

Interactive Theorem Proving using Isabelle/HOL

Session 4

René Thiemann

Department of Computer Science

Outline

Calculational Reasoning

• Proofs by Induction Revisited

• Controlling the Proof State and Isabelle's Simplifier

Calculational Reasoning

Aim: Support Proofs with Chains of (In)Equalities

$$a = b \le c = d < e = f \qquad \qquad \hookrightarrow \qquad \qquad a < f$$

Solution: Combination of (In)Equalities by Transitivity

also – first occurrence in chain initializes auxiliary fact calculation to this; further occurrences combine calculation and this via transitivity and update calculation accordingly

Concluding a Chain of Transitive Combinations

finally - combine calculation and this via transitivity and update this accordingly

Also Useful for Calculational Reasoning

- implicit term abbreviation " ... " refers to previous right-hand side of (in)equality
- method "." tries to prove current subgoal by assumption

Example

```
fun sum :: "nat \Rightarrow nat" where
  "sum 0 = 0"
| "sum (Suc n) = Suc n + sum n"
lemma "sum n = n * (n + 1) div 2"
proof (induction n)
  case IH: (Suc n)
 have "sum (Suc n) = (n + 1) + sum n" by auto
  also have "... = (n + 1) + (n * (n + 1)) div 2" using IH by auto
  also have "... = (2 * (n + 1) + (n * (n + 1))) div 2" by auto
  also have "... = ((2 + n) * (n + 1)) div 2" by auto
  also have "... = (Suc n * (Suc n + 1)) div 2" by auto
  finally show ?case .
qed simp
```

Further Remarks

- calculational reasoning works with several relations, e.g., $(=), (\leq), (<), (\subset)$ and (\subset)
- calculational reasoning does not work with flipped relations such as (>); (>) is just an abbreviation of $\lambda \times v$. v < xhave "a > b" $\langle proof \rangle$

also have "... > c" (proof) also have "c < ... " (proof)finally (* fails *)

```
have "b < a" (proof)
finally (* here you see why *)
```

calculational reasoning with equality supports contexts

have "a = f b" (proof)also have "b = c" $\langle proof \rangle$ also have "c \leq d" $\langle proof \rangle$ also have "f ... = d" (proof) finally have "a \leq b + d". finally have "a = d".

```
have "a \leq b + c" (proof)
(* fails *)
```

Proofs by Induction Revisited

Example Induction Proof of Last Week – Reversing a List Twice

```
lemma rev_rev[simp]: "reverse (reverse xs) = xs"
proof (induction xs)
    case (Cons x xs)
    then show ?case
        by (auto simp: rev_app)
ged auto
```

Approach

- state variable on which induction should be applied
- choose own variable names for each case
- identify and add auxiliary lemmas on demand
- solve trivial cases via qed auto
- not everything explained: usage of arbitrary variables and preconditions

Motivation – Fast Implementation of List Reversal

```
fun rev_it :: "'a list ⇒ 'a list ⇒ 'a list" where
    "rev_it [] ys = ys"
| "rev_it (x # xs) ys = rev_it xs (x # ys)"
```

```
fun fast_rev :: "'a list ⇒ 'a list" where
  "fast_rev xs = rev_it xs []"
```

```
lemma fast_rev: "fast_rev xs = reverse xs"
```

First Problem

- core property is rev_it xs [] = reverse xs
- induction on xs yields problematic subgoal: 2nd arguments of rev_it differ!
 rev_it xs [] = reverse xs ⇒ rev_it xs [x] = reverse xs @ [x]
 (minor non-relevant change: in the definition of reverse we replaced append by Isabelle's predefined append function (@))

Solving First Problem

- core property is rev_it xs [] = reverse xs
- proving this property by induction leads to an IH which is too weak: 2nd argument of rev_it is no longer [] in subgoal
- solution: generalize property

rev_it xs ys = reverse xs @ ys (creativity required)

Second Problem

• still the induction proofs fails on (simplified) subgoal

rev_it xs ys = reverse xs @ ys

 \implies rev_it xs (x # ys) = reverse xs @ x # ys

- the 2nd arguments of rev_it still differ (in particular the 2nd argument of rev_it in the IH is still the original ys)
- aim: perform induction on xs, but permit change of variable ys in IH

Solving Second Problem – Arbitrary Variables

• solution: tell induction method which variables should be arbitrary

perform induction on x for arbitrary y and z

• effect

- *y* and *z* can be freely instantiated in the IH
- y and z within induction proof have no connection to y and z outside induction proof

Finalizing Proof of Previous Slide

```
have "rev_it xs ys = reverse xs @ ys"
proof (induction xs arbitrary: ys)
   case (Cons x xs ys) (* IH is: rev_it xs ?ys = reverse xs @ ?ys *)
   thus ?case by auto
ged auto
```

- for each case one chooses names of arguments of constructor and arbitrary variables
- after "arbitrary:" there can be several variable names

Premises in Induction Proofs

• the induction method can also deal with goals containing premises, e.g.,

 $A \mathbf{x} \Longrightarrow B \mathbf{y} \Longrightarrow C \mathbf{x} \mathbf{y}$

- whenever we are within case (CName ...):
 - CName. IH refers to IH
 - CName.prems refers to premises
- since premises weaken IHs, or make IHs more complex to apply, it sometimes is preferable to omit premises from property that is proven by induction

Premises in Induction Proofs – Examples

have "A (x :: nat) \implies B y \implies C x y" proof (induction x) case (Suc x) (* annoying, "B y" is contained in IH *) thm Suc.prems — $\langle A (Suc x), B \rangle$ thm Suc.IH $- \langle A | \mathbf{x} \implies B | \mathbf{y} \implies C | \mathbf{x} | \mathbf{y} \rangle$ assume "B y" (* if y is not changed, move properties of y outside *) have "A (x :: nat) \implies C x y" proof (induction x) case (Suc \mathbf{x}) thm Suc.prems — $\langle A (Suc x) \rangle$ thm Suc.IH $- \langle A \mathbf{x} \implies C \mathbf{x} \mathbf{y} \rangle$ have "A (x :: nat) \implies B y \implies C x y" proof (induction x arbitrary: y) case (Suc x y) (* since y is changed, cannot move "B y" outside *) thm Suc.prems — $\langle A (Suc x), B \rangle$ thm Suc.IH $-\langle A \rangle x \implies B \rangle ? y \implies C \rangle x \rangle ? y >$

Controlling the Proof State and Isabelle's Simplifier

The Simplifier

- applies (conditional) equations exhaustively; these equations are also called simp rules
- equations are always oriented left-to-right: given equation $c \implies l = r$ and goal
 - try to find subterm $l\sigma$ in goal and replace it by $r\sigma$ provided that $c\sigma$ simplifies to True
 - consequence: equation should satisfy that both c and r are somehow smaller than l
 - examples
 - $n < m \implies (n < Suc m) = True$
 - Suc $n < m \implies (n < m) = True$

might be used as simp rule will lead to non-termination

- boolean proposition A is implicitly considered as equation A = True
- equations taken from implicit simpset
- certain commands (like datatype and fun) implicitly extend simpset

Globally Modifying the Simpset

- globally add equation to simpset: declare fact [simp] or lemma name [simp]: ...
- globally delete simp rule from simpset: declare fact [simp del]

Locally Modifying the Simpset within a Proof

- note [simp] = facts
- note [simp del] = facts

Predefined Simpsets and Notable Simp Rules

- depending on proof goal, several standard simpsets and simp rules might be useful
- these are not used by default, since they can drastically change or blow-up your proof goal (exponential increase)
- numeral_eq_Suc: convert number literals into Suc-representation: 1000 = Suc(...)
- Let_def: expand lets
- ac_simps: use commutativity and associativity of operators
- algebra_simps, field_simps: add distributivity laws, etc.

The simp Method – Using Simp Rules Automatically

- simp apply simplifier to first subgoal
- simp_all apply simplifier to all subgoals
- modifier add: *fact** locally add equation as simp rule or activate predefined simpset
- modifier del: *fact*^{*} locally delete simp rules from simpset
- modifier only: *fact*^{*} only use specified simp rules
- modifier flip: *fact** locally delete simp rules and add their symmetric versions

Comparing simp and auto

- auto includes simp and simp_all, but also does classical reasoning
 - advantage: more powerful than simp (modifiers: auto simp add: ...)
 - disadvantages occur if auto does not completely solve a goal
 - might turn provable goal into unprovable one
 - new proof obligation might be unreadable (too many changes)
 - starting a structured proof after auto is brittle, since result of auto will easily change
- use simp to have more control over proof state

Controlling Proof State – Unfolding Equations Explicitly

- unfold *fact*⁺ method that unfolds equations (similar to simp only: *fact*⁺)
- unfolding *fact*⁺ exhaustively use equations for simplification

Controlling Proof State – Applying Single Equation

• subst *fact* – method that applies conditional equation and adds conditions as new goals

A More Complete Grammar of Proofs

• apply and unfolding are used for step-wise proof exploration

Styles of Proofs

- structured proofs (Isar-proofs)
 - Isabelle/Isar
 - proof-language that was introduced here in this lecture
 - Isar: Intelligible semi-automated reasoning
 - PhD thesis of Makarius Wenzel
 - intermediate goals are explicitly stated
 - readable without inspecting proof state
- apply-style proofs (of form apply* done)
 - traditional style of proofs (used in Coq, HOL-Light, ...)
 - sequence of proof methods (apply this method, then that, then ...)
 - readable if one inspects intermediate proof goals
- both styles have their own advantages; mixture is possible
- often: proof exploration via apply-style, then rewrite into Isar-style

Demo

• soundness of insertion sort