
Summer Term 2024

Interactive Theorem Proving using Isabelle/HOL
Session 4

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss24/itpIsa/
https://isabelle.in.tum.de
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Outline

• Calculational Reasoning

• Proofs by Induction Revisited

• Controlling the Proof State and Isabelle’s Simplifier

RT (DCS @ UIBK) session 4 2/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Calculational Reasoning

Calculational Reasoning

Aim: Support Proofs with Chains of (In)Equalities

a = b ≤ c = d < e = f ,→ a < f

Solution: Combination of (In)Equalities by Transitivity

also – first occurrence in chain initializes auxiliary fact calculation to this; further
occurrences combine calculation and this via transitivity and update calculation
accordingly

Concluding a Chain of Transitive Combinations

finally – combine calculation and this via transitivity and update this accordingly

Also Useful for Calculational Reasoning

• implicit term abbreviation “ . . . ” refers to previous right-hand side of (in)equality
• method “.” tries to prove current subgoal by assumption

RT (DCS @ UIBK) session 4 4/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Calculational Reasoning

Example

fun sum :: "nat ⇒ nat" where
"sum 0 = 0"

| "sum (Suc n) = Suc n + sum n"

lemma "sum n = n * (n + 1) div 2"
proof (induction n)

case IH: (Suc n)
have "sum (Suc n) = (n + 1) + sum n" by auto
also have " . . . = (n + 1) + (n * (n + 1)) div 2" using IH by auto
also have " . . . = (2 * (n + 1) + (n * (n + 1))) div 2" by auto
also have " . . . = ((2 + n) * (n + 1)) div 2" by auto
also have " . . . = (Suc n * (Suc n + 1)) div 2" by auto
finally show ?case .

qed simp

RT (DCS @ UIBK) session 4 5/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Calculational Reasoning

Further Remarks

• calculational reasoning works with several relations, e.g., (=), (≤), (<), (⊆) and (⊂)
• calculational reasoning does not work with flipped relations such as (>);
(>) is just an abbreviation of λ x y. y < x
have "a > b" 〈proof 〉
also have " . . . > c" 〈proof 〉
finally (* fails *)

have "b < a" 〈proof 〉
also have "c < . . . " 〈proof 〉
finally (* here you see why *)

• calculational reasoning with equality supports contexts

have "a = f b" 〈proof 〉
also have "b = c" 〈proof 〉
also have "f . . . = d" 〈proof 〉
finally have "a = d" .

have "a ≤ b + c" 〈proof 〉
also have "c ≤ d" 〈proof 〉
finally have "a ≤ b + d" .
(* fails *)

RT (DCS @ UIBK) session 4 6/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proofs by Induction Revisited

Proofs by Induction Revisited

Example Induction Proof of Last Week – Reversing a List Twice

lemma rev_rev[simp]: "reverse (reverse xs) = xs"
proof (induction xs)

case (Cons x xs)
then show ?case

by (auto simp: rev_app)
qed auto

Approach
• state variable on which induction should be applied
• choose own variable names for each case
• identify and add auxiliary lemmas on demand
• solve trivial cases via qed auto
• not everything explained: usage of arbitrary variables and preconditions

RT (DCS @ UIBK) session 4 8/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proofs by Induction Revisited
Motivation – Fast Implementation of List Reversal

fun rev_it :: "'a list ⇒ 'a list ⇒ 'a list" where
"rev_it [] ys = ys"

| "rev_it (x # xs) ys = rev_it xs (x # ys)"

fun fast_rev :: "'a list ⇒ 'a list" where
"fast_rev xs = rev_it xs []"

lemma fast_rev: "fast_rev xs = reverse xs"

First Problem
• core property is rev_it xs [] = reverse xs
• induction on xs yields problematic subgoal: 2nd arguments of rev_it differ!
rev_it xs [] = reverse xs =⇒ rev_it xs [x] = reverse xs @ [x]
(minor non-relevant change: in the definition of reverse we replaced append by
Isabelle’s predefined append function (@))

RT (DCS @ UIBK) session 4 9/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proofs by Induction Revisited

Solving First Problem

• core property is rev_it xs [] = reverse xs
• proving this property by induction leads to an IH which is too weak:

2nd argument of rev_it is no longer [] in subgoal
• solution: generalize property

rev_it xs ys = reverse xs @ ys (creativity required)

Second Problem

• still the induction proofs fails on (simplified) subgoal
rev_it xs ys = reverse xs @ ys

=⇒ rev_it xs (x # ys) = reverse xs @ x # ys
• the 2nd arguments of rev_it still differ

(in particular the 2nd argument of rev_it in the IH is still the original ys)
• aim: perform induction on xs, but permit change of variable ys in IH

RT (DCS @ UIBK) session 4 10/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proofs by Induction Revisited

Solving Second Problem – Arbitrary Variables
• solution: tell induction method which variables should be arbitrary

perform induction on x for arbitrary y and z
• effect
• y and z can be freely instantiated in the IH
• y and z within induction proof have no connection to y and z outside induction proof

Finalizing Proof of Previous Slide

have "rev_it xs ys = reverse xs @ ys"
proof (induction xs arbitrary: ys)

case (Cons x xs ys) (* IH is: rev_it xs ?ys = reverse xs @ ?ys *)
thus ?case by auto

qed auto
• for each case one chooses names of arguments of constructor and arbitrary variables
• after “arbitrary:” there can be several variable names

RT (DCS @ UIBK) session 4 11/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proofs by Induction Revisited

Premises in Induction Proofs
• the induction method can also deal with goals containing premises, e.g.,
A x =⇒ B y =⇒ C x y
• whenever we are within case (CName . . .):
• CName.IH refers to IH
• CName.prems refers to premises

• since premises weaken IHs, or make IHs more complex to apply, it sometimes is
preferable to omit premises from property that is proven by induction

RT (DCS @ UIBK) session 4 12/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Proofs by Induction Revisited

Premises in Induction Proofs – Examples

have "A (x :: nat) =⇒ B y =⇒ C x y" proof (induction x)
case (Suc x) (* annoying, "B y" is contained in IH *)
thm Suc.prems ⟨A (Suc x), B y ⟩

thm Suc.IH ⟨A x =⇒ B y =⇒ C x y ⟩

assume "B y" (* if y is not changed, move properties of y outside *)
have "A (x :: nat) =⇒ C x y" proof (induction x)

case (Suc x)
thm Suc.prems ⟨A (Suc x) ⟩

thm Suc.IH ⟨A x =⇒ C x y ⟩

have "A (x :: nat) =⇒ B y =⇒ C x y" proof (induction x arbitrary: y)
case (Suc x y) (* since y is changed, cannot move "B y" outside *)
thm Suc.prems ⟨A (Suc x), B y ⟩

thm Suc.IH ⟨A x =⇒ B ?y =⇒ C x ?y ⟩

RT (DCS @ UIBK) session 4 13/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Controlling the Proof State and Isabelle’s Simplifier

Controlling the Proof State and Isabelle’s Simplifier

The Simplifier
• applies (conditional) equations exhaustively; these equations are also called simp rules
• equations are always oriented left-to-right: given equation c =⇒ l = r and goal
• try to find subterm lσ in goal and replace it by rσ provided that cσ simplifies to True
• consequence: equation should satisfy that both c and r are somehow smaller than l
• examples

• n < m =⇒ (n < Suc m) = True might be used as simp rule
• Suc n < m =⇒ (n < m) = True will lead to non-termination

• boolean proposition A is implicitly considered as equation A = True
• equations taken from implicit simpset
• certain commands (like datatype and fun) implicitly extend simpset

RT (DCS @ UIBK) session 4 15/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Controlling the Proof State and Isabelle’s Simplifier
Globally Modifying the Simpset
• globally add equation to simpset: declare fact [simp] or lemma name [simp]: . . .
• globally delete simp rule from simpset: declare fact [simp del]

Locally Modifying the Simpset within a Proof
• note [simp] = facts
• note [simp del] = facts

Predefined Simpsets and Notable Simp Rules
• depending on proof goal, several standard simpsets and simp rules might be useful
• these are not used by default, since they can drastically change or blow-up your proof

goal (exponential increase)
• numeral_eq_Suc: convert number literals into Suc-representation: 1000 = Suc(. . .)
• Let_def: expand lets
• ac_simps: use commutativity and associativity of operators
• algebra_simps, field_simps: add distributivity laws, etc.

RT (DCS @ UIBK) session 4 16/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Controlling the Proof State and Isabelle’s Simplifier
The simp Method – Using Simp Rules Automatically
• simp – apply simplifier to first subgoal
• simp_all – apply simplifier to all subgoals
• modifier add: fact∗ – locally add equation as simp rule or activate predefined simpset
• modifier del: fact∗ – locally delete simp rules from simpset
• modifier only: fact∗ – only use specified simp rules
• modifier flip: fact∗ – locally delete simp rules and add their symmetric versions

Comparing simp and auto
• auto includes simp and simp_all, but also does classical reasoning
• advantage: more powerful than simp (modifiers: auto simp add: . . .)
• disadvantages occur if auto does not completely solve a goal

• might turn provable goal into unprovable one
• new proof obligation might be unreadable (too many changes)
• starting a structured proof after auto is brittle, since result of auto will easily change

• use simp to have more control over proof state

RT (DCS @ UIBK) session 4 17/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Controlling the Proof State and Isabelle’s Simplifier
Controlling Proof State – Unfolding Equations Explicitly
• unfold fact+ – method that unfolds equations (similar to simp only: fact+)
• unfolding fact+ – exhaustively use equations for simplification

Controlling Proof State – Applying Single Equation
• subst fact – method that applies conditional equation and adds conditions as new goals

A More Complete Grammar of Proofs

proof ::= prefix∗ sorry
| prefix∗ by method method?

| prefix∗ proof method? statement∗ qed method?

| prefix∗ done final step, if no goals left

prefix ::= apply method
| unfolding fact+

| using fact+

• apply and unfolding are used for step-wise proof exploration
RT (DCS @ UIBK) session 4 18/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Controlling the Proof State and Isabelle’s Simplifier

Styles of Proofs

• structured proofs (Isar-proofs)
• Isabelle/Isar

• proof-language that was introduced here in this lecture
• Isar: Intelligible semi-automated reasoning
• PhD thesis of Makarius Wenzel

• intermediate goals are explicitly stated
• readable without inspecting proof state

• apply-style proofs (of form apply∗ done)
• traditional style of proofs (used in Coq, HOL-Light, . . .)
• sequence of proof methods (apply this method, then that, then . . .)
• readable if one inspects intermediate proof goals

• both styles have their own advantages; mixture is possible
• often: proof exploration via apply-style, then rewrite into Isar-style

RT (DCS @ UIBK) session 4 19/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Controlling the Proof State and Isabelle’s Simplifier

Demo

• soundness of insertion sort

RT (DCS @ UIBK) session 4 20/20

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Calculational Reasoning
	Proofs by Induction Revisited
	Controlling the Proof State and Isabelle's Simplifier

