Available Projects

René Thiemann

April 25, 2024

Contents

1 Congruence Closure (2-3 persons) 1
1.1 Definition of Algorithm 2
1.2 Completeness of CCA 3
1.3 Soundness of CCA 4
1.4 Correctness of CCA 4
1.5 Termination of CCA, 4

2 Propositional Logic (2 persons) 5
2.1 Syntax and Semanticso oL 5
2.2 Natural Deduction 6
2.3 Soundness 7
2.4 Completeness 7

1 Congruence Closure (2-3 persons)

We consider a set ground equations GE such as

« f(b)=b

« gla)=b
and are interested in the question whether a particular equation is
implied GE. For instance the sequence of equality-steps

« f(h(b)) = f(f(g(a))) = £(f(b)) = f(b)
proves that f(h(b)) = f(b) follows from E.

Whereas it is easy to validate a given sequence of equality-steps, the
problem is to detect whether such a sequence exists for a given equa-
tion. To this end, the congruence closure algorithm has been developed
which should be partially verified in this project.

Basic knowledge of term rewriting is helpful for this project. The
describtion of the algorithm is based on Franz Baader and Tobias
Nipkow, Term Rewriting and All That, Chapter 4.3.

theory Project-Congruence-Closure
imports
Main
begin

1.1 Definition of Algorithm
We start by definining ground terms where the type of symbols are just
strings.

type-synonym symbol = string
datatype trm = Fun symbol trm list
type-synonym egs = (trm x trm)set

Define the set of subterms of a term, e.g., the subterms of f(g(a),b) would
be {f(g(a),b), g(a), a, b}.
fun subt :: trm = trm set where
subt (Fun fts) = undefined
Prove two useful lemmas about subterms.

lemma self-subt: u € subt u sorry

lemma subt-trans: s € subt t = t € subt u = s € subt u sorry

For a set of ground-equalities, the congruence closure algorithm is in partic-
ular interested in all subterms that occur in the equalities.

definition subt-eqs where subt-eqs GE = |J (A (I,r). subt [U subt r) * GE)

From now on fix a specific set of ground-equalities GE.

context
fixes GF :: egs
begin

Define an equality step where one can either replace one side of an equation
in GE by the other side (a root-step), or where one can apply a step in a
context.

inductive-set estep :: trm rel where

root: undefined = undefined € estep
| ctzt: (s,t) € estep = (Fun [(before Q s # after), Fun f (before Q t # after))
€ estep

The other important definition is the Cong-operation which given a set of
equalities derives new equalities of these by reflexivity, symmetry, transitiv-
ity or context.

inductive-set Cong :: eqs = eqs for E where
C-keep: eq € E = eq € Cong E
| C-refl: (t,t) € Cong E
| C-sym: (s,t) € E = (t,5) € Cong E
| C-trans: (s,t) € E = (t,u) € E = (s,u) € Cong E
| C-cong: length ss = length ts => (¥ i < length ts. (ss ! i, ts! i) € E) = (Fun
fss, Fun fts) € Cong E

Let us now fix to terms s and t where we are interested in whether GE
implies s = t.

context
fixes st :: trm
begin

In the congruence closure algorithm one only is interested in equalities of
terms in S.

definition S where S = subt s U subt t U subt-eqs GE

definition CongS where CongS E = Cong E N (S x 5)

CCA defines the equalities that are obtained in the i-th iteration of the
congruence closure algorithm, which iteratively applies the local. CongS op-
eration starting from GE.

definition CCA where CCA i = (CongS ~ i) GE

Prove the following simple inclusions.

lemma GE-S: GE C § x § sorry

lemma GE-CCA: GE C CCA i sorry

1.2 Completeness of CCA

The crucial result of the congruence closure algorithm is given in the fol-
lowing lemma on the completeness of the algorithm: if the algorithm has
stabilized in the i-th iteration, then all equations in local.S x local.S that
can be derived with arbitrary many steps are also contained in the equalities
of CCA.

lemma esteps-imp-CCA: assumes CongS (CCA i) = CCA i
shows (u,v) € estep™ N (S x §) — (u,v) € CCA i
proof

The proof is by induction on the number of steps and then by the size of
the starting term u. This is expressed as follows in Isabelle.

assume (u,v) € estep x N (S x §)

then obtain n where x: u € Sv € S (u,v) € estep” n
by (auto simp: rtrancl-power)

obtain m where m = (n,size u) by auto

with x show (u,v) € CCA i

proof (induction m arbitrary: u v n rule: wf-induct| OF wf-measures|of [fst,snd]]])
case (I muvn)

For handling the induction, we first convert the derivation into a function
which gives us all intermediate terms via function w.
from 1(4)[unfolded relpow-fun-conv] obtain w
where w: w 0 = v wn = v (Vi<n. (wi, w (Suc i)) € estep) by auto
And the proof now proceeds by case-analysis on whether any of these steps
was a root step or whether all steps are non-root.

show ?case sorry
qed
qed

Next, completeness of CCA is easily established

lemma esteps-imp-CCA-st: assumes CongS (CCA i) = CCA i
shows (s,t) € estep ™ — (s,t) € CCA ¢
sorry

1.3 Soundness of CCA

The crucial step to prove soundness is the following lemma, which might
require some further auxiliary lemmas.

lemma Cong-esteps: E C estep x =—> Cong E C estep * sorry

But you can easily verify that ?F C estep® = Cong ?F C estep® is the
key to prove soundness of CCA.

lemma CCA-imp-esteps: CCA i C estep * sorry

1.4 Correctness of CCA

Having soundness and completeness, correctness is simple.

theorem congruence-closure-correct: assumes CongS (CCA i) = CCA i
shows (s,t) € estep ™ < (s, t) € CCA i
sorry

1.5 Termination of CCA

The precondition local.CongS (local. CCA i) = local. CCA i can be dis-
charged proving termination of the congruence closure algorithm which just
computes the least i such that the precondition is satisfied. The existence

of such an i follows from the fact that CCA i is increasing with increasing i
and CCA i is bounded by the finite set of terms S x S, assuming finiteness
of GE.

Formulating and proving these facts in Isabelle is another task of this project,
if it is conducted as a 3-person project.

context

assumes finite GE
begin

lemma finite-S: finite S sorry
lemma CCA-SS: CCA n C S x S sorry
lemma CCA-mono: CCA n C CCA (Suc n) sorry

lemma i-exists: 3 i. CongS (CCA i) = CCA i sorry

definition fizpoint] = (LEAST i. CongS (CCA i) = CCA 1)

lemma fizxpointl: CongS (CCA fixpointl) = CCA fixpointl
sorry

lemma congruence-closure: (s,t) € estep ™ +— (s, t) € CCA fizpoint]
using congruence-closure-correct|OF fizpointl] .

Design an algorithm to compute local.fixpoint] and prove its termination.
The algorithm itself of course must not use local.fixpointl, but the measure
for proving termination might very well depend on this unknown constant.

end
end
end
end

2 Propositional Logic (2 persons)

Soundness and completeness of a logic establish that the syntactic notion of
provability is equivalent to the semantic notation of logical entailment.
In this project you will formally prove soundness and completeness of a
specific set of natural deduction rules for propositional logic.
theory Project-Logic

imports Main
begin

2.1 Syntax and Semantics

Propositional formulas are defined by the following data type (that comes
with some syntactic sugar):

type-synonym id = string
datatype form =
Atom id
| Bot (L)
| Neg form (-, - [68] 68)
| Conj form form (infixr A, 67)
| Disj form form (infixr v, 67)
| Impl form form (infixr —, 66)

Define a function ewval that evaluates the truth value of a formula with
respect to a given truth assignment.

fun eval :: (id = bool) = form = bool
where
eval v p <— undefined

Using ewval, define semantic entailment of a formula from a list of formulas.

definition entails :: form list = form = bool (infix |= 51)
where
T = ¢ «— undefined

2.2 Natural Deduction

The natural deduction rules we consider are captured by the following in-
ductive predicate proves P ¢, with infix syntax P F ¢, that holds whenever
a formula ¢ is provable from a list of premises P.

inductive proves (infix - 58)
where
premise: ¢ € set P = P+ ¢
| conjI: P = PFy = Pk oA, ¢
| conjE1: PF o Ay = PF o
| conjE2: PF o Ay p = P F
| impI: p # P = P (p =, 1)
| impE: PFo = Pt o =,y = PF o
| disjl1: P+ = Pk @V,
| disjI2: P = P+ @V, o
| disfE: PF oV, = # PFx=¢v# PFx= PFx
| negl: o # PH 1L, = PF -, ¢
| negf: P = P+ —p p = P+ 1,
| botE: P+ 1, = Pk ¢
| dnegE: P+ —p—p ¢ = P o

Prove that I is monotone with respect to premises, that is, we can arbitrarily
extend the list of premises in a valid prove.

lemma proves-mono:
assumes P | ¢ and set P C set)
shows @ F ¢
sorry

Prove the following derived natural deduction rules that might be useful
later on:

lemma dnegl:
assumes P F ¢
shows P —,—, ¢
sorry

lemma pbc:
assumes —, ¢ # P+ 1,
shows P F ¢
sorry

lemma lem:
PFoV,
sorry

lemma neg-conj:
assumes x € {y, ¥} and P - -, x
shows P F =, (¢ Ap)
sorry

lemma neg-disj:
assumes P - —, pand P+ -, ¢
shows P F =, (¢ V,)
sorry

lemma trivial-imp:
assumes P - 1
shows P+ ¢ —, ¢
sorry

lemma vacuous-imp:
assumes P - —, ¢
shows P+ ¢ —, ¢
sorry

lemma neg-imp:
assumes P - pand PF —, ¥

shows P F =, (¢ —p ¢)
sorry

2.3 Soundness

Prove soundness of F with respect to |=.

lemma proves-sound:
assumes P F ¢
shows P = ¢
sorry

2.4 Completeness

Prove completeness of - with respect to = in absence of premises.

lemma prove-complete-Nil:
assumes [| = ¢
shows || - ¢
sorry

Now extend the above result to also incorporate premises.

lemma proves-complete:
assumes P | ¢
shows P F ¢
sorry

Conclude that semantic entailment is equivalent to provability.

lemma entails-proves-conuv:
PEyp+«— Pty
sorry

end

	Congruence Closure (2-3 persons)
	Definition of Algorithm
	Completeness of CCA
	Soundness of CCA
	Correctness of CCA
	Termination of CCA

	Propositional Logic (2 persons)
	Syntax and Semantics
	Natural Deduction
	Soundness
	Completeness

