M universitat

Outline
M innsbruck SS2024 lecture 13

1. Checking Array Bounds
2. Array Logic

3. Array Properties

4. Summary and Further Reading

Constraint Solving

René Thiemann and Fabian Mitterwallner

based on a previous course by Aart Middeldorp

W universitat
B innsbruck S5 2024 Constraint Solving lecture 13 2/27

. Arrays
Outline ® when reasoning on arrays, there are two problems

@ are the array accesses within bounds? (this section)
@ does the array store the intended values? (upcoming sections)

1. Checking Array Bounds Moving Array Elements

int a[N]; // an array with entries al[0], ..., a[N-1]
int i = 0;
while (i < N) { ali] = al[i+1]; i = i+1; }

® problems
Oi<N—-0<i<NAO<Ii+1<N (LIA formula)
O Vi0<i<N-—al[i—1]=ali (array formula)

where a refers to original array, and a’ to array after execution

Consequence
Checking array bounds does not need special logic about arrays; integer arithmetic suffices

= :’n"ri‘;g{actﬁ‘ $52024 Constraint Solving lecture 13 1. Checking Array Bounds 3127 = :‘n"ri‘s’gf‘i(tgt $52024 Constraint Solving lecture 13 1. Checking Array Bounds 427

http://cl-informatik.uibk.ac.at/teaching/ss24/cs
http://cl-informatik.uibk.ac.at/~thiemann
http://cl-informatik.uibk.ac.at/members/fmitterwallner/

Example (Checking Array-Bounds) Outline

int al[N]; // an array with entries a[0], ..., a[N-1]
int i = 0;
while (i < N) { alil] = al[i+1]; i = i+1; }

® problem: formulai<N —-0<i<NAO<i+ 1< N is not valid
e first problem: spurious counter-example (i = -3, N = 7) =— add loop invariant
® adding invariant (such as i > 0) is crucial for proving lower bounds in this example
® invariant can be used as additional assumption, i.e., formula above becomes
i<nANi>0—=-0<i<NAO<i+1<N
® |loop invariant itself has to be proven
® when entering the loop: i =0 —i >0
® after each loop iteration: i < NAi>0—=i"=i+1—i>0
® second problem: even with loop invariant, formula is not valid
® violating assignment shows real bug in program, e.g., N = 5, i = 4
® correct while (i < N) to while (i + 1 < N) in program

2. Array Logic

L] umvgﬁ“(tél S52024 Constraint Solving lecture 13 1. Checking Array Bounds 5127 B universitat SS2024 Constraint Solving

inns| innsbruck lecture 13 2. Array Logic 6/27

Arrays

Example (Setting up Verification Conditions)

® when reasoning on arrays, there are two problems AT
9 y P ® program for initializing an array with “true” (T in mathematical notation)
@ are the array accesses within bounds? (previous section, now assumed)

© does the array store the intended values? (this section) bool al[N];
int i = 0;

® for the second problem, we actually need a logic that permits us to describe properties of vhile (i < N) { a[i] = true ; i = i+1; }

arrays, in particular basic operations on arrays

® verification via invariant in this example requires array logic (T; = Z, Te = B)
Array Logic

® array logic is parametrised by (VX EZO<x<i— a[x]) ANa = a{l = T} ANi = i+1— (VX eZ.0<x< [a’[x])
¢ index theory with index type T; (here: always Z) precondition = invariant loop iteration postcondition = invariant for ’-variables
® element theory with element type Tg: content of arrays (here: Z, B, ...)

® array type T, is just the type T; — Tg, i.e., maps from index type to element type
Observations

® new primitives in logic (in addition to what is available in index theory and element theory)
® reasoning about array logic formulas requires theories about indices and elements

® array write (array update): a{i := e} modified array a where e is written at index i)) . o
* array read (array index): ai] read array a at index i ® index theory usually requires quantifiers (each/some array element satisfies property)
e array equality: a = a’ compare two arrays ® suitable choice: Presburger arithmetic (linear arithmetic over Z with quantifiers)

B universitdt 552024 Constraint Solving lecture 13 2. Array Logic 7127 B universitt 552024 Constraint Solving lecture 13

innsbru 2. Array Logic 8727

Semantics of Array Logic (meaning of array-index, -update, -equality)

Eliminating the Array Terms
® array congruence: if arrays are equal and indices are equal, then identical elements are

obtained when reading from an array ® aim: translate formula in array logic to formula over

® index theory,
® element theory, and

) . ® uninterpreted functions
® array-updates: read-over-write axiom

Va,b € Ta,i,j€Ti.a=b—i=j— ali] = b|j] (1)

in order to use decision procedure for this combination for array logic formulas
e, |Iifi=j 2) ® main idea

Va € Ta,e € Tg,i,j €Ty a{i :=e}[j] = . .
A ehi€ T af s {am, otherwise

® arrays behave like uninterpreted functions: according to (1), reading an array at the same

)))) index yields same elements; function invocations on same inputs return same result
® optional extensionality rule: two arrays are equal if they store the same elements e translation
, ; - ® fi h int i int ted function A
Va,b € Ta. (Vl €T, a[l] _ b[l]) —a= (3) or each array a introduce corresponding unary uninterpreted function

® array read access a[i] is translated to function application A(/)

B universitat .
innsbruck SS 2024 Constraint Solving lecture 13 2. Array Logic

W universitat i
9/27 innsbruck SS2024 Constraint Solving lecture 13 2. Array Logic 10/27

Eliminating the Array Terms - Array Updates

Example (Eliminating Array Terms) ® aim: translate a{i := e} via write rule:

. . : : ® replace an occurrence of a{i := e} by a fresh array variable b
- N iR oS el) (71 QI 722 MEe] EETEEEs ® add two constraints that describe relationship between a and b by using (2)
i=j—al]="c—al]l="¢c * blj=e

* Vj.j#i— blj] = alj
® elimination results in formula ® write rule is an equivalence preserving transformation
i=j—=A(j)="c —A(i)="c
Example (requiring first constraint)
¢ validity of formula can be shown by decision procedure for equality and uninterpreted e formula a{i := e}[i] +2 > e is translated into
functions (EUF)
blil=eAn(Vj.j#i—b[jl=al]) = bll+2>e

whose validity is easily proven:
apply equality b[i] = e and prove resulting LIA constrainte +2 > e

L] fn"r{gggaggl SS2024 Constraint Solving lecture 13 2. Array Logic 11727 L] :Jn"rj‘s'g{f“[tgl $S2024 Constraint Solving lecture 13 2. Array Logic 12/27

Eliminating the Array Terms - Array Updates, continued

e translate a{i := e} via write rule:

® replace an occurrence of a{i := e} by a fresh array variable b

® add two constraints that describe relationship between a and b by using (2)
® plil=e
® Vj.j#i— blj] =al

Example (requiring second constraint)
e formula a[0] =5 — a{7 := x + 1} [0] = 5 is translated into
b[7] =x+1A(V.j# 7 — b[j] =alj]) Aal0] =5 — b[0] =5
whose validity can easily be proven in EUF + LIA after its translation

B(7)=x+1A(V.j#7— B(j)=A(j)) NA(0) =5 — B(0) =5

W universitat i
innsbruck SS 2024 Constraint Solving lecture 13 2. Array Logic 13/27

Outline

3. Array Properties

W universitat _
innsbruck S$52024 Constraint Solving lecture 13 3. Array Properties 15127

Elimination of Array Terms - A Problem

® array terms can easily be eliminated; resulting formulas are combination of

® index theory + quantification
® element theory
® uninterpreted functions

® problem: even if

® index theory + quantification
® element theory

is decidable, the combination with uninterpreted functions is not necessarily decidable
® example

® choose index theory = element theory = Presburger arithmetic (decidable)

® when adding uninterpreted functions, this becomes undecidable

® potential solution: do not allow all array logic formulas, but a decidable fragment

W universitat i
innsbruck SS2024 Constraint Solving lecture 13 2. Array Logic 14/27

Array Properties

® restricted class of array logic formulas; decidable fragment
® formula is array property if it is of the form

Vil,...,ik ET/. (p/(ih...,ik)%¢V(i1,...,ik)

where

® ¢ is called index guard, ¢y is value constraint, both are quantifier-free

® index guard is formula consisting of Boolean disjunction, conjunction, and comparison of
iterms via < or =

® itermis eitheriy,..., ik or a linear integer expression e with vars(e) disjoint from iy, ..., ik

® jj,...,ix may only be used in array read accesses of form a[ij] within value constraint

® fragment restricts formulas to Boolean combination of array properties

® free variables are implicitly existentially quantified

M universitat i
thnsbruck S$52024 Constraint Solving lecture 13 3. Array Properties 16/27

Consider negated (simplified) verification condition from before; aim: show unsatisfiability

(WxeZ.x<i—alx])Aa' =afi:=T}A=(Vxe€Z x<i+1— a[x])

precondition loop iteration

negated postcondition

® |oop iteration is already array property

® precondition and postcondition are nearly array properties, just need to eliminate <
® resulting formula within fragment

(WxeZ.x<i—1—alx])ANa =a{i:=T}A=(Vx€Z.x<i— a'[x])

note that replacing x < i by x + 1 </ does not work, since x + 1 is no iterm;
reason: x is universally quantified

M universitat $52024 Constraint Solving lecture 13 3. Array Properties

B innsbruck 1727

Example Reduction Algorithm

® input:
(Wx.x<i—1—=a[x])rna =afi:=T}A=(Vx. x <i— a'[x])
® conversion to NNF: (push negations inside quantifiers)

(Wx.x<i—1—a[x])Aa =al{i:=T}A@Bx. x <iA-a'[x])

apply write rule: (eliminate @’ = a{i := T}, use a’[i] instead of official a'[/] = T)
(Wx.x<i—1—a[x])Aa'li]A(Vj.j#i— alj]=al]) A 3@x. x <iA—-a'[x])

® convert constraint to array property: (eliminate #)

(Wx.x<i—1—=alx])AalA(V.j<i—1Vi+1<j—aj]=al])A@Ex. x<in-a[x])

® remove existential quantifier: (eliminate Ix by fresh z)

(Wx.x<i—1—=alx])AadlilAV.j<i—1Vi+l<j—=af]=al])rz<in-a[z]

W universitat i
| niversit $52024 Constraint Solving lecture 13 3. Array Properties 19/27

Reduction Algorithm for T, = LIA

® translates formula in array logic fragment into equisatisfiable quantifier-free formula over
index theory and element theory combined with EUF

® algorithm

@ convert Boolean formula over array properties to negation normal form (NNF);
further convert =V into 93—
@ replace all array updates via write rule and transform constraints into array properties
© remove each existential quantifier by introducing a fresh variable; result is formula ¢
@ replace each universal quantification Vi € T;. P(i) within formula ¢ by finite conjunction
Ni € Z(p). P(i) where Z(¢) is set of index terms that i might possibly equal to
* if a[e] is an array read access in ¢ and e is not a quantified variable, then add e to Z(y)
® if e is an iterm in the index guard of ¢ and e is not a quantified variable, then add e to Z()
* if the previous two rules are not applicable, then define Z(¢) = {0} to have a non-empty set

© replace array read access operations by uninterpreted functions

W universitat i
M innsbruck S5 2024 Constraint Solving lecture 13 3. Array Properties 1827

Example Reduction Algorithm, continued

® input:
(Wx.x<i—1—alx])rna =afi:=T}A=(Vx. x <i— a'[x])

® result of step 3 is formula ¢
(Wx.x<i—1—=alx])rna'lA(V.j<i—1Vi+1l<j—a]=al])rz<iA-a[z]

e construct Z(¢) = {i,z,i— 1,i+ 1}

add i because of a’[i]

add z because of a’[Z]

addi— 1becauseof x<i—1landj<i-—1
add i+ 1 becauseof i+ 1 <j

® replace universal quantifier:

(/\ x<i—1=alx])Aa'[i]A(/\jgi—lvi+1gj—>a’U]:a[j])/\z§i/\ﬁa’[z]
x€Z(p) J€Z(p)

B universitat S52024 Constraint Solving lecture 13 3. Array Properties

B innsbruck 2027

Example Reduction Algorithm, completed

® input:
(Wx.x<i—1—alx])Aa =a{i:=T}A~(Vx.x <i—a'[x])

e formula after quantifier elimination, where Z(¢) = {i,z,i — 1,i + 1}:

(N\ x<i—1—=anrain(Ni<i-1vi+i<j—all=all)rz<in-az]
XEZ(p) JEZ(¥)

® final formula: replace array read access by uninterpreted functions

(N\ Xx<i=15ADAANA(NJ<i—1Vit 1< A() =A() Az <in-A(2)
XEL(p) JEZ ()

® unsatisfiability now decidable: consider casesz <i—1Vz =iV z > i+ 1 via LIA reasoning

® case z = i: show unsatisfiability using A’(/) and —A’(z) via EUF
® case z <|—1:since z € Z(y), obtain A(z), A’(z) = A(z), and —=A’(z) and use EUF
® case z > i + 1: show unsatisfiability in combination with z < via LIA

B universitat i i
M innsbruck SS 2024 Constraint Solving lecture 13 3. Array Properties 21727

A Problem and its Solution

® in the reduction algorithm, the universal part of the write rule
Vi.j<i—1Vi+1<j—a'j]=alj
is turned into a finite conjunction
Ni<i—1vi+1<j—a'lj]=alj]
JEL ()

® problem: this formula often gets (too) large

® observation: implications are often only required for a few index terms within Z(y)
(in previous example, only the index term z was required to prove unsatisfiability)

® solution: use a lazy encoding procedure, that generates instances only on demand, and can
be combined with DPLL(T)

® details: see literature, in particular Section 7.4 of Decision Procedures book

W universitat i i
B universita 552024 Constraint Solving lecture 13 3. Array Properties 23/27

Theorem (Correctness of Reduction Algorithm)

The input formula and the result of the reduction algorithm are equisatisfiable.

Corollary

If satisfiability of quantifier-free Tgyr U T1ja U Te formulas is decidable, then so is satisfiability of
the fragment of array logic for Tg.

B universitat i
M innsbruck S5 2024 Constraint Solving lecture 13 3. Array Properties 2227

Outline

4. Summary and Further Reading

M universitat N
B innsbruck SS2024 Constraint Solving lecture 13 4. Summary and Further Reading 24/27

Summary

checking array bounds is easily encoded via LIA, does not require extension of logic
® array logic provides primitives for array read- and write-accesses
® arrays are easily modeled as uninterpreted functions

® array logic is often undecidable, even for decidable index- and element-theories such as
Presburger arithmetic

® array properties define a fragment of array logic;
the fragment can be translated to quantifier-free formulas by adding EUF

® optimization: lazy encoding creates instances of the write rule on demand

] :Jn"n“s/g;a‘(tﬁl $52024 Constraint Solving lecture 13 4. Summary and Further Reading 25727

® array logic

® array property

e checking array bounds via LIA
® invariants

® reduction algorithm

® spurious counterexample

e write rule

u :Jn"n“;g{a‘(tgl $52024 Constraint Solving lecture 13 4. Summary and Further Reading 27727

Kroning and Strichmann

® Sections 7.1-7.3
® warning: mistake in example at end of Section 7.3 (over-simplification)
® problem: < not eliminated
® result of mistake: smaller set of index terms Z(y) = {i,z}, but correct setis {i,i — 1,z}

® incorrect set does not cause problems in example, but in general elimination of < is
essential

Further Reading

@ Aaron R. Bradley, Zohar Manna, Henny B. Sipma
What's Decidable About Arrays?
Proc. VMCAI 2006, volume 3855 of LNCS, pages 427--442, 2006

] :Jn"r:‘s/g;a‘(tﬁl $52024 Constraint Solving lecture 13 4. Summary and Further Reading 26/27

https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/11609773_28

	lecture 13
	Checking Array Bounds
	Array Logic
	Array Properties
	Summary and Further Reading

