

Summer Term 2024

Outline

UNIVERSITAS LEOPOLDINO - FEANCISCEA

Inductive Definitions

Interactive Theorem Proving using Isabelle/HOL

Session 7

René Thiemann

Department of Computer Science

- Inductive Definitions
- Rule Inversion and Rule Induction
- Sets in Isabelle

RT (DCS @ UIBK)

session 7

2/18

Inductive Definitions

 $f x_1 \dots x_n = rhs$ $f_def: f x_1 \dots x_n = rhs$

Definition Principles so Far

• definition

- non-recursive definitions
- no pattern matching on left-hand sides, form:
- no simp-rules, but obtain defining equation:

• fun or function

- recursive functions definitions including pattern matching on lhss
- functions have to be terminating
- obtain simp-rules and induction scheme

Purpose of Definition

- definition is the most primitive definition principle
- definition can be used formalize certain concepts
- after having derived interface-lemmas to concept, one might hide internal definition (in particular the defining equation is by default not added to simpset)
- many higher-level definition principles internally are based on definition
 - example: function uses some internal definitions which are hidden to user (demo)

Example: Injectivity

- definition injective :: "('a \Rightarrow 'b) \Rightarrow bool" where "injective $f = (\forall x \ y. \ f \ x = f \ y \longrightarrow x = y)$ "
- lemma injectiveI: "(\land x y. f x = f y \implies x = y) \implies injective f" unfolding injective_def by auto

lemma injectiveD: "injective $f \implies f x = f y \implies x = y$ " unfolding injective_def by auto (* hide injective_def at this point *)

```
RT (DCS @ UIBK)
```

Limits of definition and function

- restriction of definition and function: no capability to conveniently model potentially non-terminating processes
- consider datatype prog, modelling simple programming language with while-loops
- aim: define eval function, e.g., of type prog \Rightarrow state \Rightarrow state option, that returns state after complete evaluation of program or fails
- attempt 1: define eval via function
 - not possible, since termination is not provable (some programs are non-terminating)
- attempt 2: fuel-based approach

(introduce some bounded resource to ensure termination)

- first define eval_b :: nat \Rightarrow prog \Rightarrow state \Rightarrow state option, a bounded version of eval that restricts the number of loop-iterations • eval_b can be defined via fun
- eval $p = (if \exists n. eval_b n p \le \neq None$ then eval_b (SOME n. eval_b n p s \neq None) p s else None)
- reasoning with this fuel-based-approach is at least tedious

```
session 7
                                                                             5/18
                                                                                            RT (DCS @ UIBK)
                                                                                                                                                                     session 7
                                                                                                                                                                                                                                                  6/18
```

Inductive Definitions

Solution: Inductive Predicates

Inductive Definition:

model eval as inductive predicate of type prog \Rightarrow state \Rightarrow state \Rightarrow bool that correspond to standard inference rules of a big-step semantics

$$\frac{c \text{ is not satisfied in } s}{(while \ c \ P) \ s \stackrel{eval}{\hookrightarrow} s} (while \ false)}$$

$$\frac{c \text{ is satisfied in } s \quad P \ s \stackrel{eval}{\hookrightarrow} t \quad (while \ c \ P) \ t \stackrel{eval}{\hookrightarrow} u}{(while \ c \ P) \ s \stackrel{eval}{\hookrightarrow} u} (while \ true)}$$

(further rules for assignment, sequential composition, etc.)

Demo

RT (DCS @ UIBK)

modeling programming language semantics

Inductive Predicates in More Detail

- constant P :: $a_1 \Rightarrow \dots \Rightarrow a_n \Rightarrow$ bool is *n*-ary predicate
- inductive predicate P is inductively defined, that is, by inference rules
- meaning: input satisfies P iff witnessed by arbitrary (finite) application of inference rules
- syntax

inductive P :: "'a₁ \Rightarrow ... \Rightarrow 'a_n \Rightarrow bool" where ... followed by |-separated list of propositions (inference rules)

generated facts

P.intros	inference rules
P.cases	case analysis (rule inversion)
P.induct	induction (rule induction)
P.simps	equational definition

Inductive Definitions

<pre>Odd Numbers, Inductively • textual description 1 is odd if n is odd, then also n + 2 is odd • inference rules 1 • inductive is_odd :: "nat ⇒ where "is_odd 1" "is_odd n ⇒ is_odd (n </pre>		Inductive Definitions	 given set <i>S</i>, let characteristic f inductive sets <i>inductive_s</i> Example - Reflex (binary) relation given relation <i>x</i> R x₁ R x₂ R inductive_s where ref1 [s step: " remark: one car 	Inductively Defined Sets If χ_S be characteristic function such that $\chi_S(x)$ is true iff $x \in S$ function is obviously predicate are common special case and come with special syntax Let $S :: "'a_1 \Rightarrow \dots 'a_n \Rightarrow 'a \text{ set" for } c_1 \dots c_n$ when Rive Transitive Closure ons encoded by type ('a × 'b) set R , reflexive transitive closure, often written R^* , given by $(x, y) \in R^*$ if $\therefore R x_n R y$ for arbitrary x_1, x_2, \dots, x_n (think: path in graph) Let star :: "('a × 'a) set \Rightarrow ('a × 'a) set" for R simp]: "(x, x) \in star R" (x, y) $\in R \implies (y, z) \in$ star $R \implies (x, z) \in$ star R^* an label individual inference rules; these names will then be used for inductions, and as names of introduction rules (star.step)	
RT (DCS @ UIBK)	session 7	9/18	Case-analyses, RT (DCS @ UIBK)	session 7	10/18

Rule Inversion and Rule Induction

Rule Inversion and Rule Induction

Rule Inversion

- reasoning backwards "which rule could have been used to derive some fact"
- case analysis according to inference rules
- if inductive predicate/set is first of current facts, cases applies rule inversion implicitly
- otherwise, use "cases rule: c.cases" for inductively defined constant c

Demo – Zero is Not Odd

lemma is_odd0: "is_odd 0 = False" sorry

Rule Induction

- induction according to inference rules
- if inductive predicate/set is first of current facts, induction applies rule induction implicitly
- otherwise, use "induction rule: c.induct" for inductively defined constant c
- case names are taken from names of inference rules (if any, otherwise numbered)

Demo – If Number is Odd it's Odd

- lemma is_odd_odd: assumes "is_odd x" shows "odd x" sorry
- remarks
 - odd x is just an abbreviation of x not being divisible by 2
 - in lemma-command one can explicitly assume facts (assumes) which are accessible by implicit label assms, before the goal statement is written after shows
 - further examples on assumes and shows are provided in lemmas is_odd_odd3 and star_trans1 in the demo theory

```
RT (DCS @ UIBK)
```

```
session 7
```

```
Demo – Reflexive Transitive Closure is Transitive
```

```
• lemma star trans:
    assumes "(x, y) \in \text{star } \mathbb{R}" and "(y, z) \in \text{star } \mathbb{R}
    shows "(x, z) \in \text{star } \mathbb{R}"
   sorry
```

More Information on Inductive Definitions

(chapter 11.1)

14/18

Sets in Isabelle

13/18 RT (DCS @ UIBK) session 7

Sets in Isabelle

Sets in Isabelle	
• type 'a set' for sets with elements of type 'a	
Set Basics	
• $x \in A$ – membership	

- $A \cap B$ intersection
- $A \cup B$ union
- -A complement
- A B difference
- $A \subseteq B$ and $A \subset B$ subset
- {} empty set
- UNIV universal set (all elements of specific type)
- {x} singleton set
- insert x A insertion of single elements (insert x A = $\{x\} \cup A$)
- **f** A image of function with respect to set ("map **f** over elements of A")

Demo – Example Proof

lemma "A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)"

No New Primitives Required

- several of the basic set operations could be defined inductively
- examples

```
inductive_set disjunction :: "'a set \Rightarrow 'a set \Rightarrow 'a set" for A B where
"x \in A \implies x \in disjunction A B"
| "x \in B \implies x \in disjunction A B"
```

```
inductive_set empty :: "'a set"
```

```
inductive_set Univ :: "'a set" where
    "x ∈ Univ"
```

RT (DCS @ UIBK)

```
session 7
```

```
17/18
```

Sets in Isabelle

Further Operations on Sets

- set convert list to set
- Collect p convert predicate p :: 'a \Rightarrow bool to set of type 'a set
- finite A is set finite?

• sum **f** A – $\sum_{x \in A} f(x)$

- card A :: nat cardinality of set
- (note: card A = 0 whenever A is infinite) (note: sum f A = 0 whenever A is infinite)
- prod f A similar to sum, just product
- Ball A p do all elements of A satisfy predicate p?
- Bex A p does some element of A satisfy predicate p?
- $\{x \dots y\}$ all elements between x and y

Syntax for Set Comprehension

{x . p x} - same as Collect p
{t | x y. p x y} - same as {z. ∃ x y. t = z ∧ p x y}
example: { (x + 5, y) | x y. x < 7 ∧ odd y }

8 RT (DCS @ UIBK)

session 7

18/18