

Interactive Theorem Proving using Isabelle/HOL

Session 3

René Thiemann

Department of Computer Science

Outline

• Natural Deduction Revisited

• Case Analysis and Structural Induction for Data Types

Last Lecture: Natural Deduction in Isabelle

- typical proof step: from this more_facts have label: term by (rule thm)
- three problems
 - finding names of theorems such as *thm*
 - repetitive long commands, e.g., from this have
 - management of labels (tedious, not informative, ...)

Use the Isabelle Library

- Isabelle already provides several theorems, e.g., inference rules of natural deduction, properties of numbers, properties of lists, ...
- to increase efficiency, these theorems should be re-used, not re-proved
- problem: how to know the name of all these theorems, e.g., thm excluded_middle disjI1 exE ccontr
 thm add.commute add_le_cancel_right
- solution: use search engine to quickly find
 - already proven theorems
 - already defined constants, e.g., algorithms on lists, numbers, sets, ...

6/18

Finding Existing Theorems

- enter query in "Query/Find Theorems" panel or after find_theorems command
- scope: search is restricted to accessible content in current theory, including imports

Search Criteria

- name: foo search for facts whose name contains substring "foo"
- "pattern" search for facts that match pattern
- prefix criterion by "-" to exclude facts that match • combine several criteria by juxtaposition

Search Patterns HOL terms with schematic variables ?x, ?y, ... or _ instead of free variables

Examples finds facts mentioning query

"_ + _" addition

query 2 "(+)"

session 3

finds facts mentioning

2 and addition function

- "?x + ?x" addition of same value " $_* * (_+ _) = _$ " distributive law
- RT (DCS @ UIBK)

Finding Existing Constants

- enter query in "Query/Find Constants" panel or after find_consts command
- scope: search is restricted to accessible content in current theory, including imports

Search Criteria

- name: foo search for constants whose name contains substring "foo"
- "type" search for constants that match a specific type
- combine several criteria by juxtaposition

Search Types

HOL types with schematic type variables ?'a, ?'b, ... or _ instead of free type variables

Example

```
find_consts "?'a \Rightarrow ?'a \Rightarrow _ list" name: "List" searches for all binary functions where first and second argument have the same type, that return a list, and whose names includes "List" (e.g., as theory-prefix of a long name)
```

then have

Abbreviations of Statements

- then from this (unlike to from, after then no further facts may be stated)
- hence
- with facts

• thus

then show from facts this

Passing Auxiliary Facts

• instead of passing facts before the property to be proven, one can also state facts after the property via using:

from facts have proposition (proof)

is equivalent to

have proposition using facts (proof)

- style: state important facts before, and auxiliary facts after proposition
- caution: label this is not available after using

Avoiding Labels: moreover and ultimately

- often proofs are of the form that auxiliary properties 1, ..., n are proven and then one can conclude
- manually labeling all these properties is tedious, in particular if labels are somehow sorted and one needs to insert something in the middle
- use moreover and ultimately to write these proofs without explicit labels
- example

```
with labels
                                       without labels
have 1: A \(\rho proof\)
                                       have A \(\rho proof\)
have B \(\rho proof\)
                                                                          (* store A *)
                                       moreover
hence 2: C \(\rho proof\)
                                       have B \(\rho proof\)
have D \(\rho proof \rangle\)
                                       hence C \(\rho proof\)
hence 3: E \(\rho proof\)
                                                                          (* store C *)
                                       moreover
from 1 2 3 show ?thesis
                                       have D \(\rho proof\)
                                       hence E \(\rho proof \rangle\)
                                       ultimately show ?thesis (* A C E are avail. *)
```

Case Analysis on Booleans

case True

- Isabelle provides special syntax to perform proofs by case analysis
- this slide: case analysis on Booleans (general case: later)
- structure is as follows, where term is of type bool (copy outline from output panel)

proof (cases term) (* here outline is displayed in output panel *)

```
... (* label True refers to fact "term" *)
  show ?thesis \( proof \)
next
  case ownLabel: False
       (* label ownLabel refers to fact "~ term" *)
  show ?thesis \( proof \)
```

- order of cases is irrelevant, separation of cases via next
- user-defined labels become important in nested case analyses
- omitted case(s) can be solved via final method, e.g., ged auto

qed

The rule Method – Revisited

- rule *fact* if provided facts are empty, apply *fact* as introduction rule (last week)
- otherwise, apply fact as elimination rule
- introduction rule: conclusion introduces connective $(\ldots \implies A \land B)$
- elimination rule: premise contains connective that is eliminated (A \wedge B \Longrightarrow ...)

Rule Application

- given rule $P_1 \implies ... \implies P_n \implies C$
- intro unify C with conclusion of current subgoal and add correspondingly instantiated premises $P_1\sigma$, ..., $P_n\sigma$ as new subgoals
- elim unify major premise P₁ of rule with first of current facts; unify remaining current facts with remaining premises; add rest of premises correspondingly instantiated as new subgoals

Beyond rule - intro and elim

- the rule method applies exactly one rule (intro or elim)
- the intro method applies several introduction rules exhaustively
- the elim method applies several elimination rules exhaustively

Example

Case Analysis and Structural Induction for Data Types

Data Type Definitions

- whenever a data type ty is defined, in the background several theorems are proven
 - they can be inspected via print_theorems directly after the definition
 - simplification rules: ty.simps (automatically used by auto)
 - case analysis rule: ty.exhaust (used by cases "term :: ty")
 induction rule: ty.induct (used by induction "variable :: ty")

Example

- consider Isabelle's lists: datatype 'a list = Nil | Cons 'a "'a list"
- special syntax: [] is the same as Nil, # is an infix operator for Cons, and there is syntax such as [x, y, z]
- list.simps contains among others $(x \# xs = y \# ys) = (x = y \land xs = ys)$ $(case x \# xs of [] \Rightarrow e | y \# ys \Rightarrow f y ys) = f x xs$
- list.exhaust: $(ys = [] \implies P) \implies (\bigwedge x xs. ys = x \# xs \implies P) \implies P$
- list.induct: $P [] \implies (\bigwedge x xs. P xs \implies P (x \# xs)) \implies P ys$

Function Definitions

- whenever a function f is defined, in the background several theorems are proven
 - they can be inspected via print_theorems directly after the definition
 - simplification rules: f.simps (automatically used by auto)
 - induction rule: f.induct

(details in upcoming lecture)

Example

consider append function:

```
fun app :: "'a list ⇒ 'a list ⇒ 'a list" where
   "app [] ys = ys"
| "app (x # xs) ys = x # (app xs ys)"
```

app.simps are the two defining equations as theorems

The induction Method

- induction x induction on parameter x (rule chosen according to type of x)
- use case to start case
 - syntax: case (CName $x_1 \ldots x_n$) where
 - *CName* is name of constructor
 - $\mathbf{x}_1, \dots, \mathbf{x}_n$ are freely chosen variable names that represent the arguments of *CName*
 - CName is also label that contains the IHs;
 e.g., for binary tree with constructor Node, the fact Node (1) would be the first IH (left subtree) and Node (2) would be the second IH (right subtree)
- ?case abbreviates goal of current case, separate cases by next
- outline of induction proof is available in output panel for induction x method

The cases Method

- cases *term* case analysis on parameter *term* (rule chosen according to type of *term*)
- same structure as induction method, with two differences
 - goals of current case are still ?thesis, not ?case
 - no IHs are available as facts, but equalities $term = CName x_1 \dots x_n$

Demo – List Reversal

```
fun app :: "'a list ⇒ 'a list ⇒ 'a list" where
  "app [] ys = ys"
| "app (x # xs) ys = x # (app xs ys)"

fun reverse :: "'a list ⇒ 'a list" where
  "reverse [] = []"
| "reverse (x # xs) = app (reverse xs) ([x])"

lemma rev_rev: "reverse (reverse xs) = xs"
```

Proof Strategies

- 1. perform induction on suitable variable (more on that next week)
- 2. copy proof outline by click in blue part of output panel; adjust variable names on demand
- 3. handle each case, replace sorry by proof auto
 - if successful, replace proof auto by by auto
 - if not, either
 - perform proof manually (natural deduction, add intermediate statements, ...)
 - or identify required lemma to make progress and first prove that lemma
- 4. cleanup proof, e.g., drop trivial cases and replace final qed by qed auto

Auxiliary Lemmas

- currently: assume auxiliary lemmas are just equations lhs = rhs
- formulate lemmas such that *lhs* is larger than *rhs*, so that terms get smaller
- activate lemma globally via [simp]-attribute: lemma useful[simp]: "lhs = rhs"
- activate lemmas locally: proof (auto simp: useful ...)
- warning: if the activated equations do not terminate, then auto might not terminate