M universitat

™ innsbruck SS 2024  lecture 11l

Constraint Solving

René Thiemann and Fabian Mitterwallner

based on a previous course by Aart Middeldorp


http://cl-informatik.uibk.ac.at/teaching/ss24/cs
http://cl-informatik.uibk.ac.at/~thiemann
http://cl-informatik.uibk.ac.at/members/fmitterwallner/

Outline

1. Nelson-Oppen Combination Method
2. Quantified Boolean Formulas
3. PSPACE-Completeness of QBF

4. Further Reading

B universitat i i
M innsbruck SS 2024 Constraint Solving lecture 11 2/32



Current State

® SMT solver for various theories

® equality logic equality graphs
® EUF (equality with uninterpreted functions) congruence closure
® |RA (linear rational arithmetic) simplex
® LIA (linear integer arithmetic) branch and bound
® BV (bit-vector arithmetic) flattening

® missing: combination of theories, e.g., EUF + LRA?
f(x+1) < f(y) Af(f(x)) # f(x) — 1
® observation: all theories support equality

® upcoming: combination method which communicate via equalities

® requirement for presented combination algorithm: theories must be stably infinite
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theory is stably infinite if every satisfiable quantifier-free formula has infinite model

® EUF is stably infinite

® LIA and LRA are stably infinite

e theory T = (X, A) with X = {a,b,=} and A= {Vx. x = a V x = b} is not stably infinite
® BV is not stably infinite
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(first-order) theory consists of
® signature X: set of function and predicate symbols

® axioms T: set of sentences in first-order logic in which only function and
predicate symbols of ¥ appear

theory combination T; & T, of two theories

® T, over signature ¥,

® T, over signature ¥,

has signature ¥, U ¥, and axioms T, U T>
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Outline

1. Nelson-Oppen Combination Method

Nondeterministic Version
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combination of linear arithmetic and uninterpreted functions:

xz2y ANy—z=x A f(f(y) —f(x)) #f(z) A z=0

two stably infinite theories

® T over signature ¥;

® T, over signature ¥,

such that

°* Y, NnY, ={=}

e T,-satisfiability of quantifier-free ¥;-formulas is decidable

® T,-satisfiability of quantifier-free ¥,-formulas is decidable
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Nelson-Oppen Method: Nondeterministic Version

input: quantifier-free conjunction ¢ in theory combination T; & T>

output: or

@ purification
A WA,
@ guess and check
® Vs set of shared variables in ¢; and ¢,
® guess equivalence relation E on V

® arrangement oV, E) is formula

(/\x—y) A /\ x;éy

XEy

® if o1 A a(V,E) is Ty-satisfiable and ¢, A a(V, E) is T,-satisfiable

then return else return

Nondeterministic Version

for X;-formula 7 and X,-formula ¢,
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formula ¢ in combination of LIA and EUF:

1<Xx Ax<2Ay=1A2z=2A f(x)#f(y) Af(x) #f(2)

~~

Y1 P2
e V={xy,z}
e 5 different equivalence relations E:
O {{xy z}} ©1 A a(V,E) is unsatisfiable

O {{xy}{z}} pa N
© {{xz},{y}} P2 N
O {{x}{y.2}} prAa
O {{x},{r}1{z}} wiAra

® ¢ is unsatisfiable

V,E) is unsatisfiable
V,E) is unsatisfiable
V,E) is unsatisfiable
V,E) is unsatisfiable

—~ —~ —~
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1. Nelson-Oppen Combination Method

Deterministic Version
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theory T is convex if for every quantifier-free conjunctive formula F and n > 1:
e IfF = V_,xi=y

® Then: F — x;=y;forsomel <i<n

® |IA is not convex

1<Xx<K2ANy=1Nz=2 — Xx=yV Xx=2Z
® |LRA is convex

® EUF is convex
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combination of LRA and EUF:
xzy ANy—z=x A f(fly) —f(x)) #f(z) A z>0
purification

pr1: XZYNy—z>2x ANwy=w,—w3 ANz2>0
w2: f(wr) #f(2) A wa =1f(y) A ws =f(x)

implied equalities between shared variables
E:X=Y ANWr=W3 A Z=Ww;

test satisfiability of p, A £
o NE = L

unsatisfiable
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Nelson-Oppen Method: Deterministic Version

input: quantifier-free conjunction ¢ in combination T; & T, of convex theories
output: or
@ purification ¢ =~ o1 A, for Xi-formula p; and X,-formula o,

@ V: set of shared variables in o1 and ¢,
&: already discovered equalities between variables in V

© test satisfiability of o1 A E

if o1 A € is T1-unsatisfiable then return
else add new implied equalities between variables in V to £

@ test satisfiability of o, A £

if o2 A &€ is Ty-unsatisfiable then return
else add new implied equalities between variables in V to £

© if £ has been extended in steps 3 or 4 then goto step 2 else return
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Nelson-Oppen decision procedure can be extended to non-convex theories
—> case-splitting for implied disjunction of equalities

combination of LIAand EUF: 1 <x A x<2 A f(x) #f(1) A f(x) #f(2)

purification

p1: 1S<XAXK2Awi=1Aw,=2
p2: f(x) # f(wi) A f(x) # f(wz)
implied equalities between shared variables (second case)
E: x=w

test satisfiability of o, A € = L

case split: x =w; or x = w, unsatisfiable
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Requirement of Convex Theories for Deterministic Nelson-Oppen

® combine LIA (non-convex) + EUF (convex)
® problem with deterministic algorithm
® 1<XAX<K2AYy1=1Ay, =2Af(x)=aAf(y1) #aAnf(y:)#a

PLIA WPEUF
® no implied equalities among shared variables {x,y1,y>},
hence deterministic algorithm wrongly reports satisfiability

Requirement of Stably Infinite Theories for Nelson-Oppen

e combine BV (not stably infinite) + EUF (stably infinite)
® problem with non-deterministic Nelson-Oppen algorithm

.X4>UO/\< /\ X4#a/)/\< /\ a,-;éa/)

ooy 1<i<16 1<i<j<16

PEUF
® Nelson-Oppen reports satisfiability (only one trivial arrangement {x,},
but the 4-bit vector x4 cannot be different to 16 different constants a;, ..., ais)
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2. Quantified Boolean Formulas
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Current State

® SMT solving for various (combinations of) theories
® SMT: implicit existential quantification
® upcoming lectures: integrate quantifiers

® this lecture considers simplest case: Quantified Boolean Formulas

| ﬁﬂj;’g;ﬁ@ft $52024 Constraint Solving  lecture 11 2. Quantified Boolean Formulas 17/32



Definition (QBF Syntax)

pu= L [T | x ||l ore|eVe | oo | Vxe | Ixp

Definition (QBF Semantics)

extension of propositional logic case:

oy = T FVIX/FI() = Tand vix/TI(¢) =T
v(vx.¢) = F otherwise

. T ifvix/Fl(@) =Torv[x/Tl(¢) =T
HER ) = F otherwise

prenex normal form: Qi1Xxy ... QnXs. With Q; € {V, 3} for all 1 <i < n and ¢ quantifier-free
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Example (2 x 2 Tic-Tac-Toe)

X

O

* two players (x and O)
e first player (x) has winning strategy

4 x move (x wins or
¥ O move (O does not win and
4 X move x wins))

® expressible in QBF
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every quantified formula can be transformed into equivalent prenex normal form

@ eliminate all propositional connectives other than Vv, A, =
@ rename all bound variables such that every quantifier binds unique variable

© push propositional connectives through quantifiers:

—VX.p <= Ix.—p —IX.p = Vx.—p
(Vx. ) AN <= Vx.p A PAYX. Y = VX. AP
@x.p) A <= Ix.poAY PpAIX.Y = Ax.pAY
(Vx.p) VY <= Vx.pV PVV¥X. ) <= Vx.oV
Ex. o)V = Ix.oVy pVIX.Y <= Ax.pV
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—VX.p < 3Ix.—p —3X.p <= Vx.—p
(Yx. ) AN <= Vx.oAY PAVYX Y = VX . @AY
Ex.-p)AY <= Ix.pAY P AIX.Y <= Ix.pAY
(. p) V) <= Vx.oV pVVX.1) << Vx.oV
BEx. o)V <= Ix.oVy pViIx.yp <= Ix.peVy

o —Ix.~(3Ay.-(y = x) A (=x VY)) A (VY. y AXV —x A y))
e —Ix.=(Fy.(-y VX)A (=x VYY) A= (VY. y AXV —x A =y))
e —3Ix.=(3y.(-y VX)A (—=x Vy)) A=(Vz.z A X V =X A =2))
e Vx.(Jy.(-y VX)A (=X VY) A3z (-zV —x) A (xV 2))

® Vx.3yz. (-y VX)A(=xVY)A(=zV —x) A (xVZ)

~—

—_~ — ~—
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closed QBF in prenex CNF:  Q1B;...0,B,.¢ with quantifier-free CNF ¢ QCNF

e Qie{V,3}foralll <i<nandQ;#Qforalll<i<n
e B, list of distinct variables with BN B; = @ if i # j

QDIMACS Format, used in QBFLIB (QBF Satisfiability Library)

p cnf 5 4 5 variables 4 clauses
el1340 E|X1X3X4

ab5o VXS

e 20 HXZ

-120 (_‘Xl \/Xz) A\

35-20 (X3 \/X5\/ﬁX2)/\

4 -5 -2 0 (X4 V=X5 V —x2) A
-3-40 (—x3 V —1x4)
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Outline

3. PSPACE-Completeness of QBF
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Definitions

® PSPACE is class of decision problems that can be solved in polynomial space by
deterministic Turing machine

® decision problem A is PSPACE-hard if every PSPACE problem B is poly-time reducible to A
® decision problem A is PSPACE-complete if it is PSPACE-hard and in PSPACE

® NP C PSPACE = NPSPACE (open problem: NP C PSPACE)
QBF is PSPACE-complete

Some PSPACE-Complete Problems
® universality problem for regular expressions
® LTL model checking

® many games on n x n board (Othello, Go, Sokoban, Super Mario Bros.)
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QBF is in PSPACE

TQBF Algorithm

input: closed QBF formula ¢ in prenex normal form
output: value of ¢ (true or false)

@ if o is quantifier-free then evaluate ¢ and return answer
@ if o = 3Ix. ¢ then return value of “TQBF(¢[x/L]) or TQBF(¢[x/T])"

© if ¢ =Vx.¢ then return value of “TQBF(¢)[x/L]) and TQBF(y[x/T])"

recursive algorithm TQBF runs in linear space
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deterministic TM (DTM) is 8-tuple M = (Q, X, T, F, ., d, s, t) with

O o finite set of states
O X finite input alphabet
© rox: finite tape alphabet
O el -3 leftendmarker |F|a|lcT>|C|a|._.|b|a|._.|._.|
® _-cl—-X: blanksymbol q
® 6:0xI—=0xTI x{LR}: (partial)transition function
@ sc0: start state
O teo: accept state
such that

Vael: §(t a)is undefined
Vp e Q :if o(p,t) is defined then 3g € Q: i(p,F) = (q,F,R)
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Definitions

® configuration: elementof Q x {y_“ |y el } xN

e start configuration on input x € X*: (s, Fx.“,0)

® next configuration relation is binary relation % defined as:

{(q,z’,n —1) ifé(p,zn) = (q,b,L)
(9.2,n+1) ifdé(p,z,) =(q,b,R)

where Z’ is string obtained from z by substituting b for n-th symbol z, of z

1
(p,z,n) -

* = G)" Wnzo == U
n>0

® x € L*is accepted by M if (s, Fx-, 0) —= (t, --*,0)

e [ (M) is set of strings accepted by M
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QBF is PSPACE-hard

® |et A be arbitrary decision problem in PSPACE
® task: define polynomial-time reduction from A to QBF

¢ (language encoding of) A is accepted by DTMM = (Q, %, I, F, ., 4, s, t) that runs in
polynomial space

3 polynomial p(n) such that M halts using at most p(n) tape cells for any input x of length n

® given input x, we construct QBF formula go,v,(x) such that

M accepts x <= ou(X) is true

® continued on next slide ...
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Proof (cont’d)

® reachable configurations of M on input x can be encoded using O(p(n)) variables

® QBF formula ¢p(c1,c2) encodes that ¢; can be reached from c; in at most 2™ steps:

vo(c1,62) = "c1=¢c' VI %) cy' (cf. NP-hardness proof of SAT)

vir1(c1,62) = e Vxy."x=c1'ATy=c'Vx=c'ATy=c'— pi(x,y)

® ou(x) = pm(a,b) with

® start configuration a on input x

® accept configuration b

® bound m on required number of steps
* m=0(p(n))
* size of pu(x) is O(p?(n))
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Outline

4. Further Reading
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Further Reading

we will not discuss methods for QBF-solving in this course;
interested in this topic? — look at these chapters

® Hans Kleine Blining and Uwe Bubeck
Theory of Quantified Boolean Formulas
Chapter 29 of Handbook of Satisfiability (second edition)
I0S Press, 2019

® Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano
Reasoning with Quantified Boolean Formulas
Chapter 30 of Handbook of Satisfiability (second edition)
I0S Press, 2019
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https://doi.org/10.3233/FAIA201013
https://doi.org/10.3233/FAIA201013
https://doi.org/10.3233/FAIA201013
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https://doi.org/10.3233/FAIA201014
https://doi.org/10.3233/FAIA201014
https://doi.org/10.3233/FAIA201014
https://doi.org/10.3233/FAIA201014

Kroning and Strichmann

® Sections 9.1, 9.2
® Chapter 10

Bradley and Manna

® Section 10.1, 10.2, 10.3

® arrangement ® PSPACE

® convex theory ® QCNF

® purification ® quantified boolean formula
® stably infinite theory e TQBF
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