. u N ive rS|ta't Summer Term 2024 Outline
W innsbruck

e Function Definitions Revisited

¢ Manual Termination Proofs

Interactive Theorem Proving using Isabelle/HOL

Session 5

e Attributes

René Thiemann

Department of Computer Science

RT (DCS @ UIBK) session 5 2/21

Function Definitions Revisited

Overlapping Equations

® when declaring a new function via fun, the equations may be overlapping

® internally, the equations are preprocessed to become non-overlapping;
patterns are instantiated on demand

e effect of preprocessing becomes visible in various places, e.g., the simplification rules

Function Definitions Revisited Example

fun drop_last :: "'a list = 'a list" where
"drop_last (x # y # ys) = x # drop_last (y # ys)"
| "drop_last xs = []"
is translated into function without overlap, which then determines simp rules

fun drop_last :: "'a list = 'a list" where
"drop_last (x # y # ys) = x # drop_last (y # ys)"

| "drop_last [] = [1"

| "drop_last [v] = [I"

RT (DCS @ UIBK) session 5 4/21

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss24/itpIsa/
https://isabelle.in.tum.de
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Function Definitions Revisited

Underspecification

fun accepts function definitions where not all of the cases have been covered
fun headl where "headl (x # xs) = x"

case expressions do not enforce that all cases are covered

fun head2 where "head2 xs = (case xs of x # _ = x)"

however, HOL is a logic of total functions; what is the value of head1 [] or head2 []?
to model underspecification, Isabelle/HOL has a special constant undefined :: 'a

undefined 'a is an ordinary value of type 'a and not some kind of error

® undefined ::
® undefined ::

nat is a natural number (but we don’t know which one)

bool is either True or False (but we don’t know the alternative)
undefined is used to fill in missing cases during preprocessing

"headl [] = undefined"

"head2 xs = (case xs of x # _ = x | [= undefined)"

the missing cases are usually not revealed to the user, e.g., headl.simps only consists
of original equation

RT (DCS @ UIBK) session 5 5/21

Function Definitions Revisited

Computation Induction and Underspecification

computation induction considers all cases of function
what if function is underspecified?

example

fun head where "head (x # xs) = x"
potential computation induction rule is incorrect
(Ax xs. P (x # xs)) = P xs

obviously, also the missing cases have to covered, these become visible in induction rule
thm head.induct: (Ax xs. P (x # xs)) = P [] = P xs

RT (DCS @ UIBK) session 5 7/21

Function Definitions Revisited

Computation Induction
® consider again

fun drop_last "'a list = 'a list" where
"drop_last (x # y # ys) = x # drop_last (y # ys)"
| "drop_last [1 = [I"
| "drop_last [v] = []"
aim: prove lemma "length (drop_last xs) = length xs - 1"
“natural” induction scheme (computation induction) follows structure of algorithm

® consider all cases of function, i.e., x # y # ys, [] and [v] for drop_last

® provide IH for recursive calls, i.e., for y # ys in first case of drop_last

® computation induction is sound, since termination has been proven by fun

® computation induction rule is automatically generated by fun, e.g., drop_last.induct is:

(ANxyys. P(y#ys) =P (x#y#ys) = P[] = (Av. P [v])
— P xs

induction-method can use custom induction rule via rule: induct thm
lemma ... by (induction xs rule: drop_last.induct) auto

case names when using computation induction are just numbers (1, 2, ...)

RT (DCS @ UIBK) session 5 6/21

Manual Termination Proofs

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Manual Termination Proofs

Failing Termination Proofs

® consider Isabelle functions
fun gen_list "nat = nat = nat list" where (% gen_list nm = [n .. m] %)
"gen_list n m = (if n < m then n # gen_list (Suc n) m else []1)"
fun split :: "_ = _ list = _ list X _ list" where
fun gsort :: "'a :: linorder list = 'a list" where
"gsort [1 = [1"
| "gsort (x # xs) = (case split x xs of
(low, high) = gsort low @ [x] @ gsort high)"

® problem: fun fails for gsort and gen_1ist, since it cannot find termination proof
® there are several reasons why a termination proof cannot be found

1. the internal heuristic is too weak (here: neither n nor m decrease in gen_list)

2. the heuristic is able to find the right terminating argument, but auxiliary facts are missing
(here: splitting a list into 1ow and high does not increase the length)

3. in case of higher-order recursion unprovable termination conditions might be generated

4. the function does not terminate

® solution in cases 1 — 3: perform termination proofs manually

RT (DCS @ UIBK) session 5 9/21

Manual Termination Proofs

Manual Termination Proofs

® termination proofs of function f are usually of the following shape
® provide a well-founded relation <
® show args _rec < args_Llhs for each equation f args lhs = f args_rec ...,
taking into account if-then-else and case-expressions in the context indicated by
® if f has multiple arguments, then these are automatically converted into tuples
® termination proofs are started in Isabelle via
® the standard proof method (where the relation becomes a schematic variable)
® orvia the method relation less than where the relation is directly fixed
® important well-founded relations are
® measure (m = nat)
® compare elements by mapping them to natural numbers
® examples for m
length, count :: tree = nat, height
® measures (ms (_ = nat) list)
® lexicographic combination of multiple measures from left to right
¢ this is what is internally used by method lexicographic_order

:: tree = nat,id :: nat = nat

® well-foundedness of both measure m and measures ms is by simp

RT (DCS @ UIBK) session 5 11/21

Manual Termination Proofs

The function Command
® via function one can separate a function definition from its termination proof

® outer syntax:

function (sequential)’ name ty where eqns (proof)
termination (proof)
® explanations

® in the proof after function one has to show that all cases have been covered and that no
conflicting results may occur in case of overlapping equations

¢ for underspecified or overlapping equations, use (sequential) to trigger preprocessing
® then resulting proof is always the same: by pat_completeness auto

® only after successful termination proof, simp rules and induction scheme become available

e fun is just a wrapper around function:
fun name where eqns
is the same as

function (sequential) name where eqns by pat_completeness auto

termination by lexicographic_order
RT (DCS @ UIBK) session 5 10/21

Manual Termination Proofs

Example Termination Proof

function gen_list "nat = nat = nat list" where
"gen_list n m = (if n < m then n # gen_list (Suc n) m else [])"
by pat_completeness auto

termination
proof

1. wf 7R

2. Anm. n<m = ((Suc n, m), (n, m)) € 7R
oops

termination by (relation "measure (A (n,m). Suc m - n)") auto

(* after relation command and discharging trivial wf-requirement,
the goal is equivalent to: *)

1. Anm. n<m = Sucm - Sucn<Sucm-n

RT (DCS @ UIBK) session 5 12/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Manual Termination Proofs

Example Termination Proof

function gsort :: "'a :: linorder list = 'a list" where
"qSOI't [] = [] n
| "gsort (x # xs) = (case split x xs of

(low, high) = gsort low @ [x] @ gsort high)"
by pat_completeness auto

termination
proof (relation "measure length")
(* after simplification, the goals are: *)

1. A\ ... (low, high) = split x xs = length low < Suc (length xs)
2. A ... (low, high) = split x xs = length high < Suc (length xs)
RT (DCS @ UIBK) session 5 13/21

Manual Termination Proofs

Termination versus Termination

® two notions of termination
1. function definitions require termination proof
2. application of simp rules should terminate
® 1 does not imply 2!
® reason: evaluation strategy of if-then-else is ignored by simplifier
® example: lhs of gen_list.simps is always applicable and introduces recursive call
gen_list 7n ?m = (if ?n < 7m then 7n # gen_list (Suc 7n) 7m else [])
® in these cases it is advisable to
¢ globally delete simp rules from simpset
declare gen_list.simps[simp del]
® locally add simp rules in proof for specific arguments via attribute of

case (1 n m)
note [simp] = gen_list.simps[of n m]

(* instantiated simp rule *)
gen_list n m = (if n < m then n # gen_list (Suc n) m else [])

RT (DCS @ UIBK) session 5 15/21

A Simpset for Termination Proofs

Manual Termination Proofs

® simp lemmas that are particularly useful for termination proofs can be stored in a
dedicated simpset: termination_simp

® method lexicographic_order in particular tries to finish termination proof
obligations by auto simp: termination_simp

® having adjusted this simpset accordingly, proofs might become automatic again

An Automatic Termination Proof for Quicksort

(* show that split is just two applications of filter;
advantage: many facts about filter are already known *)

lemma split: "split a xs = (filter (A x. x < a) xs, filter (A x. = x < a) xs)"

by (induction xs) auto

declare split[termination_simp]

fun gsort :: "'a :: linorder list = 'a list"
"qsort [] = [] n
| "gsort (x # xs) = (case split x xs of

where

(low, high) = gsort low @ [x] @ gsort high)"

RT (DCS @ UIBK)

Example Proof

declare gen_list.simps[simp dell

session 5

lemma "length (gen_list n m) = Suc m - n"

proof (induction n m rule: gen_list.induct)

case (1 n m)

note [simp] = gen_list.simps[of n m]

from 1 show 7case by auto
ged

14/21

Manual Termination Proofs

® since gen_list takes two arguments, induction is performed simultaneously on both

variables (induction n m rule: gen_list.induct)

® after activating simp rules locally, proof is automatic thanks to suitable shape of

computation induction rule

(Abm. @<m =P (Sucn)m) = Pnm) = Pxy
(note that IH is only accessible if we are in the correct if-then-else branch)

RT (DCS @ UIBK)

session 5

16/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Attributes

Attributes

Some Useful Attributes

of — instantiation of schematic variables (by position from left to right)

(?7x = 7y = 7y = 7z = 7x = 7z)[of _ 5 x] w

(?7x =5 = b = x = 7x = x)

where - instantiation of schematic variables (by name)

(?7x = 7y = 7y = 7z = 7x = ?2)[where y = 5 and z = x] ~»
(?7x =5 = b =x = 7x = x)

OF - discharge assumptions using existing facts (by position)

(7P — 7 = 7P — ?Q[0F (A — B x)] ~» (A = B x)

symmetric — get symmetric version of equation
(PP = 7a = 7b) [symmetric] w (7P = ?b = 7a)

rule_format - replace HOL connectives by Pure connectives
(Vx. ?P x — ?Q) [rule_format] w (7P ?x — 7Q)

simplified - view result after simplification, e.g.,
case (Cons x xs) thm Cons.IH[simplified]

combined example: (Vx. A x — B x)[rule_format, of 5] » (A 5 = B 5)

RT (DCS @ UIBK) session 5 19/21

Attributes

e attributes can be used to change a fact

® these changes are usually made to help the automation

® instantiate variables

® choice of existential witness or of universal elimination

® non-terminating simp rules
® discharge assumptions

® obtain an equation in the other direction

e syntax: fact[attrq, ..., attr,]

RT (DCS @ UIBK)

Attributes versus Isar-Style

® most of the attributes can easily be simulated by standard Isar proofs

® example
® instead of writing

from Cons.IH(2) [of 3] other_fact show 7case by auto

® one could also write
from Cons.IH

session 5

Attributes

18/21

Attributes

have «(* spelled out version of second IH with value 3 inserted *)»

by auto

with other_fact show 7case by auto

® advantage of attributes: generate required facts on the fly, without having to type a

(large) statement

® advantage of Isar style: proof is more readable without looking at Isabelle output

RT (DCS @ UIBK)

session 5

20/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Attributes

Demo

soundness of quicksort (covers computation induction, termination proof, attributes)

RT (DCS @ UIBK) session 5 21/21

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Function Definitions Revisited
	Manual Termination Proofs
	Attributes

