

Interactive Theorem Proving using Isabelle/HOL

Session 2

René Thiemann

Department of Computer Science

Outline

• The Pure Framework

• Structured Proofs

The Pure Framework

The Minimal Logic Isabelle/Pure

Pure = Generic Natural Deduction Framework

Pure Terms

- inference rules
- logical propositions

Deduction

higher-order resolution (that is, resolution using higher-order unification)

The type prop

- Isabelle/Pure contains a type of propositions: prop
- let φ :: prop and ψ :: prop, then
 - $\varphi \Longrightarrow \psi :: \operatorname{prop}$
 - $\bigwedge x. \varphi :: prop$

(meta-)implication (meta-)quantification

• in Isabelle/HOL, every HOL-formula (t :: bool) is also of type prop

Isabelle Symbols

symbolinternalauto completionabbreviation \Rightarrow \langle Longrightarrow> \equiv \bigcirc \bigcirc \land \langle And>!!

Remarks

- \implies is right-associative
- propositions with multiple assumptions are encoded by currying

Natural Deduction via Pure Connectives

- every Pure proposition can be read as natural deduction rule
- proposition $P_1 \Longrightarrow \ldots \Longrightarrow P_n \Longrightarrow C$ corresponds to rule

$$\frac{P_1 \quad \dots \quad P_n}{C}$$

with premises P_1, \ldots, P_n and conclusion *C*

• scope of variables (like eigenvariable condition) enforced by ∧

Demo02.thy

• there is no distinction between inference rules and theorems!

Examples

- $A \implies B \implies A \land B$ (conjunction introduction) • $(A \implies B) \implies A \longrightarrow B$ (implication introduction) in order to prove A ..., D it offices to prove B or deaths converting A
 - in order to prove $A \longrightarrow B$ it suffices to prove B under the assumption A
- (∧ y. P y) ⇒ ∀ x. P x (all introduction)
 in order to prove ∀ x. P x, fix some variable y and prove P y

Schematic Variables

- besides free and bound variables, there are schematic variables (dark blue; these have leading ?)
- schematic variables can be instantiated arbitrarily
- proven inference rules such as $A \implies B \implies A \land B$ in Isabelle are written via schematic variables:

$$?A \implies ?B \implies ?A \land ?B \qquad (thm conjI)$$

- whenever a proof of a statement is finished, all free variables and outermost ∧-variables in that statement are turned into schematic ones;
 example: each of the following two lines result in ?A ⇒ ?B ⇒ ?A ∧ ?B
 - lemma "A \implies B \implies A \land B" $\langle proof \rangle$
 - lemma " \bigwedge A B. A \Longrightarrow B \Longrightarrow A \land B" $\langle proof \rangle$
- schematic variables may occur in proof goals, then the user can choose how to instantiate

Apply Single Inference Rule – The rule Method

- remember: each theorem can be seen as inference rule
- assume we have to prove goal with conclusion G
- assume thm has shape $P_1 \implies \dots \implies P_n \implies C$
- proof (rule *thm*) tries to unify C with G via unifier σ and replaces G by new subgoals coming from instantiated premises $P_1\sigma, \ldots, P_n\sigma$

Example

- consider goal $x < 5 \implies x < 3 \land x < 2$
- the command proof (rule conjI) $(conjI: ?A \implies ?B \implies ?A \land ?B)$
 - successfully unifies conclusion x < 3 \wedge x < 2 with ?A \wedge ?B
 - only schematic variables can be instantiated in unification, i.e., here ?A and ?B, but not x
 - unifier: replace ?A by x < 3 and ?B by x < 2
 - and replaces the previous goal by two new subgoals
 - $\mathbf{x} < 5 \implies \mathbf{x} < 3$
 - $\mathbf{x} < 5 \implies \mathbf{x} < 2$

Another Example

- consider goal \exists y. 5 < y
- the command proof (rule exI) (exI: ?P ?x ⇒ ∃ x. ?P x) delivers one new subgoal: 5 < ?y Demo02.thy
- details
 - try higher-order unification of $\exists x. ?P x and \exists y. 5 < y$
 - solution: replace ?P by λz . 5 < z
 - reason: after instantiation we get two terms
 - $\exists x. (\lambda z. 5 < z) x$
 - ∃ y. 5 < y
 - these two terms are equivalent modulo $\alpha\beta\eta$
 - the unused schematic variable ?x is renamed to ?y since the goal used the name y in the existential quantor
 - the new subgoal is (λ z. 5 < z) ?y which is equal to 5 < ?y modulo $\alpha\beta\eta$
- higher-order unification of terms *s* and *t*: find σ such that $s\sigma$ and $t\sigma$ are equivalent modulo $\alpha\beta\eta$

Equality in Isabelle

- all terms are normalized w.r.t. $\alpha\beta\eta$
- *α*-conversion: the names of bound variables are ignored:

```
example: \exists x. P x \text{ is the same as } \exists y. P y
```

• β -reduction

 $(\lambda x. t)$ *u* is the same as t[x/u]

(here, t[x/u] denotes the term *t* where x gets replaced by *u*)

• η -expansion

 $t :: ty \Rightarrow ty'$ is the same as $\lambda x \cdot t x$

• Demo02.thy

Structured Proofs

Proofs – Outer Syntax

fake proof proof ∷= sorry by method method? atomic proof proof method[?] statement^{*} qed method[?] structured proof statement ::= fix variables (:: type)[?] arbitrary but fixed values assume proposition⁺ local assumptions (from fact⁺)? (have | show) proposition proof (intermediate) result { statement* } raw proof block proposition $::= (label:)^{?}$ term fact ::= label (term) literal fact method := auto | fact | rule fact | - | ... *command* ::= lemma proposition proof | ...

Remarks

• symbol? denotes optional symbol; symbol* denotes arbitrarily many occurrences of symbol

Demo – Drinker's Paradox

- statement: there is a person *p*, that if *p* drinks then everyone drinks
- formal proof is contained in Demo02.thy and it will illustrate various elements and variations of a proof w.r.t. the previous slide
- the upcoming slides mainly serve as a written down explanation, if something was not mentioned in the theory file or during the live demonstration

Remarks (cont'd)

- without *method* argument **proof** applies method standard
- idiom for starting structured proof without initial method "proof -"
- special label this refers to latest fact
- show used for statement that shows conclusion of surrounding proof ... qed

Some Proof Methods

- rule *fact* apply single inference rule, namely *fact*
- standard perform a single standard (with respect to current context) inference step
- – do nothing
- auto combines classical reasoning with simplification

Isabelle Symbols – Cartouches

symbol	internal	auto completion
<	\ <open></open>	
>	\ <close></close>	

abbreviations and < <

Proving Propositions

- prove "\lambda x. P x" by
 fix x
 have "P x" \lambda proof \rangle
- prove "A ⇒ B" by assume "A" have "B" ⟨proof⟩

Raw Proof Blocks

```
• the block
{
    fix x y
    assume "P x y" "Q x"
    have "R y" (proof) (* intermediate statement *)
    have "S x" (proof) (* last statement *)
}
```

• is exported as P ?x ?y \implies Q ?x \implies S ?x

Further Remarks and Statements

- introduce arbitrary but fixed value x by fix x
- introduce assumption by assume " ... "
- indicate proposition to be proved by have " ... " $\langle \textit{proof} \rangle$
- local definition of c by define c where "c = term" (definition becomes available as theorem c_def)
- local abbreviation of ?c by let ?c = term
- abbreviation **?thesis** refers to proposition before current **proof-qed-block**
- obtain witness satisfying P by obtain x where "P x" (proof)

The rule Method using Current Facts

- on slide 8 it was explained what the rule method does without current facts
 - example Isabelle statement: have P proof (rule thm)
 - *thm* should have form of an introduction rule
 - conclusion in *thm* introduces some specific connective, e.g. ... ⇒ ?A ∧ ?B
- if there are current facts, the behavior is different and it is tried to apply an elimination rule
 - example Isabelle statement: from Q have P proof (rule thm)
 - *thm* should have form of an elimination rule
 - major premise in *thm* contains specific connective, e.g., ?A \land ?B \implies ..., which is then unified with Q
 - in detail: given theorem P₁ ⇒ ... ⇒ P_n ⇒ C, unify major premise P₁ of rule with first of current facts; unify remaining current facts with remaining premises; add rest of premises correspondingly instantiated as new subgoals

Example

have "x > 5 \lor x = 2" $\langle proof \rangle$ from this have "A x" proof (rule disjE) - $\langle disjE: ?P \lor ?Q \implies (?P \implies ?R) \implies (?Q \implies ?R) \implies ?R \rangle$ show "x > 5 \implies A x" $\langle proof \rangle$ show "x = 2 \implies A x" $\langle proof \rangle$ qed

The Difference Between have and show

- have is used to state arbitrary intermediate propositions
- show is used to discharge a current proof obligation
- show might reject a statement if it does not match a proof obligation
 - if assumptions have been used that are not present in proof obligation
 - if the types of variables are too specific or differ

Examples

```
lemma "P x"
proof -
assume "Q x"
from this show "P x" (* rejected, because of assumption Q x *)
lemma "∃ x. x < 5"
proof (rule exI)
show "(3 :: nat) < 5" (* rejected, since type is too specific *)</li>
```

The Difference Between HOL- and Meta-Implication/Quantification

- there are meta-connectives \land and \Longrightarrow
- there are HOL-connectives \forall and \longrightarrow
- usually the meta-connectives are preferable; example:
 - in $A \implies B \implies C \implies D$ we can just assume B
 - in $A \longrightarrow B \longrightarrow C \longrightarrow D$ we first have to apply implication introduction to access B
- the meta-connectives can only be used on the outside, so certain statements require HOL-connectives; example:
 - $\exists x. x > 5 \longrightarrow (\forall y. P x y)$

(implication and universal quantor appear below existential quantor)

• consequence: most theorems in Isabelle are written using meta-connectives

• lemma "P x
$$\Longrightarrow$$
 Q \Longrightarrow R x" is preferred over
lemma " \forall x P x \longrightarrow O \longrightarrow R x"

Proofs – Outer Syntax, Extended Grammar

proof ∷= sorry fake proof by method method? atomic proof proof method? statement* qed method? structured proof statement ::= fix variables (:: type)[?] arbitrary but fixed values assume proposition⁺ local assumptions $(from fact^{+})^{?}$ (have | show) proposition proof (intermediate) result { statement^{*} } raw proof block let ?x = termlocal abbreviation $(from fact^{+})^{?}$ obtain vars where prop. proof get witness proposition $::= (label:)^{?}$ term fact ::= label this previous proposition literal fact (term) method ::= auto | fact | rule fact | - | ... *command* ::= lemma proposition proof | ...