
Summer Term 2024

Interactive Theorem Proving using Isabelle/HOL
Session 2

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss24/itpIsa/
https://isabelle.in.tum.de
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Outline

• The Pure Framework

• Structured Proofs

RT (DCS @ UIBK) session 2 2/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The Pure Framework

The Pure Framework

The Minimal Logic Isabelle/Pure

Pure = Generic Natural Deduction Framework

Pure Terms
• inference rules
• logical propositions

Deduction
higher-order resolution (that is, resolution using higher-order unification)

RT (DCS @ UIBK) session 2 4/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The Pure Framework
The type prop
• Isabelle/Pure contains a type of propositions: prop
• let ϕ :: prop and ψ :: prop, then
• ϕ =⇒ψ :: prop (meta-)implication
•
∧

x.ϕ :: prop (meta-)quantification

• in Isabelle/HOL, every HOL-formula (t :: bool) is also of type prop

Isabelle Symbols

symbol internal auto completion abbreviation

=⇒ \<Longrightarrow> = = > . >
∧

\<And> ! !

Remarks
• =⇒ is right-associative
• propositions with multiple assumptions are encoded by currying

RT (DCS @ UIBK) session 2 5/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The Pure Framework
Natural Deduction via Pure Connectives
• every Pure proposition can be read as natural deduction rule
• proposition P1 =⇒ . . .=⇒ Pn =⇒ C corresponds to rule

P1 . . . Pn

C

with premises P1, . . . , Pn and conclusion C
• scope of variables (like eigenvariable condition) enforced by

∧

Demo02.thy
• there is no distinction between inference rules and theorems!

Examples

• A =⇒ B =⇒ A ∧ B (conjunction introduction)
• (A =⇒ B) =⇒ A −→ B (implication introduction)

in order to prove A −→ B it suffices to prove B under the assumption A
• (
∧

y. P y) =⇒ ∀ x. P x (all introduction)
in order to prove ∀ x. P x, fix some variable y and prove P y

RT (DCS @ UIBK) session 2 6/21

http://cl-informatik.uibk.ac.at/teaching/ss24/itpIsa/thys/Demo02.thy
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The Pure Framework

Schematic Variables

• besides free and bound variables, there are schematic variables
(dark blue; these have leading ?)
• schematic variables can be instantiated arbitrarily
• proven inference rules such as A =⇒ B =⇒ A ∧ B in Isabelle are written via

schematic variables:
?A =⇒ ?B =⇒ ?A ∧ ?B (thm conjI)

• whenever a proof of a statement is finished, all free variables and outermost
∧

-variables
in that statement are turned into schematic ones;
example: each of the following two lines result in ?A =⇒ ?B =⇒ ?A ∧ ?B
• lemma "A =⇒ B =⇒ A ∧ B" 〈proof 〉
• lemma "
∧

A B. A =⇒ B =⇒ A ∧ B" 〈proof 〉
• schematic variables may occur in proof goals, then the user can choose how to instantiate

RT (DCS @ UIBK) session 2 7/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The Pure Framework

Apply Single Inference Rule – The rule Method

• remember: each theorem can be seen as inference rule
• assume we have to prove goal with conclusion G
• assume thm has shape P1 =⇒ . . . =⇒ P n =⇒ C
• proof (rule thm) tries to unify C with G via unifier σ and replaces G by new subgoals

coming from instantiated premises P1σ, . . . , P nσ

Example

• consider goal x < 5 =⇒ x < 3 ∧ x < 2
• the command proof (rule conjI) (conjI: ?A =⇒ ?B =⇒ ?A ∧ ?B)
• successfully unifies conclusion x < 3 ∧ x < 2 with ?A ∧ ?B

• only schematic variables can be instantiated in unification, i.e., here ?A and ?B, but not x
• unifier: replace ?A by x < 3 and ?B by x < 2

• and replaces the previous goal by two new subgoals
• x < 5 =⇒ x < 3
• x < 5 =⇒ x < 2

RT (DCS @ UIBK) session 2 8/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The Pure Framework

Another Example

• consider goal ∃ y. 5 < y
• the command proof (rule exI) (exI: ?P ?x =⇒ ∃ x. ?P x)

delivers one new subgoal: 5 < ?y Demo02.thy
• details
• try higher-order unification of ∃ x. ?P x and ∃ y. 5 < y
• solution: replace ?P by λ z. 5 < z
• reason: after instantiation we get two terms

• ∃ x. (λ z. 5 < z) x
• ∃ y. 5 < y

• these two terms are equivalent modulo αβη
• the unused schematic variable ?x is renamed to ?y since the goal used the name y in the

existential quantor
• the new subgoal is (λ z. 5 < z) ?y which is equal to 5 < ?y modulo αβη

• higher-order unification of terms s and t: find σ such that sσ and tσ are equivalent
modulo αβη

RT (DCS @ UIBK) session 2 9/21

http://cl-informatik.uibk.ac.at/teaching/ss24/itpIsa/thys/Demo02.thy
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The Pure Framework

Equality in Isabelle
• all terms are normalized w.r.t. αβη
• α-conversion: the names of bound variables are ignored:

example: ∃ x. P x is the same as ∃ y. P y
• β-reduction

(λ x. t) u is the same as t [x/u]
(here, t [x/u] denotes the term t where x gets replaced by u)
• η-expansion

t :: ty ⇒ t y ' is the same as λ x. t x
• Demo02.thy

RT (DCS @ UIBK) session 2 10/21

http://cl-informatik.uibk.ac.at/teaching/ss24/itpIsa/thys/Demo02.thy
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Structured Proofs

Structured Proofs
Proofs – Outer Syntax

proof ::= sorry fake proof
| by method method? atomic proof
| proof method? statement∗ qed method? structured proof

statement ::= fix variables (:: type)? arbitrary but fixed values
| assume proposition+ local assumptions
| (from fact+)? (have | show) proposition proof (intermediate) result
| { statement∗ } raw proof block

proposition ::= (label:)? term

fact ::= label
| ⟨ term ⟩ literal fact

method ::= auto | fact | rule fact | - | . . .
command ::= lemma proposition proof | . . .

Remarks
• symbol? denotes optional symbol; symbol∗ denotes arbitrarily many occurrences of symbol

RT (DCS @ UIBK) session 2 12/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Structured Proofs

Demo – Drinker’s Paradox

• statement: there is a person p, that if p drinks then everyone drinks
• formal proof is contained in Demo02.thy and it will illustrate various elements and

variations of a proof w.r.t. the previous slide
• the upcoming slides mainly serve as a written down explanation, if something was not

mentioned in the theory file or during the live demonstration

RT (DCS @ UIBK) session 2 13/21

http://cl-informatik.uibk.ac.at/teaching/ss24/itpIsa/thys/Demo02.thy
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Structured Proofs
Remarks (cont’d)
• without method argument proof applies method standard
• idiom for starting structured proof without initial method “proof -”
• special label this refers to latest fact
• show used for statement that shows conclusion of surrounding proof . . . qed

Some Proof Methods
• rule fact – apply single inference rule, namely fact
• standard – perform a single standard (with respect to current context) inference step
• - – do nothing
• auto – combines classical reasoning with simplification

Isabelle Symbols – Cartouches

symbol internal auto completion abbreviations
⟨ \<open> ` and < <
⟩ \<close> ` and > >

RT (DCS @ UIBK) session 2 14/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Structured Proofs
Proving Propositions
• prove “
∧

x. P x” by
fix x
have "P x" 〈proof 〉
• prove “A =⇒ B” by
assume "A"
have "B" 〈proof 〉

Raw Proof Blocks
• the block
{

fix x y
assume "P x y" "Q x"
have "R y" 〈proof 〉 (* intermediate statement *)
have "S x" 〈proof 〉 (* last statement *)

}
• is exported as P ?x ?y =⇒ Q ?x =⇒ S ?x

RT (DCS @ UIBK) session 2 15/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Structured Proofs

Further Remarks and Statements

• introduce arbitrary but fixed value x by fix x
• introduce assumption by assume " . . . "
• indicate proposition to be proved by have " . . . " 〈proof 〉
• local definition of c by define c where "c = term"

(definition becomes available as theorem c_def)
• local abbreviation of ?c by let ?c = term
• abbreviation ?thesis refers to proposition before current proof-qed-block
• obtain witness satisfying P by obtain x where "P x" 〈proof 〉

RT (DCS @ UIBK) session 2 16/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Structured Proofs

The rule Method using Current Facts

• on slide 8 it was explained what the rule method does without current facts
• example Isabelle statement: have P proof (rule thm)
• thm should have form of an introduction rule
• conclusion in thm introduces some specific connective, e.g. . . . =⇒ ?A ∧ ?B

• if there are current facts, the behavior is different and it is tried to apply an elimination
rule
• example Isabelle statement: from Q have P proof (rule thm)
• thm should have form of an elimination rule
• major premise in thm contains specific connective, e.g., ?A ∧ ?B =⇒ . . . , which is then

unified with Q
• in detail: given theorem P 1 =⇒ . . . =⇒ P n =⇒ C, unify major premise P 1 of rule

with first of current facts; unify remaining current facts with remaining premises; add rest of
premises correspondingly instantiated as new subgoals

RT (DCS @ UIBK) session 2 17/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Structured Proofs

Example

. . .
have "x > 5 ∨ x = 2" 〈proof 〉
from this have "A x"
proof (rule disjE)

⟨disjE: ?P ∨ ?Q =⇒ (?P =⇒ ?R) =⇒ (?Q =⇒ ?R) =⇒ ?R ⟩

show "x > 5 =⇒ A x" 〈proof 〉
show "x = 2 =⇒ A x" 〈proof 〉

qed

RT (DCS @ UIBK) session 2 18/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Structured Proofs

The Difference Between have and show
• have is used to state arbitrary intermediate propositions
• show is used to discharge a current proof obligation
• show might reject a statement if it does not match a proof obligation
• if assumptions have been used that are not present in proof obligation
• if the types of variables are too specific or differ

Examples

• lemma "P x"
proof -

assume "Q x"
from this show "P x" (* rejected, because of assumption Q x *)

• lemma "∃ x. x < 5"
proof (rule exI)

show "(3 :: nat) < 5" (* rejected, since type is too specific *)

RT (DCS @ UIBK) session 2 19/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Structured Proofs

The Difference Between HOL- and Meta-Implication/Quantification

• there are meta-connectives
∧

and =⇒
• there are HOL-connectives ∀ and −→
• usually the meta-connectives are preferable; example:
• in A =⇒ B =⇒ C =⇒ D we can just assume B
• in A −→ B −→ C −→ D we first have to apply implication introduction to access B

• the meta-connectives can only be used on the outside, so certain statements require
HOL-connectives; example:
• ∃ x. x > 5 −→ (∀ y. P x y)

(implication and universal quantor appear below existential quantor)
• consequence: most theorems in Isabelle are written using meta-connectives
• lemma "P x =⇒ Q =⇒ R x" is preferred over
lemma "∀ x. P x −→ Q −→ R x"

RT (DCS @ UIBK) session 2 20/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Structured Proofs
Proofs – Outer Syntax, Extended Grammar

proof ::= sorry fake proof
| by method method? atomic proof
| proof method? statement∗ qed method? structured proof

statement ::= fix variables (:: type)? arbitrary but fixed values
| assume proposition+ local assumptions
| (from fact+)? (have | show) proposition proof (intermediate) result
| { statement∗ } raw proof block
| let ?x = term local abbreviation
| (from fact+)? obtain vars where prop. proof get witness

proposition ::= (label:)? term

fact ::= label
| this previous proposition
| ⟨ term ⟩ literal fact

method ::= auto | fact | rule fact | - | . . .
command ::= lemma proposition proof | . . .

RT (DCS @ UIBK) session 2 21/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	The Pure Framework
	Structured Proofs

