. un |Ve rsrtat Summer Term 2024
™ innsbruck

Interactive Theorem Proving using Isabelle/HOL

Session 4

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss24/itpIsa/
https://isabelle.in.tum.de
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Outline

* Calculational Reasoning

* Proofs by Induction Revisited

* Controlling the Proof State and Isabelle’s Simplifier

RT (DCS @ UIBK) session 4 2/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Calculational Reasoning

Calculational Reasoning

Aim: Support Proofs with Chains of (In)Equalities

a=b<c=d<e=f — a<f

Solution: Combination of (In)Equalities by Transitivity

also - first occurrence in chain initializes auxiliary fact calculation to this; further
occurrences combine calculation and this via transitivity and update calculation
accordingly

Concluding a Chain of Transitive Combinations

finally — combine calculation and this via transitivity and update this accordingly

Also Useful for Calculational Reasoning

® implicit term abbreviation “ ... ” refers to previous right-hand side of (in)equality

® method “.” tries to prove current subgoal by assumption

RT (DCS @ UIBK) session 4 4/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Calculational Reasoning

Example

fun sum :: "nat = nat" where
"sum 0 = O"
| "sum (Suc n) = Suc n + sum n"

lemma "sum n = n * (n + 1) div 2"
proof (induction n)
case IH: (Suc n)
have "sum (Suc n) = (n + 1) + sum n" by auto

also have "... = (n + 1) + (0 *x (n + 1)) div 2" using IH by auto
also have "... = (2 *x (n + 1) + (n * (n + 1))) div 2" by auto
also have "... = ((2 + n) * (0 + 1)) div 2" by auto
also have "... = (Suc n * (Suc n + 1)) div 2" by auto
finally show 7case .

ged simp

RT (DCS @ UIBK) session 4 5/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Calculational Reasoning

Further Remarks

® calculational reasoning works with several relations, e.g., (=), (<), (<), (€) and ()

e calculational reasoning does not work with flipped relations such as (>);
(>) is just an abbreviationof A x y. y < x

have "a > b" (proof) have "b < a" (proof)

also have " ... > c" (proof) also have "¢ < ..." (proof)

finally (* fails *) finally (* here you see why *)
e calculational reasoning with equality supports contexts

have "a = f b" (proof) have "a < b + c¢" (proof)

also have "b = c¢" (proof) also have "c < 4" (proof)

also have "f ... = 4" (proof) finally have "a < b + d"

finally have "a = d" . (* fails x)

RT (DCS @ UIBK) session 4 6/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proofs by Induction Revisited

Proofs by Induction Revisited

Example Induction Proof of Last Week — Reversing a List Twice

lemma rev_rev[simp]: "reverse (reverse xs) = xs"
proof (induction xs)
case (Cons x xs)
then show 7case
by (auto simp: rev_app)
ged auto

Approach
® state variable on which induction should be applied
® choose own variable names for each case
¢ jdentify and add auxiliary lemmas on demand
® solve trivial cases via ged auto

® not everything explained: usage of arbitrary variables and preconditions

RT (DCS @ UIBK) session 4 8/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proofs by Induction Revisited

Motivation — Fast Implementation of List Reversal

fun rev_it :: "'a list = 'a list = 'a list" where
"rev_it [] ys = ys"
| "rev_it (x # xs) ys = rev_it xs (x # ys)"

fun fast_rev :: "'a list = 'a list" where
"fast_rev xs = rev_it xs []"

lemma fast_rev: "fast_rev xs = reverse xs"

First Problem

® core property isrev_it xs [] = reverse xs

¢ induction on xs yields problematic subgoal: 2nd arguments of rev_it differ!
rev_it xs [] = reverse xs = rev_it xs [x] = reverse xs @ [x]
(minor non-relevant change: in the definition of reverse we replaced append by
Isabelle’s predefined append function (@))

RT (DCS @ UIBK) session 4 9/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

RT (DCS @ UIBK) session 4

Proofs by Induction Revisited

Solving First Problem

® core property isrev_it xs [] = reverse xs

® proving this property by induction leads to an IH which is too weak:
2nd argument of rev_it is no longer [] in subgoal

® solution: generalize property
rev_it xs ys = reverse xs Q ys (creativity required)

Second Problem

e still the induction proofs fails on (simplified) subgoal
rev_it xs ys = reverse xs Q ys
= rev_it xs (x # ys) = reverse xs Q@ x # ys

¢ the 2nd arguments of rev_it still differ
(in particular the 2nd argument of rev_it in the IH is still the original ys)

® aim: perform induction on xs, but permit change of variable ys in IH

10/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proofs by Induction Revisited
Solving Second Problem - Arbitrary Variables
® solution: tell induction method which variables should be arbitrary

perform induction on x for arbitrary y and 2
o effect

® y and z can be freely instantiated in the IH
® y and z within induction proof have no connection to y and z outside induction proof

Finalizing Proof of Previous Slide

have "rev_it xs ys = reverse xs Q@ ys"
proof (induction xs arbitrary: ys)

case (Cons x xs ys) (x IH is: rev_it xs 7ys = reverse xs @ 7ys x*)
thus 7case by auto
ged auto

¢ for each case one chooses names of arguments of constructor and arbitrary variables

® after “arbitrary:” there can be several variable names

RT (DCS @ UIBK) session 4 11/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proofs by Induction Revisited

Premises in Induction Proofs
® the induction method can also deal with goals containing premises, e.g.,
Ax =By =—=—=Cxy

® whenever we are within case (CName ...):

® CName. IH refers to IH
® CName.prems refers to premises

® since premises weaken IHs, or make IHs more complex to apply, it sometimes is
preferable to omit premises from property that is proven by induction

RT (DCS @ UIBK) session 4 12/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

RT (DCS @ UIBK) session 4

Proofs by Induction Revisited

Premises in Induction Proofs — Examples

have "A (x :: nat) = By = C x y" proof (induction x)

case (Suc x) (* annoying, "B y" is contained in IH *)
thm Suc.prems — (A (Suc x), B y»
thm Suc.IH —Ax =By =>Cxy
assume "B y" (* if y is not changed, move properties of y outside *)
have "A (x :: nat) = C x y" proof (induction x)

case (Suc x)
thm Suc.prems — (A (Suc x))

thm Suc.IH — A x = Cxy

have "A (x :: nat) = By = C x y" proof (induction x arbitrary: y)
case (Suc x y) (* since y is changed, cannot move "B y" outside *)
thm Suc.prems — (A (Suc x), B v
thm Suc.IH — (A x = B 7%y = Cx 7y

13/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Controlling the Proof State and Isabelle’s Simplifier

Controlling the Proof State and Isabelle’s Simplifier

The Simplifier
¢ applies (conditional) equations exhaustively; these equations are also called simp rules

® equations are always oriented left-to-right: given equation c = [= r and goal

® try to find subterm [o in goal and replace it by ro provided that co simplifies to True

® consequence: equation should satisfy that both ¢ and r are somehow smaller than [

® examples
°®*n<m= (n < Suc m) = True might be used as simp rule
® Sucn<m = (n < m) = True will lead to non-termination

boolean proposition A is implicitly considered as equation A = True
® equations taken from implicit simpset

® certain commands (like datatype and fun) implicitly extend simpset

RT (DCS @ UIBK) session 4 15/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Globally Modifying the Simpset

Controlling the Proof State and Isabelle’s Simplifier

globally add equation to simpset: declare fact [simp] or lemma name [simp] :

globally delete simp rule from simpset: declare fact [simp dell

Locally Modifying the Simpset within a Proof

note [simp] = facts

note [simp del] = facts

Predefined Simpsets and Notable Simp Rules

depending on proof goal, several standard simpsets and simp rules might be useful

these are not used by default, since they can drastically change or blow-up your proof
goal (exponential increase)

numeral_eq_Suc: convert number literals into Suc-representation: 1000 = Suc(...)
Let_def: expand lets
ac_simps: use commutativity and associativity of operators

algebra_simps, field_simps: add distributivity laws, etc.

RT (DCS @ UIBK) session 4 16/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Controlling the Proof State and Isabelle’s Simplifier

The simp Method - Using Simp Rules Automatically
® simp - apply simplifier to first subgoal
® simp_all - apply simplifier to all subgoals
* modifier add: fact* - locally add equation as simp rule or activate predefined simpset
* modifier del: fact* - locally delete simp rules from simpset
* modifier only: fact* — only use specified simp rules
* modifier f1ip: fact® - locally delete simp rules and add their symmetric versions

Comparing simp and auto

® auto includes simp and simp_all, but also does classical reasoning

¢ advantage: more powerful than simp (modifiers: auto simp add: ...)
¢ disadvantages occur if auto does not completely solve a goal

® might turn provable goal into unprovable one

® new proof obligation might be unreadable (too many changes)

® starting a structured proof after auto is brittle, since result of auto will easily change

® use simp to have more control over proof state

RT (DCS @ UIBK) session 4 17/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Controlling the Proof State and Isabelle’s Simplifier

Controlling Proof State — Unfolding Equations Explicitly
® unfold fact" — method that unfolds equations (similar to simp only: fact™)

* unfolding fact” — exhaustively use equations for simplification

Controlling Proof State — Applying Single Equation

® subst fact — method that applies conditional equation and adds conditions as new goals

A More Complete Grammar of Proofs

prefix" sorry

prefix* by method method’

prefix* proof method’ statement* qed method’

prefix* done final step, if no goals left
apply method

unfolding fact”

using fact”

proof

prefix

® apply and unfolding are used for step-wise proof exploration

RT (DCS @ UIBK) session 4 18/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Controlling the Proof State and Isabelle’s Simplifier

Styles of Proofs

¢ structured proofs (Isar-proofs)
® Isabelle/Isar

¢ proof-language that was introduced here in this lecture
® Isar: Intelligible semi-automated reasoning
® PhD thesis of Makarius Wenzel

® intermediate goals are explicitly stated
¢ readable without inspecting proof state

® apply-style proofs (of form apply* done)
* traditional style of proofs (used in Coq, HOL-Light, ...)

® sequence of proof methods (apply this method, then that, then ...)
¢ readable if one inspects intermediate proof goals

® both styles have their own advantages; mixture is possible

® often: proof exploration via apply-style, then rewrite into Isar-style

RT (DCS @ UIBK) session 4 19/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Controlling the Proof State and Isabelle’s Simplifier

Demo

® soundness of insertion sort

RT (DCS @ UIBK) session 4 20/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Calculational Reasoning
	Proofs by Induction Revisited
	Controlling the Proof State and Isabelle's Simplifier

