

SS 2024 lecture 12

Outline

UNIVERSITAS LE OPO LEINO - FECANCISCEA

Constraint Solving

René Thiemann and Fabian Mitterwallner based on a previous course by Aart Middeldorp

- 1. Quantifier Elimination
- 2. Ferrante and Rackoff's Method
- 3. Cooper's Method
- 4. Further Reading

universität SS 2024 Constraint Solving lecture 12

1. Quantifier Elimination

- 2. Ferrante and Rackoff's Method
- 3. Cooper's Method
- 4. Further Reading

Remark

since last lecture: consider formulas involving quantifiers

Definition

first-order theory T admits quantifier elimination if there exists algorithm that transforms formulas in T into T-equivalent quantifier-free formulas

Remarks

- first-order theory T is decidable if
 - 1 it admits quantifier elimination
 - satisfiability of quantifier-free formulas is decidable
- quantifier elimination algorithm is needed only for formulas $\exists x. \varphi$ with quantifier-free φ
 - remove universal quantifiers: replace each $\forall x. \varphi$ by $\neg \exists x. \neg \varphi$
 - apply quantifier elimination algorithm starting with innermost quantifiers

2/22

Lemma

QBF admits quantifier elimination; algorithm: replace $\exists x. \varphi$ by $\varphi[x/\bot] \lor \varphi[x/\top]$

Examples

- LRA formula $\exists x. 2x = y$ is equivalent to \top
- LIA formula $\exists x. 2x = y$ has no equivalent quantifier-free formula (over same signature)

Upcoming

- LRA admits quantifier elimination (Ferrante and Rackoff's method)
- augmented version of LIA admits quantifier elimination (Cooper's method)

Remark

real arithmetic admits quantifier elimination (even non-linear) (Tarski–Seidenberg, Collin's cylindrical algebraic decomposition algorithm)

universität SS 2024 Constraint Solving lecture 12 1. Quantifier Elimination

Outline

1. Quantifier Elimination

2. Ferrante and Rackoff's Method

- 3. Cooper's Method
- 4. Further Reading

universität SS 2024 Constraint Solving lecture 12 2. Ferrante and Rackoff's Method
 Innsbruck

Ferrante and Rackoff's Method

input: QLRA formula $\exists x. \varphi(x)$ with φ quantifier-free output: equivalent quantifier-free formula

1 $\varphi_1(x)$ is NNF of $\varphi(x)$

2 $\varphi_2(x)$ is result of replacing literals in $\varphi_1(x)$ as follows:

$$s \le t \implies s < t \lor s = t$$
 $\neg (s \le t) \implies t < s$
 $\neg (s < t) \implies t < s \lor s < t$ $\neg (s = t) \implies t < s \lor s < t$

3 $\varphi_3(x)$ is result of replacing atoms in $\varphi_2(x)$ as follows:

$$t < cx \implies \begin{cases} \frac{t}{c} < x & \text{if } c > 0 \\ x < \frac{t}{c} & \text{if } c < 0 \end{cases} \qquad \qquad t = cx \implies x = \frac{t}{c}$$

such that x does not appear in t

5/22

Example

- $\exists x. 3x + 1 < 10 \land 7x 6 > 7$
- $\exists x. x < 3 \land x > \frac{13}{7}$
- left infinite projection: $\top \land \bot \equiv \bot$

right infinite projection: $\bot \land \top \equiv \bot$

$$S = \{3, \frac{13}{7}\}$$

$$\bigvee_{s,t\in S} \left(\frac{s+t}{2} < 3 \ \land \ \frac{s+t}{2} > \frac{13}{7} \right) \ \equiv \ \frac{\frac{13}{7}+3}{2} < 3 \ \land \ \frac{\frac{13}{7}+3}{2} > \frac{13}{7} \ \equiv \ \top$$

Ferrante and Rackoff's Method (cont'd)

4 $\varphi_3(x)$ is formula without negations and contains three types of atoms involving x:

(A)
$$x < t$$
 (B) $t < x$ (C) $x = t$

S is set of terms t in (A), (B) and (C) atoms

idea: finitely many cases for $\exists x.\varphi_3(x): x$ can be some element of *S*, between two elements of *S*, smaller than all elements of *S* or larger than all elements of *S*

left infinite projection $\varphi_{-\infty}$ is obtained from $\varphi_3(x)$ by replacing all (A) atoms with \top and all (B) and (C) atoms with \bot

right infinite projection $\varphi_{+\infty}$ is obtained from $\varphi_3(x)$ by replacing all (A) and (C) atoms with \bot and all (B) atoms with \top

$$\varphi_4 = \varphi_{-\infty} \lor \varphi_{+\infty} \lor \bigvee_{s,t \in S} \varphi_3\left(\frac{s+t}{2}\right)$$

universität SS 2024 Constraint Solving lecture 12 2. Ferrante and Rackoff's Method innsbruck

```
9/22
```

Example

• $\exists y x. 3x + 1 < y \land 2x - y > 7$ • $\exists y x. x < \frac{y-1}{3} \land x > \frac{7+y}{2}$ • left infinite projection: $\top \land \bot \equiv \bot$ right infinite projection: $\bot \land \top \equiv \bot$ $S = \{\frac{y-1}{3}, \frac{7+y}{2}\}$

$$\exists y. \bigvee_{s,t \in S} \frac{s+t}{2} < \frac{y-1}{3} \land \frac{s+t}{2} > \frac{7+y}{2} \equiv \exists y. \frac{y-1}{3} + \frac{7+y}{2} < \frac{y-1}{3} \land \frac{y-1}{3} + \frac{7+y}{2} > \frac{7+y}{2} \\ \equiv \exists y. \frac{y-1}{3} > \frac{7+y}{2} \equiv \exists y. y < -23$$

• another quantifier elimination for y yields equivalent formula \top via left infinite projection

• extract solution
$$y := -24$$
 and $x := \frac{\frac{y-1}{3} + \frac{7+y}{2}}{2} = -\frac{101}{12}$

universität SS 2024 Constraint Solving lecture 12 2. Ferrante and Rackoff's Method
 Innsbruck

10/22

Outline

- **1.** Quantifier Elimination
- 2. Ferrante and Rackoff's Method

3. Cooper's Method

Soundness Optimizations

4. Further Reading

Definition (Augmented Linear Integer Arithmetic)

syntax:

 $\varphi ::= P \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists x. \varphi \mid \forall x. \varphi$ $P ::= t = t \mid t < t \mid \mathbf{1} \mid t \mid \mathbf{2} \mid t \mid \mathbf{3} \mid t \mid \cdots$ $t ::= t + t \mid t - t \mid x \mid \cdots \mid -2 \mid -1 \mid \mathbf{0} \mid \mathbf{1} \mid \mathbf{2} \mid \cdots$

• semantics: \mathbb{Z} with standard interpretations

Remarks

• multiplication with constants is definable:

2x stands for x + x-3x stands for 0 - x - x - x

• quantifier elimination is possible

$$\exists x. 2x = y \iff 2 \mid y$$

Cooper's Method

input: QLIA formula $\exists x. \varphi(x)$ with φ quantifier-free output: equivalent quantifier-free formula

- **1** $\varphi_1(x)$ is NNF of $\varphi(x)$
- **2** $\varphi_2(x)$ is result of replacing literals in $\varphi_1(x)$ as follows:

$$s = t \implies s < t + 1 \land t < s + 1$$

$$\neg (s = t) \implies s < t \lor t < s$$

$$\neg (s < t) \implies t < s + 1$$

3 $\varphi_3(x)$ is result of collecting terms containing x such that literals have form

$$ax < t$$
 $t < ax$ $c \mid ax + t$ $\neg (c \mid ax + t)$

with a > 0

universität SS 2024 Constraint Solving lecture 12 3. Cooper's Method innsbruck 13/22

Example

• $\exists x. \varphi = \exists x. - 3x + 2y - 1 < y \land 2x - 6 < z \land 4 | 5x + 1 = \exists x. \varphi_1 = \exists x. \varphi_2$ • $\exists x. \varphi_3 = \exists x. y - 1 < 3x \land 2x < z + 6 \land 4 | 5x + 1$ • $\delta' = \operatorname{lcm} \{3, 2, 5\} = 30$ $\exists x. 10y - 10 < 30x \land 30x < 15z + 90 \land 24 | 30x + 6$ • $\exists x'. \varphi_4 = \exists x'. 10y - 10 < x' \land x' < 15z + 90 \land 24 | x' + 6 \land 30 | x'$ • left infinite projection: $\varphi_{-\infty} = \bot \land \top \land 24 | x' + 6 \land 30 | x' \equiv \bot$ $\delta = \operatorname{lcm} \{24, 30\} = 120$ $B = \{10y - 10\}$ $\varphi_5 = \bigvee_{j=1}^{120} \begin{bmatrix} 10y - 10 < 10y - 10 + j \land 10y - 10 + j < 15z + 90 \\ \land 24 | 10y - 10 + j + 6 \land 30 | 10y - 10 + j \end{bmatrix}$ $\equiv \bigvee_{j=1}^{120} \begin{bmatrix} 0 < j \land 10y + j < 15z + 100 \\ \land 24 | 10y + j - 4 \land 30 | 10y + j - 10 \end{bmatrix}$

universität SS 2024 Constraint Solving lecture 12 3. Cooper's Method innsbruck

Cooper's Method (cont'd)

multiply atoms in $\varphi_3(x)$ by constants such that δ' is coefficient of every x

replace every occurrence of $\delta' x$ by fresh variable x'

add conjunct $\delta' \mid x'$ to obtain $\varphi_4(x')$

5 four types of literals in $\varphi_4(x')$:

(A) x' < t (B) t < x' (C) a | x' + t (D) $\neg (a | x' + t)$

left infinite projection $\varphi_{-\infty}(x')$ is obtained from $\varphi_4(x')$ by replacing all (A) literals with \top and all (B) literals with \bot (and subsequent simplification)

 $\delta = \operatorname{lcm} \{ a \mid a \text{ is constant of division predicate in } \varphi_4(x') \}$

B is set of terms *t* in (B) literals

$$\varphi_5 = \bigvee_{j=1}^{\delta} \varphi_{-\infty}(j) \lor \bigvee_{j=1}^{\delta} \bigvee_{t \in B} \varphi_4(t+j)$$

Outline

- **1. Quantifier Elimination**
- 2. Ferrante and Rackoff's Method
- 3. Cooper's Method

Soundness Optimizations

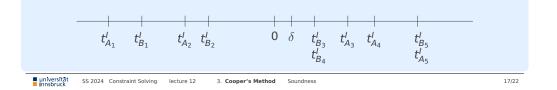
4. Further Reading

Elimination of Quantifier in Cooper's Method: From $\exists x. arphi_4(x)$ to $arphi_5$

- literals in NNF $\varphi_4(x)$: (A) x < t (B) t < x (C) $a \mid x + t$ (D) $\neg (a \mid x + t)$
- $\varphi_{-\infty}(x)$ is $\varphi_4(x)$ where (A) literals are replaced by op and (B) literals by op
- $\delta = \{a \mid a \text{ is constant of division predicate in } \varphi_4(x)\}$
- *B* is set of terms *t* in (B) literals
- $\varphi_5 = \bigvee_{j=1}^{\delta} \varphi_{-\infty}(j) \vee \bigvee_{j=1}^{\delta} \bigvee_{t \in B} \varphi_4(t+j)$

Soundness Proof: $\exists x. arphi_4(x)$ and $arphi_5$ are Equivalent

- \Leftarrow : if $\models_I \varphi_5$ then $\models_I \exists x.\varphi_4(x)$ for arbitrary environment *I*
- \implies : if $\models_I \exists x.\varphi_4(x)$ then $\models_I \varphi_5$ for arbitrary environment *I*



Outline

- **1. Quantifier Elimination**
- 2. Ferrante and Rackoff's Method

3. Cooper's Method

Soundness Optimizations

4. Further Reading

universität SS 2024 Constraint Solving lecture 12 3. Cooper's Method Optimizations
 Innsbruck

5 four types of literals in $\varphi_4(x')$:

(A) x' < t (B) t < x' (C) a | x' + t (D) $\neg (a | x' + t)$

right infinite projection $\varphi_{+\infty}(x')$ is obtained from $\varphi_4(x')$ by replacing all (A) literals with \perp and all (B) literals with \top

 $\delta = \operatorname{lcm} \{ a \mid a \text{ is constant of division predicate in } \varphi_4(x') \}$

A is set of terms t in (A) literals

$$\varphi'_5 = \bigvee_{j=1}^{\delta} \varphi_{+\infty}(-j) \lor \bigvee_{j=1}^{\delta} \bigvee_{t \in A} \varphi_4(t-j)$$

Left or Right Infinite Projection?

use right infinite projection if |A| < |B| to reduce number of disjuncts

universitat SS 2024 Constraint Solving lecture 12 3. Cooper's Method Optimizations

Eliminating Block of Quantifiers

$$\exists x_1 \dots x_n. \varphi(x_1, \dots, x_n)$$

$$\equiv \exists x_1 \dots x_{n-1}. \bigvee_{j=1}^{\delta} \varphi_{-\infty}(x_1, \dots, x_{n-1}, j) \lor \bigvee_{j=1}^{\delta} \bigvee_{t \in B} \varphi_4(x_1, \dots, x_{n-1}, t+j)$$

$$\equiv \bigvee_{j=1}^{\delta} \exists x_1 \dots x_{n-1}. \varphi_{-\infty}(x_1, \dots, x_{n-1}, j)$$

$$\lor \bigvee_{j=1}^{\delta} \bigvee_{t \in B} \exists x_1 \dots x_{n-1}. \varphi_4(x_1, \dots, x_{n-1}, t+j)$$

treat *j* as free variable and examine only 1 + |B| formulas:

- $\exists x_1 \dots x_{n-1} . \varphi_{-\infty}(x_1, \dots, x_{n-1}, j)$ • $\exists x_1 \dots x_{n-1} . \varphi_4(x_1, \dots, x_{n-1}, t+j)$ for each $t \in B$
- $\exists x_1 \dots x_{n-1} \varphi_4(x_1, \dots, x_{n-1}, t+j) \text{ for each } t \in B$

18/22

Outline

- **1.** Quantifier Elimination
- 2. Ferrante and Rackoff's Method
- 3. Cooper's Method
- 4. Further Reading

Bradley and Manna

Sections 7.2 and 7.3

Further Reading

- Jeanne Ferrante and Charles Rackoff
 A Decision Procedure for the First Order Theory of Real Addition with Order
 SIAM Journal on Computing 4(1), pp. 69–76, 1975
- David C. Cooper
- Theorem Proving in Arithmetic without Multiplication
- Chapter 5 in Machine Intelligence 7, Edinburgh University Press, pp. 91–100, 1972

Important Concepts

- augmented linear integer arithmetic
- Cooper's method
- divisibility constraint
- Ferrante and Rackoff's method

• left infinite projection

• quantifier elimination

• right infinite projection

universität SS 2024 Constraint Solving lecture 12 4. Further Reading innsbruck 22/22

universität SS 2024 Constraint Solving lecture 12 4. Further Reading

21/22