

Interactive Theorem Proving using Isabelle/HOL

Session 2

René Thiemann

Department of Computer Science

The Pure Framework

Outline

- The Pure Framework
- Structured Proofs

RT (DCS @ UIBK) session 2 2/21

The Pure Framework

The Minimal Logic Isabelle/Pure

Pure = Generic Natural Deduction Framework

Pure Terms

- inference rules
- logical propositions

Deduction

higher-order resolution (that is, resolution using higher-order unification)

RT (DCS @ UIBK) session 2 4/21

The type prop

- Isabelle/Pure contains a type of propositions: prop
- let φ :: prop and ψ :: prop, then

• $\varphi \Longrightarrow \psi :: \text{prop}$ • $\bigwedge x. \varphi :: \text{prop}$ (meta-)implication (meta-)quantification

• in Isabelle/HOL, every HOL-formula (t:: bool) is also of type prop

Isabelle Symbols

symbol internal

auto completion

abbreviation

. >

⇒ \<Longrightarrow>

 $\leq And >$

Remarks

- ullet \Longrightarrow is right-associative
- propositions with multiple assumptions are encoded by currying

RT (DCS @ UIBK) session 2

The Pure Framework

5/21

Schematic Variables

- besides free and bound variables, there are schematic variables (dark blue; these have leading?)
- schematic variables can be instantiated arbitrarily
- proven inference rules such as $A \implies B \implies A \land B$ in Isabelle are written via schematic variables:

$$?A \implies ?B \implies ?A \land ?B$$
 (thm conjI)

- whenever a proof of a statement is finished, all free variables and outermost ∧-variables in that statement are turned into schematic ones; example: each of the following two lines result in ?A ⇒ ?B ⇒ ?A ∧ ?B
 - lemma "A \Longrightarrow B \Longrightarrow A \land B" $\langle proof \rangle$
 - lemma " \bigwedge A B. A \Longrightarrow B \Longrightarrow A \land B" $\langle proof \rangle$
- schematic variables may occur in proof goals, then the user can choose how to instantiate

Natural Deduction via Pure Connectives

- every Pure proposition can be read as natural deduction rule
- proposition $P_1 \Longrightarrow ... \Longrightarrow P_n \Longrightarrow C$ corresponds to rule

$$\frac{P_1 \quad \dots \quad P_n}{C}$$

with premises P_1, \ldots, P_n and conclusion C

- scope of variables (like eigenvariable condition) enforced by ∧
- Demo02.thy
- there is no distinction between inference rules and theorems!

Examples

RT (DCS @ UIBK)

 \bullet A \Longrightarrow B \Longrightarrow A \land B

(conjunction introduction)

• (A \Longrightarrow B) \Longrightarrow A \longrightarrow B it suffices to prove B under the assumption A

(implication introduction)

• (\bigwedge y. Py) \Longrightarrow \forall x. Px

(all introduction)

in order to prove $\forall x. P x$, fix some variable y and prove P y

Apply Single Inference Rule – The rule Method

The Pure Framework

6/21

- remember: each theorem can be seen as inference rule
- assume we have to prove goal with conclusion G
- assume thm has shape $P_1 \implies \dots \implies P_n \implies C$
- proof (rule *thm*) tries to unify C with G via unifier σ and replaces G by new subgoals coming from instantiated premises $P_1\sigma, \ldots, P_n\sigma$

session 2

Example

- consider goal $x < 5 \implies x < 3 \land x < 2$
- the command proof (rule conjI) (conjI: $?A \implies ?B \implies ?A \land ?B$)
 - successfully unifies conclusion $x < 3 \land x < 2$ with ?A \land ?B
 - only schematic variables can be instantiated in unification, i.e., here ?A and ?B, but not x
 - unifier: replace ?A by x < 3 and ?B by x < 2
 - and replaces the previous goal by two new subgoals
 - $x < 5 \implies x < 3$
 - $x < 5 \implies x < 2$

7/21

The Pure Framework The Pure Framework

Another Example

- consider goal ∃ y. 5 < y
- the command proof (rule exI) (exI: $?P ?x \implies \exists x. ?P x$) delivers one new subgoal: 5 < ?y Demo02.thy
- details

RT (DCS @ UIBK)

- try higher-order unification of $\exists x. ?P x \text{ and } \exists y. 5 < y$
- solution: replace ?P by λ z. 5 < z
- reason: after instantiation we get two terms
 - ∃ x. (λ z. 5 < z) x
 - ∃ y. 5 < y
- these two terms are equivalent modulo $\alpha\beta\eta$
- the unused schematic variable ?x is renamed to ?y since the goal used the name y in the existential quantor
- the new subgoal is (λ z. 5 < z) ?y which is equal to 5 < ?y modulo $\alpha\beta\eta$
- higher-order unification of terms s and t: find σ such that $s\sigma$ and $t\sigma$ are equivalent modulo $\alpha\beta\eta$

session 2

Structured Proofs

Equality in Isabelle

- all terms are normalized w.r.t. $\alpha\beta\eta$
- α -conversion: the names of bound variables are ignored:

example:
$$\exists x. P x \text{ is the same as } \exists y. P y$$

β-reduction

$$(\lambda \times t)$$
 u is the same as $t[x/u]$

(here, t[x/u] denotes the term t where x gets replaced by u)

• η-expansion

$$t :: ty \Rightarrow ty'$$
 is the same as $\lambda \times t \times t$

• Demo02.thy

9/21

RT (DCS @ UIBK) session 2 10/21

Proofs – Outer Syntax

```
proof ::= sorry
                                                                  fake proof
                 by method method?
                                                                  atomic proof
                 proof method? statement* ged method?
                                                                  structured proof
 statement := fix variables (:: type)^?
                                                                  arbitrary but fixed values
                 assume proposition<sup>+</sup>
                                                                  local assumptions
                 (from fact<sup>+</sup>)? (have | show) proposition proof
                                                                 (intermediate) result
                 { statement* }
                                                                  raw proof block
proposition ::= (label:)^? term
      fact ::= label
                  (term)
                                                                  literal fact
   method ∷= auto | fact | rule fact | - | ...
 command ::= lemma proposition proof | ...
```

Remarks

• symbol? denotes optional symbol; symbol* denotes arbitrarily many occurrences of symbol

RT (DCS @ UIBK) session 2 12/21

Structured Proofs

Structured Proofs

Remarks (cont'd)

Structured Proofs

• idiom for starting structured proof without initial method "proof -"

• without *method* argument proof applies method standard

Demo – Drinker's Paradox

- statement: there is a person *p*, that if *p* drinks then everyone drinks
- formal proof is contained in Demo02.thy and it will illustrate various elements and variations of a proof w.r.t. the previous slide
- the upcoming slides mainly serve as a written down explanation, if something was not mentioned in the theory file or during the live demonstration

• show used for statement that shows conclusion of surrounding proof ... qed

Some Proof Methods

• rule fact – apply single inference rule, namely fact

special label this refers to latest fact

standard – perform a single standard (with respect to current context) inference step

14/21

- - do nothing
- auto combines classical reasoning with simplification

Isabelle Symbols - Cartouches

RT (DCS @ UIBK) session 2 13/21 RT (DCS @ UIBK)

Structured Proofs
Structured Proofs

Proving Propositions

```
• prove "\( \lambda \times P \times \times P \times \times P \times P
```

• is exported as P ?x ?y \Longrightarrow Q ?x \Longrightarrow S ?x

Further Remarks and Statements

- introduce arbitrary but fixed value x by fix x
- introduce assumption by assume "..."
- indicate proposition to be proved by have "..." \(\rho proof \rangle \)
- local definition of c by define c where "c = term" (definition becomes available as theorem c_def)
- local abbreviation of ?c by let ?c = term
- abbreviation ?thesis refers to proposition before current proof-qed-block
- obtain witness satisfying P by obtain x where "P x" \(\proof \)

RT (DCS @ UIBK) session 2 15/21 RT (DCS @ UIBK) session 2 16/21

Structured Proofs Structured Proofs Structured Proofs

The rule Method using Current Facts

- on slide 8 it was explained what the rule method does without current facts
 - example Isabelle statement: have P proof (rule thm)
 - thm should have form of an introduction rule
 - conclusion in thm introduces some specific connective, e.g. ... \implies ?A \land ?B
- if there are current facts, the behavior is different and it is tried to apply an elimination rule
 - example Isabelle statement: from Q have P proof (rule thm)
 - *thm* should have form of an elimination rule
 - major premise in thm contains specific connective, e.g., ?A ∧ ?B ⇒ ..., which is then unified with Q
 - in detail: given theorem $P_1 \implies \dots \implies P_n \implies C$, unify major premise P_1 of rule with first of current facts; unify remaining current facts with remaining premises; add rest of premises correspondingly instantiated as new subgoals

Example

```
have "x > 5 \vee x = 2" \langle proof \rangle from this have "A x" proof (rule disjE)

- \langle disjE: ?P \vee ?Q \implies (?P \implies ?R) \implies (?Q \implies ?R) \implies ?R \rangle show "x > 5 \implies A x" \langle proof \rangle show "x = 2 \implies A x" \langle proof \rangle qed
```

RT (DCS @ UIBK) session 2 17/21 RT (DCS @ UIBK) session 2 18/21

Structured Proofs Structured Proof

The Difference Between have and show

- have is used to state arbitrary intermediate propositions
- show is used to discharge a current proof obligation
- show might reject a statement if it does not match a proof obligation
 - if assumptions have been used that are not present in proof obligation
 - if the types of variables are too specific or differ

Examples

```
• lemma "P x"
proof -
   assume "Q x"
   from this show "P x" (* rejected, because of assumption Q x *)
• lemma "∃ x. x < 5"
proof (rule exI)
   show "(3 :: nat) < 5" (* rejected, since type is too specific *)</pre>
```

The Difference Between HOL- and Meta-Implication/Quantification

- there are meta-connectives \land and \Longrightarrow
- there are HOL-connectives \forall and \longrightarrow
- usually the meta-connectives are preferable; example:
 - in A \Longrightarrow B \Longrightarrow C \Longrightarrow D we can just assume B
 - in $A \longrightarrow B \longrightarrow C \longrightarrow D$ we first have to apply implication introduction to access B
- the meta-connectives can only be used on the outside, so certain statements require HOL-connectives; example:
 - ∃ x. x > 5 → (∀ y. P x y)
 (implication and universal quantor appear below existential quantor)
- consequence: most theorems in Isabelle are written using meta-connectives
 - lemma "P x \Longrightarrow Q \Longrightarrow R x" is preferred over lemma " \forall x. P x \Longrightarrow Q \Longrightarrow R x"

RT (DCS @ UIBK) session 2 19/21 RT (DCS @ UIBK) session 2 20/21

Proofs - Outer Syntax, Extended Grammar

```
proof ∷= sorry
                                                       fake proof
           by method method?
                                                       atomic proof
           proof method? statement* qed method?
                                                       structured proof
                                                       arbitrary but fixed values
```

(from fact⁺)? obtain vars where prop. proof

statement ::= fix variables (:: type)? assume proposition⁺ (from fact⁺)? (have | show) proposition proof (intermediate) result { statement* } let ?x = term

local assumptions raw proof block local abbreviation get witness

Structured Proofs

proposition $::= (label:)^?$ term

fact ::= label this (term)

previous proposition literal fact

method ::= auto | fact | rule fact | - | ... $command ::= lemma proposition proof | \dots$

RT (DCS @ UIBK) 21/21 session 2