innsbruck

Constraint Solving

René Thiemann and Fabian Mitterwallner

based on a previous course by Aart Middeldorp

Outline

1. Checking Array Bounds

2. Array Logic
3. Array Properties
4. Summary and Further Reading
5. Checking Array Bounds
6. Array Logic
7. Array Properties
8. Summary and Further Reading

Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds?
(this section)
(2) does the array store the intended values?
(upcoming sections)

Moving Array Elements

```
int a[N]; // an array with entries a[0], ..., a[N-1]
int i = 0;
while (i < N) { a[i] = a[i+1]; i = i+1; }
- problems
    (1) i<N->0<i<N^0<i+1<N
    (2) \foralli.0<i<N->\mp@subsup{a}{}{\prime}[i-1]=a[i]
    (LIA formula)
    (array formula)
```


Consequence

Checking array bounds does not need special logic about arrays; integer arithmetic suffices

Example (Checking Array-Bounds)

int $a[N] ; \quad / /$ an array with entries a[0], ..., a[N-1]
int i $=0$;
while $(i<N)\{a[i]=a[i+1] ; i=i+1 ;\}$

- problem: formula $i<N \rightarrow 0 \leq i<N \wedge 0 \leq i+1<N$ is not valid
- first problem: spurious counter-example ($i=-3, N=7$) \Longrightarrow add loop invariant
- adding invariant (such as $i \geq 0$) is crucial for proving lower bounds in this example
- invariant can be used as additional assumption, i.e., formula above becomes
$i<n \wedge i \geq 0 \rightarrow 0 \leq i<N \wedge 0 \leq i+1<N$
- loop invariant itself has to be proven
- when entering the loop: $i=0 \rightarrow i>0$
- after each loop iteration: $i<N \wedge i \geq 0 \rightarrow i^{\prime}=i+1 \rightarrow i^{\prime} \geq 0$
- second problem: even with loop invariant, formula is not valid
- violating assignment shows real bug in program, e.g., $\mathrm{N}=5$, i $=4$
- correct while ($\mathrm{i}<\mathrm{N}$) to while ($\mathrm{i}+1<\mathrm{N}$) in program

Outline

1. Checking Array Bounds

2. Array Logic

3. Array Properties
4. Summary and Further Reading

Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds? (2) does the array store the intended values? arrays, in particular basic operations on arrays

Array Logic

- array logic is parametrised by
- index theory with index type T_{1}
(here: always \mathbb{Z})
- element theory with element type T_{E} : content of arrays
(here: $\mathbb{Z}, \mathbb{B}, \ldots$)
- array type T_{A} is just the type $T_{I} \rightarrow T_{E}$, i.e., maps from index type to element type
- new primitives in logic (in addition to what is available in index theory and element theory)
- array write (array update): $a\{i:=e\} \quad$ modified array a where e is written at index i
- array read (array index): a[i]
read array a at index i
- array equality: $a=a^{\prime}$
compare two arrays

Example (Setting up Verification Conditions)

- program for initializing an array with "true" (T in mathematical notation)

$$
\begin{aligned}
& \text { bool a[N]; } \\
& \text { int } i=0 ; \\
& \text { while }(i<N)\{a[i]=\text { true ; } i=i+1 ;\}
\end{aligned}
$$

- verification via invariant in this example requires array logic ($T_{I}=\mathbb{Z}, T_{E}=\mathbb{B}$)

$$
\underbrace{(\forall x \in \mathbb{Z} .0 \leq x<i \rightarrow a[x])}_{\text {precondition = invariant }} \wedge \underbrace{a^{\prime}=a\{i:=\top\} \wedge i^{\prime}=i+1}_{\text {loop iteration }} \rightarrow \underbrace{\left(\forall x \in \mathbb{Z} .0 \leq x<i^{\prime} \rightarrow a^{\prime}[x]\right)}_{\text {postcondition }=\text { invariant for '-variables }}
$$

Observations

- reasoning about array logic formulas requires theories about indices and elements
- index theory usually requires quantifiers (each/some array element satisfies property)
- suitable choice: Presburger arithmetic (linear arithmetic over \mathbb{Z} with quantifiers)

Semantics of Array Logic (meaning of array-index, -update, -equality)

- array congruence: if arrays are equal and indices are equal, then identical elements are obtained when reading from an array

$$
\begin{equation*}
\forall a, b \in T_{A}, i, j \in T_{1} . a=b \rightarrow i=j \rightarrow a[i]=b[j] \tag{1}
\end{equation*}
$$

- array-updates: read-over-write axiom

$$
\forall a \in T_{A}, e \in T_{E}, i, j \in T_{1} . a\{i:=e\}[j]= \begin{cases}e, & \text { if } i=j \tag{2}\\ a[j], & \text { otherwise }\end{cases}
$$

- optional extensionality rule: two arrays are equal if they store the same elements

$$
\begin{equation*}
\forall a, b \in T_{A} \cdot\left(\forall i \in T_{I} \cdot a[i]=b[i]\right) \rightarrow a=b \tag{3}
\end{equation*}
$$

$\begin{array}{llll}\text { \# univesisitit } & \text { SS } 2024 \text { Constraint Solving } & \text { lecture } 13 & \text { 2. Array Logic }\end{array}$

9/27

Example (Eliminating Array Terms)

- consider array logic formula with element type being characters

$$
i=j \rightarrow a[j]={ }^{\prime} c^{\prime} \rightarrow a[i]=' c^{\prime}
$$

- elimination results in formula

$$
i=j \rightarrow A(j)=' c^{\prime} \rightarrow A(i)={ }^{\prime} c^{\prime}
$$

- validity of formula can be shown by decision procedure for equality and uninterpreted functions (EUF)

Eliminating the Array Terms

- aim: translate formula in array logic to formula over
- index theory,
- element theory, and
- uninterpreted functions
in order to use decision procedure for this combination for array logic formulas
- main idea
- arrays behave like uninterpreted functions: according to (1), reading an array at the same index yields same elements; function invocations on same inputs return same result
- translation
- for each array a introduce corresponding unary uninterpreted function A
- array read access a[i] is translated to function application $A(i)$
$\begin{array}{llll}\text { - } \\ \text { universititat } & \text { SS 2024 } & \text { Constraint Solving } & \text { lecture } 13 \\ \text { 2. Array Logic } & 1027\end{array}$

Eliminating the Array Terms - Array Updates

- aim: translate $a\{i:=e\}$ via write rule:
- replace an occurrence of $a\{i:=e\}$ by a fresh array variable b
- add two constraints that describe relationship between a and b by using (2)
- $b[i]=e$
- $\forall j . j \neq i \rightarrow b[j]=a[j]$
- write rule is an equivalence preserving transformation

Example (requiring first constraint)

- formula a $\{i:=e\}[i]+2 \geq e$ is translated into

$$
b[i]=e \wedge(\forall j . j \neq i \rightarrow b[j]=a[j]) \rightarrow b[i]+2 \geq e
$$

whose validity is easily proven:
apply equality $b[i]=e$ and prove resulting LIA constraint $e+2 \geq e$

Eliminating the Array Terms - Array Updates, continued

- translate $a\{i:=e\}$ via write rule:
- replace an occurrence of $a\{i:=e\}$ by a fresh array variable b
- add two constraints that describe relationship between a and b by using (2)
- $b[i]=e$
- $\forall j . j \neq i \rightarrow b[j]=a[j]$

Example (requiring second constraint)

- formula $a[0]=5 \rightarrow a\{7:=x+1\}[0]=5$ is translated into

$$
b[7]=x+1 \wedge(\forall j . j \neq 7 \rightarrow b[j]=a[j]) \wedge a[0]=5 \rightarrow b[0]=5
$$

whose validity can easily be proven in EUF + LIA after its translation

$$
B(7)=x+1 \wedge(\forall j . j \neq 7 \rightarrow B(j)=A(j)) \wedge A(0)=5 \rightarrow B(0)=5
$$

$\begin{array}{llll}\text { \# univessitit } & \text { SS } 2024 \text { Constraint Solving lecture } 13 & \text { 2. Array Logic }\end{array}$

Outline

1. Checking Array Bounds
2. Array Logic

3. Array Properties

4. Summary and Further Reading

Elimination of Array Terms - A Problem

- array terms can easily be eliminated; resulting formulas are combination of
- index theory + quantification
- element theory
- uninterpreted functions
- problem: even if
- index theory + quantification
- element theory
is decidable, the combination with uninterpreted functions is not necessarily decidable
- example
- choose index theory = element theory = Presburger arithmetic
- when adding uninterpreted functions, this becomes undecidable
- potential solution: do not allow all array logic formulas, but a decidable fragment

E univeritatt	SS 2024	Constraint Solving	lecture 13	2. Array Logic

Array Properties

restricted class of array logic formulas; decidable fragment

- formula is array property if it is of the form

$$
\forall i_{1}, \ldots, i_{k} \in T_{l} . \varphi_{l}\left(i_{1}, \ldots, i_{k}\right) \rightarrow \varphi_{V}\left(i_{1}, \ldots, i_{k}\right)
$$

where

- φ_{l} is called index guard, φ_{V} is value constraint, both are quantifier-free
- index guard is formula consisting of Boolean disjunction, conjunction, and comparison of iterms via \leq or $=$
- iterm is either i_{1}, \ldots, i_{k} or a linear integer expression e with vars(e) disjoint from i_{1}, \ldots, i_{k}
- i_{i}, \ldots, i_{k} may only be used in array read accesses of form a[$\left.i_{j}\right]$ within value constraint
- fragment restricts formulas to Boolean combination of array properties
- free variables are implicitly existentially quantified

Example

Consider negated (simplified) verification condition from before; aim: show unsatisfiability

$$
\underbrace{(\forall x \in \mathbb{Z} . x<i \rightarrow a[x])}_{\text {precondition }} \wedge \underbrace{a^{\prime}=a\{i:=\top\}}_{\text {loop iteration }} \wedge \underbrace{\neg\left(\forall x \in \mathbb{Z} . x<i+1 \rightarrow a^{\prime}[x]\right)}_{\text {negated postcondition }}
$$

- loop iteration is already array property
- precondition and postcondition are nearly array properties, just need to eliminate $<$
resulting formula within fragment

$$
(\forall x \in \mathbb{Z} . x \leq i-1 \rightarrow a[x]) \wedge a^{\prime}=a\{i:=\top\} \wedge \neg\left(\forall x \in \mathbb{Z} . x \leq i \rightarrow a^{\prime}[x]\right)
$$

- note that replacing $x<i$ by $x+1 \leq i$ does not work, since $x+1$ is no iterm; reason: x is universally quantified

-universitat 552024 Constraint Solving lecture 13 3. Array Properties

Example Reduction Algorithm

- input:

$$
(\forall x . x \leq i-1 \rightarrow a[x]) \wedge a^{\prime}=a\{i:=\top\} \wedge \neg\left(\forall x . x \leq i \rightarrow a^{\prime}[x]\right)
$$

- conversion to NNF:
(push negations inside quantifiers)

$$
(\forall x . x \leq i-1 \rightarrow a[x]) \wedge a^{\prime}=a\{i:=\top\} \wedge\left(\exists x . x \leq i \wedge \neg a^{\prime}[x]\right)
$$

- apply write rule: (eliminate $a^{\prime}=a\{i:=T\}$, use $a^{\prime}[i]$ instead of official $a^{\prime}[i]=T$)

$$
(\forall x . x \leq i-1 \rightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \neq i \rightarrow a^{\prime}[j]=a[j]\right) \wedge\left(\exists x . x \leq i \wedge \neg a^{\prime}[x]\right)
$$

- convert constraint to array property:

$$
(\forall x . x \leq i-1 \rightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \leq i-1 \vee i+1 \leq j \rightarrow a^{\prime}[j]=a[j]\right) \wedge\left(\exists x . x \leq i \wedge \neg a^{\prime}[x]\right)
$$

- remove existential quantifier:
(eliminate $\exists x$ by fresh z)

$$
(\forall x . x \leq i-1 \rightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \leq i-1 \vee i+1 \leq j \rightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

Reduction Algorithm for $T_{I}=$ LIA

- translates formula in array logic fragment into equisatisfiable quantifier-free formula over index theory and element theory combined with EUF

- algorithm

1 convert Boolean formula over array properties to negation normal form (NNF): further convert $\neg \forall$ into $\exists \neg$
2 replace all array updates via write rule and transform constraints into array properties
3 remove each existential quantifier by introducing a fresh variable; result is formula φ
(4) replace each universal quantification $\forall i \in T_{i} . P(i)$ within formula φ by finite conjunction $\bigwedge i \in \mathcal{I}(\varphi) . P(i)$ where $\mathcal{I}(\varphi)$ is set of index terms that i might possibly equal to

- if $a[e]$ is an array read access in φ and e is not a quantified variable, then add e to $\mathcal{I}(\varphi)$
- if e is an iterm in the index guard of φ and e is not a quantified variable, then add e to $\mathcal{I}(\varphi)$
- if the previous two rules are not applicable, then define $\mathcal{I}(\varphi)=\{0\}$ to have a non-empty set
(5) replace array read access operations by uninterpreted functions
$\begin{array}{lllll}\text { B iniveritita } \\ \text { innsbrukk } & \text { SS } 2024 & \text { Constraint Solving } & \text { lecture } 13 & \text { 3. Array Properties }\end{array}$

Example Reduction Algorithm, continued

- input:

$$
(\forall x . x \leq i-1 \rightarrow a[x]) \wedge a^{\prime}=a\{i:=\top\} \wedge \neg\left(\forall x . x \leq i \rightarrow a^{\prime}[x]\right)
$$

- result of step 3 is formula φ

$$
(\forall x . x \leq i-1 \rightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \leq i-1 \vee i+1 \leq j \rightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

construct $\mathcal{I}(\varphi)=\{i, z, i-1, i+1\}$

- add i because of $a^{\prime}[i]$
- add z because of $a^{\prime}[z]$
- add $i-1$ because of $x \leq i-1$ and $j \leq i-1$
- add $i+1$ because of $i+1 \leq j$
- replace universal quantifier:

$$
\left(\bigwedge_{x \in \mathcal{I}(\varphi)} x \leq i-1 \rightarrow a[x]\right) \wedge a^{\prime}[i] \wedge\left(\bigwedge_{i \in \mathcal{I}(\varphi)} j \leq i-1 \vee i+1 \leq j \rightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

Example Reduction Algorithm, completed

- input:

$$
(\forall x . x \leq i-1 \rightarrow a[x]) \wedge a^{\prime}=a\{i:=\top\} \wedge \neg\left(\forall x . x \leq i \rightarrow a^{\prime}[x]\right)
$$

- formula after quantifier elimination, where $\mathcal{I}(\varphi)=\{i, z, i-1, i+1\}$:

$$
\left(\bigwedge_{x \in \mathcal{I}(\varphi)} x \leq i-1 \rightarrow a[x]\right) \wedge a^{\prime}[i] \wedge\left(\bigwedge_{j \in \mathcal{I}(\varphi)} j \leq i-1 \vee i+1 \leq j \rightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

- final formula: replace array read access by uninterpreted functions

$$
\left(\bigwedge_{x \in \mathcal{I}(\varphi)} x \leq i-1 \rightarrow A(x)\right) \wedge A^{\prime}(i) \wedge\left(\bigwedge_{j \in \mathcal{I}(\varphi)} j \leq i-1 \vee i+1 \leq j \rightarrow A^{\prime}(j)=A(j)\right) \wedge z \leq i \wedge \neg A^{\prime}(z)
$$

- unsatisfiability now decidable: consider cases $z \leq i-1 \vee z=i \vee z \geq i+1$ via LIA reasoning
- case $z=i$: show unsatisfiability using $A^{\prime}(i)$ and $\neg A^{\prime}(z)$ via EUF
- case $z \leq i-1$: since $z \in \mathcal{I}(\varphi)$, obtain $A(z), A^{\prime}(z)=A(z)$, and $\neg A^{\prime}(z)$ and use EUF
- case $z \geq i+1$: show unsatisfiability in combination with $z \leq i$ via LIA

E universitat
innsbruck SS 2024 Constraint Solving lecture $13 \quad$ 3. Array Properties
21/27

A Problem and its Solution

- in the reduction algorithm, the universal part of the write rule

$$
\forall j . j \leq i-1 \vee i+1 \leq j \rightarrow a^{\prime}[j]=a[j]
$$

is turned into a finite conjunction

$$
\bigwedge_{j \in \mathcal{I}(\varphi)} j \leq i-1 \vee i+1 \leq j \rightarrow a^{\prime}[j]=a[j]
$$

- problem: this formula often gets (too) large
- observation: implications are often only required for a few index terms within $\mathcal{I}(\varphi)$ (in previous example, only the index term z was required to prove unsatisfiability)
- solution: use a lazy encoding procedure, that generates instances only on demand, and can be combined with DPLL(T)
- details: see literature, in particular Section 7.4 of Decision Procedures book

Theorem (Correctness of Reduction Algorithm)

The input formula and the result of the reduction algorithm are equisatisfiable.

Corollary

If satisfiability of quantifier-free $T_{E U F} \cup T_{\text {LIA }} \cup T_{E}$ formulas is decidable, then so is satisfiability of the fragment of array logic for T_{E}.

Outline

1. Checking Array Bounds
2. Array Logic
3. Array Properties
4. Summary and Further Reading

Summary

- checking array bounds is easily encoded via LIA, does not require extension of logic
- array logic provides primitives for array read- and write-accesses
- arrays are easily modeled as uninterpreted functions
- array logic is often undecidable, even for decidable index- and element-theories such as Presburger arithmetic
- array properties define a fragment of array logic; the fragment can be translated to quantifier-free formulas by adding EUF
- optimization: lazy encoding creates instances of the write rule on demand

univeritita	SS 2024	Constraint Solving	lecture 13	4. Summary and Further Reading

Important Concepts

- array logic
- array property
- checking array bounds via LIA
- invariants
- reduction algorithm
- spurious counterexample
- write rule

Kröning and Strichmann

- Sections 7.1-7.3
- warning: mistake in example at end of Section 7.3 (over-simplification)
- problem: < not eliminated
- result of mistake: smaller set of index terms $\mathcal{I}(\varphi)=\{i, z\}$, but correct set is $\{i, i-1, z\}$
- incorrect set does not cause problems in example, but in general elimination of $<$ is essential

Further Reading

E Aaron R. Bradley, Zohar Manna, Henny B. Sipma What's Decidable About Arrays?
Proc. VMCAI 2006, volume 3855 of LNCS, pages 427--442, 2006

[^0]
[^0]: He universitat
 Unnsfruck SS 2024 Constraint Solving lecture 13 4. Summary and Further Reading $26 / 27$

