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Example (Application of Linear Integer Arithmetic: Termination Proving)

• consider program
• model loop-iteration as formula φ using pre-variables x⃗ and post-variables x⃗′

• prove termination by choosing expression e and integer constant f and show that
two LIA problems are unsatisfiable
• φ ∧ e(x⃗) < e(x⃗′) + 1 (¬ decrease)
• φ ∧ e(x⃗) < f (¬ bounded)

• for certain programs, reasoning over integers is essential

Branch-and-Bound Algorithm

• core idea for finding integral solution
• simplex algorithm is used to find real solution v or detect unsat in R
• whenever q := v(x) /∈ Z, consider two possibilities: add x ≤ ⌊q⌋ or ⌈q⌉ ≤ x

• small model property is required for termination: obtain finite search space
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Theorem (Small Model Property)

if LIA formula ψ has solution over Z then it has a solution v with

|v(x)| ≤ bound(ψ) := (n + 1) ·
√

nn · cn

for all x where

• n: number of variables in ψ
• c: maximal absolute value of numbers in ψ

SS 2024 Constraint Solving lecture 9 1. Summary of Previous Lecture 4/34
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Proof Idea of Small Model Property

1 convert conjunctive LIA formula ψ into form Ax⃗ ≤ b⃗

2 represent polyhedron {x⃗ | Ax⃗ ≤ b⃗}︸ ︷︷ ︸
yellow

as polyhedron P = hull(X)︸ ︷︷ ︸
red

+ cone(V)︸ ︷︷ ︸
green

3 show that P has small integral solutions (orange), depending on X and V

4 approximate entries of vectors in X and V to obtain small model property
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Tightening

• consider inequality
∑

aixi ▷◁ b with ▷◁ ∈ {<,≤}, and a1, . . . , an,b ∈ Z
• tightening preprocesses such inequality in a way that preserves integer solutions

(but removes solutions in R)
• impact: tightening helps to obtain unsatisfiability in R
• last lecture: tightening of strict inequalities

∑
aixi < b to

∑
aixi ≤ b − 1

• 2 < 517x + 2y < 3 can be tightened to 3 ≤ 517x + 2y ≤ 2, trivially unsat via simplex
• tightening of weak inequalities

• let g = gcd(a1, . . . , an)
• if b is not divisible by g then tighten

∑
aixi ≤ b to

∑ ai

g xi ≤ ⌊b
g⌋

• example from last lecture
• tighten 1 ≤ 3x − 3y ≤ 2 to ⌈1

3⌉ ≤ x − y ≤ ⌊2
3⌋

• result 1 ≤ x − y ≤ 0 is unsat by simplex
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Motivation

• searching for integral solutions x⃗ for polyhedron P described as Ax⃗ ≤ b⃗ via
branch-and-bound algorithm is expensive

• idea: use sufficient criterion that sometimes quickly finds integral solution of P
• core idea of the cube-test: if there is some cube C with edge-length ≥ 1 that is

completely contained in P, then P contains an integral solution

Example

• consider polyhedron P, the triangle
• none of the corners is integral, hence BB will

require some iterations
• cube C, the square, is contained in P and has

edge-length 1.2
• hence C contains an integral solution, which can

be calculated from the center point of C
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Definition of Cubes

cubes(⃗z) is the cube with center z⃗ ∈ Rn and size s ∈ R≥0

cubes(⃗z) = {x⃗ ∈ Rn | ∀i ∈ {1, . . . ,n}. |xi − zi| ≤ s}

Lemma

if s ≥ 1/2 then cubes(⃗z) contains an integral vector p⃗

Proof

choose p⃗ where pi = ⌊zi⌉, i.e., rounding zi to the nearest integer

Example

the center of the cube on slide 9 is z⃗ = (−0.8,−1.1)t, so we compute p⃗ = (−1,−1)t
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Cube Inclusion

• consider some polyhedron P = {x⃗ | Ax⃗ ≤ b⃗} for some A ∈ Rm×n and b⃗ ∈ Rm

• we are interested in whether P contains a cube of size s, formally:

∃z⃗. cubes(⃗z) ⊆ {x⃗ | Ax⃗ ≤ b⃗} (1)

Lemma (Cube Inclusion for Single Inequality)

For a single inequality a⃗ · x⃗ ≤ c with a⃗ ∈ Rn, c ∈ R there is the equivalence:

cubes(⃗z) ⊆ {x⃗ | a⃗ · x⃗ ≤ c} iff a⃗ · z⃗ ≤ c − s
n∑

i=1

|ai| (2)

Corollary

Cube inclusion (1) is satisfied iff Az⃗ ≤ b⃗ − s ·

 |A11|+ . . .+ |A1n|
· · ·

|Am1|+ . . .+ |Amn|

 has solution z⃗ ∈ Rn
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Proof of One Direction of the Cube Inclusion for Single Inequalities

We assume

(A) x⃗ ∈ cubes(⃗z) and (B) a⃗ · z⃗ ≤ c − s
n∑

i=1

|ai|

and prove a⃗ · x⃗ ≤ c as follows:

a⃗ · x⃗ = a⃗ · (⃗z + (x⃗ − z⃗)) = a⃗ · z⃗ + a⃗ · (x⃗ − z⃗)

(B)
≤

(
c − s

n∑
i=1

|ai|

)
+ a⃗ · (x⃗ − z⃗) = c − s

n∑
i=1

|ai|+
n∑

i=1

ai · (xi − zi)

≤ c − s
n∑

i=1

|ai|+
n∑

i=1

|ai| · |xi − zi|

(A)
≤ c − s

n∑
i=1

|ai|+
n∑

i=1

|ai| · s = c
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The Unit-Cube Test of Bromberger and Weidenbach

• a unit-cube has edge-length 1, i.e., s = 1/2
• testing the unit-cube inclusion is possible via one invocation of simplex by checking

existence of z⃗ for inequalities

Az⃗ ≤ b⃗ − 1

2
·

 |A11|+ . . .+ |A1n|
· · ·

|Am1|+ . . .+ |Amn|


Remarks

• the unit-cube test is just a sufficient criterion for integral solution of Ax⃗ ≤ b⃗
• the unit-cube test always fails on constraints that contain (or imply) equalities, e.g.,
. . . ∧ y′ = y − 1 + x1 ∧ . . . ∧ x1 ≥ 2x2 ∧ x2 ≥ x1 ∧ x1 ≥ 0 ∧ . . .

• increase applicability as follows
• first detect all implied equalities
• then eliminate equalities (or detect unsat purely from equalities, e.g., from 2x = 1)
• afterwards achieve higher success rate of unit-cube test (and lower bounds for BB)
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Definition (Implied Equalities)

• consider set of inequalities Ax⃗ ≤ b⃗ where the i-th inequality has form a⃗i · x⃗ ≤ bi

• Ax⃗ ≤ b⃗ implies equality c⃗ · x⃗ = d if every solution x⃗ ∈ Rn of Ax⃗ ≤ b⃗ satisfies c⃗ · x⃗ = d

Observation

if Ax⃗ < b⃗ is satisfiable, then no equality a⃗i · x⃗ = bi is implied

Further Results
• interestingly, also the other direction is satisfied

• assume Ax⃗ < b⃗ is unsatisfiable
• then there is some minimal unsatisfiable subset I such that

∧
i∈I a⃗i · x⃗ < bi is unsatisfiable

(obtained by a single simplex invocation)
• lemma: for every i ∈ I, the i-th equality a⃗i · x⃗ = bi is implied

• overall: given Ax⃗ ≤ b⃗ with one simplex invocation it is possible to
• either get access to an implied equality
• or figure out that no such equality exists
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Equality Basis Algorithm of Bromberger and Weidenbach

• the task is to iteratively deduce all equalities for (satisfiable) constraints Ax⃗ ≤ b⃗
• in each iteration, one equality is added and one variable is eliminated
• throughout the algorithm E stores equalities, and A′x⃗ ≤ b⃗′ is a set of inequalities
• initialize E := ∅
• delete all trivial inequalities from Ax⃗ ≤ b⃗, the result is the initial A′ and b⃗′

• while simplex(A′x⃗ < b⃗′) delivers minimal unsat core I
• choose any equality a⃗′

i · x⃗ = b′
i for i ∈ I

• choose any j such that A′
ij ̸= 0

• reorder equation to obtain equation (ej) of the form xj =
bi

A′
ij
−
∑

k ̸=j
A′

ik

A′
ij
xk

• eliminate xj from A′x⃗ ≤ b⃗′ and from E by using (ej) as substitution
• add (ej) to E
• remove trivial equations from A′x⃗ ≤ b⃗′ after simplifications

• return E and the final A′x⃗ ≤ b⃗′
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Lemma

• Ax⃗ ≤ b⃗ is equivalent to E ∪ A′x⃗ ≤ b⃗′ throughout the algorithm
• the final set E is even an equality basis, i.e., every implied equality c⃗ · x⃗ = d of

Ax⃗ ≤ b⃗ is a linear combination of equations in E
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Example

• initial constraints y′ − y − x1 ≤ −1

y − y′ + x1 ≤ 1

2x2 − x1 ≤ 0

x1 − x2 ≤ 0

−x1 ≤ 0

z − y + 2y′ − x2 ≤ 5

• simplex on strict inequalities detects equality y′ − y − x1 = −1, so y′ = y + x1 − 1
• hence E = {y′ = y + x1 − 1} and inequalities become

(y + x1 − 1)− y − x1 ≤ −1 is simplified and deleted −1 ≤ −1

y − (y + x1 − 1) + x1 ≤ 1 is simplified and deleted 1 ≤ 1

2x2 − x1 ≤ 0

x1 − x2 ≤ 0

−x1 ≤ 0

z − y + 2(y + x1 − 1)− x2 ≤ 5 is simplified to z + y + 2x1 − x2 ≤ 7
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Example (continued)

• E = {y′ = y + x1 − 1} and
inequalities {2x2 − x1 ≤ 0, x1 − x2 ≤ 0, −x1 ≤ 0, z + y + 2x1 − x2 ≤ 7}

• simplex on strict inequalities detects equality x1 − x2 = 0, so x1 = x2

• after substitution and simplification get
E = {y′ = y + x2 − 1, x1 = x2} and
inequalities {x2 ≤ 0, −x2 ≤ 0, z + y + x2 ≤ 7}

• simplex on strict inequalities detects equality x2 = 0
• after substitution and simplification get

E = {y′ = y − 1, x1 = 0, x2 = 0} and
inequalities {z + y ≤ 7}

• no further equalities are detected
• finally simplex can be used to find solution of z + y ≤ 7 for variables y and z,

and E determines the values for all other variables
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Final Remarks
• the algorithm detects equalities over R
• given the final set E and final inequalities I, one can always easily transform real

solutions of I to real solutions of the initial constraints by using E
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Current Situation
• given LIA or LRA constraints φ over variables X, compute set of equations E and

inequalities ψ such that
• X = Y ⊎ Z
• ψ only uses variables in Z
• every equation in E has form y = ey with y ∈ Y and ey linear expression over variables Z
• for every y ∈ Y there is exactly one equation y = ey in E
• φ is equivalent to ψ ∧

∧
y=ey∈E y = ey

• remarks
• ey does not necessarily have integer coefficients, e.g., y = 3

2z + 5
• consequently, integer solutions of ψ cannot always be extended to integer solutions of φ

• if v(z) = 4 then v(y) = 3
2 · 4 + 5 = 9 ∈ Z

• if v(z) = 1 then v(y) = 3
2 + 9 /∈ Z

• upcoming: algorithm to convert E in a way that
• integer solutions can always be extended via resulting equations, or
• it is detected that E itself is not solvable in the integers
• remark: additional variables may be required, hence only obtain equisatisfiability
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Diophantine Equation Solver of Griggio – Setup

• input: set E of linear equalities
• output: “unsat” or “sat” with list of equations in solved form
• solved form

• list of equations of the shape x = ex with ex linear expression with integer coefficients
• no cyclic dependencies: ex in list [. . . , x = ex, . . . , y = ey, . . .] does neither contain x nor y

• S is list of equations that will become part of solution, initially S = [ ]
• F is a set of equations that need to be processed, initially F = E
• processing is done equation by equation, and the selected equation is marked;

initially no equation is marked
• normalize is a sub-algorithm that transforms each equation into form∑

aixi = b with a1, . . . , an,b ∈ Z, gcd(a1, . . . , an,b) = 1
• normalize(2x − 6y − 14 = 0) = (x − 3y = 7)
• normalize(x = 1

2y + 2
3 ) = (6x − 3y = 4)
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Diophantine Equation Solver of Griggio – Algorithm

1 if F = ∅ then return “sat” with solved form S

2 F := normalize(F), each equation has form
∑

aixi = b with a1, . . . , an,b ∈ Z
3 if for some

∑
aixi = b ∈ F the gcd(a1, . . . , an) does not divide b, return “unsat”

4 selection: if no equation is marked, then mark one; assume it is
∑

aixi = b

5 choose k such that ak has smallest absolute value among all ai

6 if |ak| = 1
• remove marked equation from F
• reorder equation to have shape (eq) : xk = ±(b −

∑
i ̸=k aixi)

• S := (eq) : S
• use (eq) as substitution to eliminate xk in F
• continue with step 1

7 otherwise, handle case |ak| > 1 (cf. slide 26) and continue with step 1
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Example

• F = {x = 1
6y + 1,4z + y = 2}, S = [ ]

• normalization: F = {6x − y = 6,4z + y = 2}
• selection: 6x − y = 6 gets marked
• reordering: y = 6x − 6
• updates: S = [y = 6x − 6], F = {4z + (6x − 6) = 2}
• normalization: F = {2z + 3x = 4}
• selection: 2z + 3x = 4 gets marked
• step 7 required
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Diophantine Equation Solver – Case |ak| > 1

• we can write any integer number c as cqak + cr where cq and cr are quotient and
remainder when dividing c by ak

• hence
∑

aixi = b ≡ akxk +
∑
i̸=k

aixi = b

≡ akxk +
∑
i̸=k

(aq
i ak + ar

i )xi = bqak + br

≡ ak

(
xk + (

∑
i̸=k

aq
i xi)− bq

)
+
∑
i̸=k

ar
i xi = br

• introduce fresh variable xt to obtain equation (eq) that is always solvable

xk = −
(
(
∑
i ̸=k

aq
i xi)− bq

)
+ xt (eq)

• update S := (eq) : S and eliminate xk in F by substituting with (eq) as in step 6
(note that the marker stays on the previously marked equation)
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Example (continued)

• marked equation is 2z + 3x = 4, i.e., 2(z + (x − 2)) + x = 0
• introduce fresh variable u and add equation to S, so

S = [z = −(x − 2) + u, y = 6x − 6]
• substituting in F delivers 2(−(x − 2) + (x − 2) + u) + x = 0, i.e., F = {2u + x = 0}

(and the marker is still on this equation)
• reorder 2u + x = 0 to x = −2u and update S and F, so

S = [x = −2u, z = −(x − 2) + u, y = 6x − 6] and F = ∅
• final result

• initial equations {x = 1
6y + 1,4z + y = 2} are equisatisfiable to final S,

• S is trivially solvable as it is in solved form
• note that S can be applied in two ways

• on symbolic values: translate constraints (e.g., inequalities)
apply equations starting with end of S

• on concrete value: translate solution (e.g., from a solution of inequalities)
compute values by equations starting at beginning of S
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Theorem

Let E be a set of linear equations

• the Diophantine equation solver terminates on input E
• if the result on input E is “unsat”, then E is not solvable in Z
• if the result on input E is “sat” with answer S, then

• E and S are equisatisfiable in Z,
• S is in solved form, and
• constraints and solutions can be translated via S
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Application: Combine Algorithms for an Improved LIA Solver

input: set of linear inequalities

1 tighten bounds if possible (Section 2)

2 split inequalities into equalities E and inequalities I (Section 4)

3 if Diophantine equation solver on E returns “unsat”, return “unsat” (Section 5)

4 otherwise obtain solution S and apply substitution S on I (symbolically)

5 try to tighten I again

6 potentially detect new equalities and go back to step 2

7 if simplex on I returns “unsat”, return “unsat”

8 if unit-cube test on I finds solution then store it and go to step 10 (Section 3)

9 apply branch-and-bound on I and either store solution or return “unsat”

10 output solution where S is used to compute values of further variables
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Example (for improved LIA solver)

• input
2x1 ≤ 5x3

5x3 ≤ 2x1

x2 = 3x4

2x1 + x2 + x3 ≥ 7

2x1 + x2 + x3 ≤ 8

• tightening is not applicable on input constraints
• equation detection splits constraints into

E = {2x1 = 5x3, x2 = 3x4}

and
I = {7 ≤ 2x1 + x2 + x3 ≤ 8}
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Example (continued)

• Diophantine equation solver on E = {2x1 = 5x3, x2 = 3x4} delivers solved form S
and introduces new variable x5

S = [x3 = 2x5, x1 = 2x3 + x5, x2 = 3x4]

• S is used as substitution to change I = {7 ≤ 2x1 + x2 + x3 ≤ 8} into

I = {7 ≤ 2(2(2x5) + x5) + 3x4 + 2x5 ≤ 8}
= {7 ≤ 12x5 + 3x4 ≤ 8}

• tightening is now applicable and yields

I = {3 ≤ 4x5 + x4 ≤ 2}

• simplex now easily detects unsat of I
• (solution of I for x4 and x5 would be extensible to x3, x1, x2 via S)
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Final Remarks
• easy to see: T-solver for LIA is much more complex than one for LRA
• not discussed

• how to make LIA-solver incremental in DPLL(T) approach
• how to generate small unsatisfiable cores for DPLL(T) approach

• strategy used in DPLL(T) solvers for LIA
• utilize (incomplete) LRA-reasoning as much as possible, and
• only invoke full LIA-solver when a complete Boolean model has been found
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Further Reading

Alberto Griggio

A Practical Approach to Satisfiability Modulo Linear Integer Arithmetic
Journal on Satisfiability, Boolean Modeling and Computation, volume 8, pages 1–27, 2012.

Martin Bromberger and Christoph Weidenbach

New techniques for linear arithmetic: cubes and equalities
Formal Methods in System Design, volume 51, pages 433–461, 2017.

Important Concepts

• cube

• Diophantine equation solver

• equality basis algorithm

• implied equality

• tightening
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