
Summer Term 2024

Interactive Theorem Proving using Isabelle/HOL
Session 5

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss24/itpIsa/
https://isabelle.in.tum.de
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/


Outline

• Function Definitions Revisited

• Manual Termination Proofs

• Attributes

RT (DCS @ UIBK) session 5 2/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Function Definitions Revisited



Function Definitions Revisited

Overlapping Equations

• when declaring a new function via fun, the equations may be overlapping
• internally, the equations are preprocessed to become non-overlapping;

patterns are instantiated on demand
• effect of preprocessing becomes visible in various places, e.g., the simplification rules

Example

fun drop_last :: "'a list ⇒ 'a list" where
"drop_last (x # y # ys) = x # drop_last (y # ys)"

| "drop_last xs = []"
is translated into function without overlap, which then determines simp rules

fun drop_last :: "'a list ⇒ 'a list" where
"drop_last (x # y # ys) = x # drop_last (y # ys)"

| "drop_last [] = []"
| "drop_last [v] = []"

RT (DCS @ UIBK) session 5 4/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Function Definitions Revisited

Underspecification

• fun accepts function definitions where not all of the cases have been covered
fun head1 where "head1 (x # xs) = x"
• case expressions do not enforce that all cases are covered
fun head2 where "head2 xs = (case xs of x # _ ⇒ x)"
• however, HOL is a logic of total functions; what is the value of head1 [] or head2 []?
• to model underspecification, Isabelle/HOL has a special constant undefined :: 'a
• undefined :: 'a is an ordinary value of type 'a and not some kind of error
• undefined :: nat is a natural number (but we don’t know which one)
• undefined :: bool is either True or False (but we don’t know the alternative)

• undefined is used to fill in missing cases during preprocessing
"head1 [] = undefined"
"head2 xs = (case xs of x # _ ⇒ x | [] ⇒ undefined)"
• the missing cases are usually not revealed to the user, e.g., head1.simps only consists

of original equation

RT (DCS @ UIBK) session 5 5/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Function Definitions Revisited
Computation Induction
• consider again
fun drop_last :: "'a list ⇒ 'a list" where

"drop_last (x # y # ys) = x # drop_last (y # ys)"
| "drop_last [] = []"
| "drop_last [v] = []"
• aim: prove lemma "length (drop_last xs) = length xs - 1"
• “natural” induction scheme (computation induction) follows structure of algorithm
• consider all cases of function, i.e., x # y # ys, [] and [v] for drop_last
• provide IH for recursive calls, i.e., for y # ys in first case of drop_last
• computation induction is sound, since termination has been proven by fun
• computation induction rule is automatically generated by fun, e.g., drop_last.induct is:

(
∧

x y ys. P (y # ys) =⇒ P (x # y # ys)) =⇒ P [] =⇒ (
∧

v. P [v])
=⇒ P xs

• induction-method can use custom induction rule via rule: induct_thm
lemma . . . by (induction xs rule: drop_last.induct) auto
• case names when using computation induction are just numbers (1, 2, . . . )

RT (DCS @ UIBK) session 5 6/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Function Definitions Revisited

Computation Induction and Underspecification

• computation induction considers all cases of function
• what if function is underspecified?
• example

fun head where "head (x # xs) = x"
• potential computation induction rule is incorrect

(
∧

x xs. P (x # xs)) =⇒ P xs

• obviously, also the missing cases have to covered, these become visible in induction rule

thm head.induct: (
∧

x xs. P (x # xs)) =⇒ P [] =⇒ P xs

RT (DCS @ UIBK) session 5 7/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Manual Termination Proofs



Manual Termination Proofs

Failing Termination Proofs

• consider Isabelle functions
fun gen_list :: "nat ⇒ nat ⇒ nat list" where (* gen_list n m = [n .. m] *)

"gen_list n m = (if n ≤ m then n # gen_list (Suc n) m else [])"
fun split :: "_ ⇒ _ list ⇒ _ list × _ list" where . . .
fun qsort :: "'a :: linorder list ⇒ 'a list" where

"qsort [] = []"
| "qsort (x # xs) = (case split x xs of

(low, high) ⇒ qsort low @ [x] @ qsort high)"

• problem: fun fails for qsort and gen_list, since it cannot find termination proof
• there are several reasons why a termination proof cannot be found

1. the internal heuristic is too weak (here: neither n nor m decrease in gen_list)
2. the heuristic is able to find the right terminating argument, but auxiliary facts are missing

(here: splitting a list into low and high does not increase the length)
3. in case of higher-order recursion unprovable termination conditions might be generated
4. the function does not terminate

• solution in cases 1 – 3: perform termination proofs manually

RT (DCS @ UIBK) session 5 9/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Manual Termination Proofs
The function Command
• via function one can separate a function definition from its termination proof
• outer syntax:

function (sequential)? name :: ty where eqns 〈proof 〉
termination 〈proof 〉
• explanations
• in the proof after function one has to show that all cases have been covered and that no

conflicting results may occur in case of overlapping equations
• for underspecified or overlapping equations, use (sequential) to trigger preprocessing
• then resulting proof is always the same: by pat_completeness auto

• only after successful termination proof, simp rules and induction scheme become available

• fun is just a wrapper around function:

fun name where eqns

is the same as

function (sequential) name where eqns by pat_completeness auto
termination by lexicographic_order

RT (DCS @ UIBK) session 5 10/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Manual Termination Proofs
Manual Termination Proofs
• termination proofs of function f are usually of the following shape
• provide a well-founded relation <
• show arg s_ r e c < arg s_ lh s for each equation f arg s_ lh s = . . . f arg s_ r e c . . . ,

taking into account if-then-else and case-expressions in the context indicated by ... ...
• if f has multiple arguments, then these are automatically converted into tuples

• termination proofs are started in Isabelle via
• the standard proof method (where the relation becomes a schematic variable)
• or via the method relation l e s s _ than where the relation is directly fixed

• important well-founded relations are
• measure (m :: _ ⇒ nat)

• compare elements by mapping them to natural numbers
• examples for m
length, count :: tree ⇒ nat, height :: tree ⇒ nat, id :: nat ⇒ nat

• measures (ms :: (_ ⇒ nat) list)
• lexicographic combination of multiple measures from left to right
• this is what is internally used by method lexicographic_order

• well-foundedness of both measure m and measures ms is by simp

RT (DCS @ UIBK) session 5 11/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Manual Termination Proofs

Example Termination Proof

function gen_list :: "nat ⇒ nat ⇒ nat list" where
"gen_list n m = (if n ≤ m then n # gen_list (Suc n) m else [])"
by pat_completeness auto

termination
proof
1. wf ?R
2.
∧

n m. n ≤ m =⇒ ((Suc n, m), (n, m)) ∈ ?R
oops

termination by (relation "measure (λ (n,m). Suc m - n)") auto
(* after relation command and discharging trivial wf-requirement,

the goal is equivalent to: *)
1.
∧

n m. n ≤ m =⇒ Suc m - Suc n < Suc m - n

RT (DCS @ UIBK) session 5 12/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Manual Termination Proofs

Example Termination Proof

function qsort :: "'a :: linorder list ⇒ 'a list" where
"qsort [] = []"

| "qsort (x # xs) = (case split x xs of
(low, high) ⇒ qsort low @ [x] @ qsort high)"

by pat_completeness auto

termination
proof (relation "measure length")
(* after simplification, the goals are: *)
1.
∧

. . . (low, high) = split x xs =⇒ length low < Suc (length xs)
2.
∧

. . . (low, high) = split x xs =⇒ length high < Suc (length xs)

RT (DCS @ UIBK) session 5 13/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Manual Termination Proofs
A Simpset for Termination Proofs
• simp lemmas that are particularly useful for termination proofs can be stored in a

dedicated simpset: termination_simp
• method lexicographic_order in particular tries to finish termination proof

obligations by auto simp: termination_simp
• having adjusted this simpset accordingly, proofs might become automatic again

An Automatic Termination Proof for Quicksort

(* show that split is just two applications of filter;
advantage: many facts about filter are already known *)

lemma split: "split a xs = (filter (λ x. x ≤ a) xs, filter (λ x. ¬ x ≤ a) xs)"
by (induction xs) auto

declare split[termination_simp]

fun qsort :: "'a :: linorder list ⇒ 'a list" where
"qsort [] = []"

| "qsort (x # xs) = (case split x xs of
(low, high) ⇒ qsort low @ [x] @ qsort high)"

RT (DCS @ UIBK) session 5 14/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Manual Termination Proofs

Termination versus Termination

• two notions of termination
1. function definitions require termination proof
2. application of simp rules should terminate

• 1 does not imply 2!
• reason: evaluation strategy of if-then-else is ignored by simplifier
• example: lhs of gen_list.simps is always applicable and introduces recursive call

gen_list ?n ?m = (if ?n ≤ ?m then ?n # gen_list (Suc ?n) ?m else [])
• in these cases it is advisable to

• globally delete simp rules from simpset

declare gen_list.simps[simp del]
• locally add simp rules in proof for specific arguments via attribute of
case (1 n m)
note [simp] = gen_list.simps[of n m]

(* instantiated simp rule *)
gen_list n m = (if n ≤ m then n # gen_list (Suc n) m else [])

RT (DCS @ UIBK) session 5 15/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Manual Termination Proofs

Example Proof

declare gen_list.simps[simp del]

lemma "length (gen_list n m) = Suc m - n"
proof (induction n m rule: gen_list.induct)

case (1 n m)
note [simp] = gen_list.simps[of n m]
from 1 show ?case by auto

qed

• since gen_list takes two arguments, induction is performed simultaneously on both
variables (induction n m rule: gen_list.induct)
• after activating simp rules locally, proof is automatic thanks to suitable shape of

computation induction rule

(
∧

n m. (n ≤ m =⇒ P (Suc n) m) =⇒ P n m) =⇒ P x y
(note that IH is only accessible if we are in the correct if-then-else branch)

RT (DCS @ UIBK) session 5 16/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Attributes



Attributes

Attributes

• attributes can be used to change a fact
• these changes are usually made to help the automation
• instantiate variables

• choice of existential witness or of universal elimination
• non-terminating simp rules

• discharge assumptions
• obtain an equation in the other direction

• syntax: fact[attr1, ..., attrn]

RT (DCS @ UIBK) session 5 18/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Attributes
Some Useful Attributes
• of – instantiation of schematic variables (by position from left to right)

⟨?x = ?y =⇒ ?y = ?z =⇒ ?x = ?z ⟩[of _ 5 x]⇝
⟨?x = 5 =⇒ 5 = x =⇒ ?x = x ⟩

• where – instantiation of schematic variables (by name)
⟨?x = ?y =⇒ ?y = ?z =⇒ ?x = ?z ⟩[where y = 5 and z = x]⇝
⟨?x = 5 =⇒ 5 = x =⇒ ?x = x ⟩

• OF – discharge assumptions using existing facts (by position)
⟨?P −→ ?Q =⇒ ?P =⇒ ?Q ⟩[OF ⟨A −→ B x ⟩]⇝ ⟨A =⇒ B x ⟩

• symmetric – get symmetric version of equation
⟨?P =⇒ ?a = ?b ⟩[symmetric]⇝ ⟨?P =⇒ ?b = ?a ⟩

• rule_format – replace HOL connectives by Pure connectives
⟨∀x. ?P x −→ ?Q ⟩[rule_format]⇝ ⟨?P ?x =⇒ ?Q ⟩

• simplified – view result after simplification, e.g.,
case (Cons x xs) thm Cons.IH[simplified]
• combined example: ⟨∀x. A x −→ B x ⟩[rule_format, of 5]⇝ ⟨A 5 =⇒ B 5 ⟩

RT (DCS @ UIBK) session 5 19/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Attributes

Attributes versus Isar-Style

• most of the attributes can easily be simulated by standard Isar proofs
• example
• instead of writing
from Cons.IH(2)[of 3] other_fact show ?case by auto
• one could also write
from Cons.IH
have ⟨(* spelled out version of second IH with value 3 inserted *) ⟩

by auto
with other_fact show ?case by auto

• advantage of attributes: generate required facts on the fly, without having to type a
(large) statement
• advantage of Isar style: proof is more readable without looking at Isabelle output

RT (DCS @ UIBK) session 5 20/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Attributes

Demo

soundness of quicksort (covers computation induction, termination proof, attributes)

RT (DCS @ UIBK) session 5 21/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Function Definitions Revisited
	Manual Termination Proofs
	Attributes

