equation $y = e_y$ in E
 - φ is equivalent to $\psi \land \bigwedge_{y=e_y \in E} y = e_y$
- remarks
 - e_y does not necessarily have integer coefficients, e.g., $y = \frac{3}{2}z + 5$
 - consequently, integer solutions of ψ cannot always be extended to integer solutions of φ
 - if v(z) = 4 then $v(y) = \frac{3}{2} \cdot 4 + 5 = 9 \in \mathbb{Z}$
 - if v(z) = 1 then $v(y) = \frac{3}{2} + 9 \notin \mathbb{Z}$
- upcoming: algorithm to convert E in a way that
 - integer solutions can always be extended via resulting equations, or
 - it is detected that *E* itself is not solvable in the integers
 - remark: additional variables may be required, hence only obtain equisatisfiability

universität SS 2024 Constraint Solving lecture 9 5. Equality Elimination

universität SS 2024 Constraint Solving lecture 9 5. Equality Elimination

Diophantine Equation Solver of Griggio – Setup

- input: set *E* of linear equalities
- output: "unsat" or "sat" with list of equations in solved form
- solved form
- list of equations of the shape $x = e_x$ with e_x linear expression with integer coefficients
- no cyclic dependencies: e_x in list $[\dots, x = e_x, \dots, y = e_y, \dots]$ does neither contain x nor y
- **S** is list of equations that will become part of solution, initially *S* = []
- **F** is a set of equations that need to be processed, initially F = E
- processing is done equation by equation, and the selected equation is marked; initially no equation is marked
- *normalize* is a sub-algorithm that transforms each equation into form $\sum a_i x_i = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$, $gcd(a_1, \ldots, a_n, b) = 1$
- normalize(2x 6y 14 = 0) = (x 3y = 7)
- pormalize $(x \frac{1}{2}y + \frac{2}{2}) = (x 3y = 1)$
- normalize $(x = \frac{1}{2}y + \frac{2}{3}) = (6x 3y = 4)$

Diophantine Equation Solver of Griggio – Algorithm

- **1** if $F = \emptyset$ then return "sat" with solved form *S*
- **2** F := normalize(F), each equation has form $\sum a_i x_i = b$ with $a_1, \ldots, a_n, b \in \mathbb{Z}$
- ${f S}$ if for some $\sum a_i x_i = b \in F$ the gcd (a_1, \ldots, a_n) does not divide b, return "unsat"
- **3** selection: if no equation is marked, then mark one; assume it is $\sum a_i x_i = b$
- **5** choose k such that a_k has smallest absolute value among all a_i
- 6 if |a_k| = 1
 - remove marked equation from F
 - reorder equation to have shape (eq) : $x_k = \pm (b \sum_{i \neq k} a_i x_i)$
 - S := (eq) : S
 - use (*eq*) as substitution to eliminate x_k in F
 - continue with step 1
- $oldsymbol{O}$ otherwise, handle case $|a_k|>1$ (cf. slide 26) and continue with step 1

Example

• $F = \{x = \frac{1}{6}y + 1, 4z + y = 2\}, S = []$

- normalization: $F = \{6x y = 6, 4z + y = 2\}$
- selection: 6x y = 6 gets marked
- reordering: y = 6x 6

• updates:
$$S = [y = 6x - 6]$$
, $F = \{4z + (6x - 6) = 2\}$

- normalization: $F = \{2z + 3x = 4\}$
- selection: 2z + 3x = 4 gets marked

SS 2024 Constraint Solving lecture 9

• step 7 required

universität innsbruck

Diophantine Equation Solver – Case $|a_k|>1$

• we can write any integer number c as $c^q a_k + c^r$ where c^q and c^r are quotient and remainder when dividing c by a_k

$$egin{aligned} &\sum \mathsf{a}_i x_i = b \equiv \mathsf{a}_k x_k + \sum_{i
eq k} \mathsf{a}_i x_i = b \ &\equiv \mathsf{a}_k x_k + \sum_{i
eq k} (\mathsf{a}_i^q \mathsf{a}_k + \mathsf{a}_i^r) x_i = b^q \mathsf{a}_k + b^r \ &\equiv \mathsf{a}_k ig(x_k + ig(\sum_{i
eq k} \mathsf{a}_i^q x_i ig) - b^q ig) + \sum_{i
eq k} \mathsf{a}_i^r x_i = b^r \ \end{aligned}$$

• introduce fresh variable x_t to obtain equation (eq) that is always solvable

$$x_k = -\left(\left(\sum_{i \neq k} a_i^q x_i\right) - b^q\right) + x_t \tag{eq}$$

- update S := (eq) : S and eliminate x_k in F by substituting with (eq) as in step 6 (note that the marker stays on the previously marked equation)
- universität SS 2024 Constraint Solving lecture 9 5. Equality Elimination

Example (continued)

• marked equation is 2z + 3x = 4, i.e., 2(z + (x - 2)) + x = 0

• introduce fresh variable u and add equation to S, so

$$S = [z = -(x - 2) + u, y = 6x - 6]$$

• substituting in F delivers 2(-(x-2) + (x-2) + u) + x = 0, i.e., $F = \{2u + x = 0\}$ (and the marker is still on this equation)

5. Equality Elimination

- reorder 2u + x = 0 to x = -2u and update *S* and *F*, so S = [x = -2u, z = -(x 2) + u, y = 6x 6] and $F = \emptyset$
- final result
 - initial equations $\{x = \frac{1}{6}y + 1, 4z + y = 2\}$ are equisatisfiable to final *S*,
 - *S* is trivially solvable as it is in solved form
 - note that S can be applied in two ways
 - on symbolic values: translate constraints (e.g., inequalities) apply equations starting with end of *S*
 - on concrete value: translate solution (e.g., from a solution of inequalities) compute values by equations starting at beginning of *S*

Theorem

hence

Let E be a set of linear equations

- the Diophantine equation solver terminates on input E
- if the result on input E is "unsat", then E is not solvable in $\mathbb Z$
- if the result on input E is "sat" with answer S, then
 - *E* and *S* are equisatisfiable in \mathbb{Z} ,
 - S is in solved form, and
 - constraints and solutions can be translated via S

Application: Combine Algorithms for an Improved LIA Solver

input: set of linear inequalities

- 1 tighten bounds if possible (Section 2)
- 2 split inequalities into equalities *E* and inequalities *I* (Section 4)
- (Section 5) if Diophantine equation solver on *E* returns "unsat", return "unsat" (Section 5)
- otherwise obtain solution *S* and apply substitution *S* on *I* (symbolically)
- Itry to tighten I again
- 6 potentially detect new equalities and go back to step 2
- if simplex on I returns "unsat", return "unsat"
- 3 if unit-cube test on *I* finds solution then store it and go to step 10 (Section 3)
- o apply branch-and-bound on I and either store solution or return "unsat"

universität Innsbruck SS 2024 Constraint Solving lecture 9 5. Equality Elimination 29/34

Example (for improved LIA solver)

• input

$$2x_{1} \leq 5x_{3}$$

$$5x_{3} \leq 2x_{1}$$

$$x_{2} = 3x_{2}$$

$$2x_{1} + x_{2} + x_{3} \geq 7$$

$$2x_{1} + x_{2} + x_{3} \leq 8$$

• tightening is not applicable on input constraints

equation detection splits constraints into

$$E = \{2x_1 = 5x_3, x_2 = 3x_4\}$$

and

$$I = \{7 \le 2x_1 + x_2 + x_3 \le 8\}$$

universität SS 2024 Constraint Solving lecture 9 5. Equality Eliminatio

Example (continued)

• Diophantine equation solver on $E = \{2x_1 = 5x_3, x_2 = 3x_4\}$ delivers solved form S and introduces new variable x_5

$$S = [x_3 = 2x_5, x_1 = 2x_3 + x_5, x_2 = 3x_4]$$

• *S* is used as substitution to change $I = \{7 \le 2x_1 + x_2 + x_3 \le 8\}$ into

$$I = \{7 \le 2(2(2x_5) + x_5) + 3x_4 + 2x_5 \le 8\}$$
$$= \{7 \le 12x_5 + 3x_4 \le 8\}$$

• tightening is now applicable and yields

$$I = \{3 \le 4x_5 + x_4 \le 2\}$$

- simplex now easily detects unsat of I
- (solution of *I* for x_4 and x_5 would be extensible to x_3, x_1, x_2 via *S*)

Final Remarks

- easy to see: T-solver for LIA is much more complex than one for LRA
- not discussed
 - how to make LIA-solver incremental in DPLL(T) approach
 - how to generate small unsatisfiable cores for DPLL(T) approach
- strategy used in DPLL(T) solvers for LIA
 - utilize (incomplete) LRA-reasoning as much as possible, and
 - only invoke full LIA-solver when a complete Boolean model has been found

Outline

- **1. Summary of Previous Lecture**
- 2. Tightening
- 3. Cubes
- 4. Equality Detection
- 5. Equality Elimination
- 6. Further Reading

Further Reading

Alberto Griggio

A Practical Approach to Satisfiability Modulo Linear Integer Arithmetic Journal on Satisfiability, Boolean Modeling and Computation, volume 8, pages 1–27, 2012.

Martin Bromberger and Christoph Weidenbach
 New techniques for linear arithmetic: cubes and equalities
 Formal Methods in System Design, volume 51, pages 433–461, 2017.

Important Concepts

• cube

universität innsbruck • implied equality

tightening

- Diophantine equation solver
- equality basis algorithm

universität SS 2024 Constraint Solving lecture 9 6. Further Reading

33/34

SS 2024 Constraint Solving lecture 9 6. Further Reading