
Summer Term 2024

Interactive Theorem Proving using Isabelle/HOL
Session 9

René Thiemann

Department of Computer Science

Outline

• Type Definitions in Isabelle

• Lifting and Transfer

RT (DCS @ UIBK) session 9 2/19

Type Definitions in Isabelle

Type Definitions in Isabelle

Creation of New Types
• type_synonym: just syntactic abbreviation
• datatype
• intuitive high-level command, with several features not mentioned here in this course
• extensive documentation available (64 pages)

isabelle doc datatypes
• highly non-trivial construction in the background, based on bounded natural functors

(Blanchette et al., citation [2] in the documentation)
• typedef
• core definition principle of types (similar to definition)
• internally used by datatype
• also useful to define types that are not datatypes, e.g., the type of ordered binary trees

RT (DCS @ UIBK) session 9 4/19

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss24/itpIsa/
https://isabelle.in.tum.de
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Type Definitions in Isabelle
Introducing New Types by typedef

R

PA abstraction (AbsA)

representation (RepA)

• carve out elements satisfying predicate P from existing representation type R
• introduce new abstract type A as (non-empty) copy of corresponding subset of R
typedef 'a 1 . . . 'a n A = "{x::R. P x}" 〈proof 〉
• move between types with abstraction function AbsA and representation function RepA

RT (DCS @ UIBK) session 9 5/19

Type Definitions in Isabelle

Example: Sets as Functions

typedef 'a SET = "{ f :: 'a ⇒ bool. True}" by auto

term "Rep_SET :: 'a SET ⇒ ('a ⇒ bool)"
term "Abs_SET :: ('a ⇒ bool) ⇒ 'a SET"

definition EMPTY :: "'a SET" where
"EMPTY = Abs_SET (λ _. False)"

definition ELEM :: "'a ⇒ 'a SET ⇒ bool" where
"ELEM x A = Rep_SET A x"

definition UNION :: "'a SET ⇒ 'a SET ⇒ 'a SET" where
"UNION A B = Abs_SET (λ x. Rep_SET A x ∨ Rep_SET B x)"

(* properties in the demo theory file *)

RT (DCS @ UIBK) session 9 6/19

Type Definitions in Isabelle

Sets as Functions

• since there is no restriction on the functions, one can see that 'a set and 'a ⇒ bool
are isomorphic
• fact: in earlier version of Isabelle, 'a set was just a type synonym for 'a ⇒ bool
• current modeling provides separate views: the set of all even numbers is different from a

function that decides whether a number is even

Live Quiz: What do These Types Represent?

typedef 'a ty1 = "{ f :: 'a ⇒ nat . True}"

typedef 'a ty2 = "{ f :: 'a ⇒ nat . finite {x. f x > 0}}"

typedef 'a ty3 = "{ f :: nat ⇒ 'a . True}"

typedef 'a ty4 = "{ (n, f :: nat ⇒ 'a) . (∀ i. i < n ∨ f i = undefined) }"

RT (DCS @ UIBK) session 9 7/19

Type Definitions in Isabelle

Example: Ordered Binary Trees

datatype 'a tree = Leaf | Node "'a tree" 'a "'a tree"

inductive ordered :: "'a :: linorder tree ⇒ bool"
(* standard definition *)

typedef (overloaded) ('a :: linorder)otree = "{t :: 'a tree. ordered t}"

• note: “(overloaded)” is required since the type variable 'a has a type-class constraint
• advantage: when using 'a otree guards such as “ordered t =⇒ . . . ” are no longer

required

RT (DCS @ UIBK) session 9 8/19

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Type Definitions in Isabelle

Example: Integers

model integer as pair of boolean (sign) and natural number; enforce fixed sign for 0

typedef INTEGER = "{ bn. case bn of (b,n :: nat) ⇒ n = 0 −→ b}" by auto

definition ZERO :: INTEGER where
"ZERO = Abs_INTEGER (True, 0)"

(* define addition on representative type *)
fun add :: "bool × nat ⇒ bool × nat ⇒ bool × nat" where

"add (True,n) (True,m) = (True, n+m)"
| "add (False,n) (False,m) = (False, n+m)"
| "add (True,n) (False,m) = (if m ≤ n then (True, n - m) else (False, m - n))"
| "add (False,n) (True,m) = (if n ≤ m then (True, m - n) else (False, n - m))"

(* and use this for definition of addition on abstract type *)
definition ADD :: "INTEGER ⇒ INTEGER ⇒ INTEGER" where

"ADD x y = Abs_INTEGER (add (Rep_INTEGER x) (Rep_INTEGER y))"

RT (DCS @ UIBK) session 9 9/19

Type Definitions in Isabelle

Properties of Type-Definitions

typedef INTEGER = "{bn. case bn of (b,n) ⇒ n = 0 −→ b}" by auto

besides getting a new type and the two conversion functions, obtain three import properties
• when switching from the abstract type INTEGER to the representation type
bool × nat and then back to the abstract type we get the same abstract element

lemma Rep_INTEGER_inverse: "Abs_INTEGER (Rep_INTEGER x) = x"
• when switching from the abstract type to the representation type, then that

representative satisfies the predicate of the type
lemma Rep_INTEGER:

"Rep_INTEGER x ∈ {bn. case bn of (b,n) ⇒ n = 0 −→ b}"
• when switching from the representation type to the abstract type and then back to

representation type we get the same representative, provided that the predicate of the
type was satisfied
lemma Abs_INTEGER_inverse: "y ∈ {bn. case bn of

(b,n) ⇒ n = 0 −→ b} =⇒ Rep_INTEGER (Abs_INTEGER y) = y"

RT (DCS @ UIBK) session 9 10/19

Type Definitions in Isabelle

Example: Properties of integer implementation

lemma "ADD x ZERO = x"

(* proof in the demo theory file *)

RT (DCS @ UIBK) session 9 11/19

Type Definitions in Isabelle

Subtypes

consider modeling natural numbers as non-negative integers
typedef NAT = "{ n :: int. 0 ≤ n }"
• obviously, for addition and multiplication on type NAT we can just use addition and

multiplication of type int
• therefore, properties like associativity and commutativity should directly carry from int

to the subtype NAT
• in Isabelle this is not automatic: all properties have to be manually transferred, i.e., NAT

is a different type than int
• by contrast there are theorem provers that support full subtyping, i.e., there x :: NAT

implies x :: int, and therefore universally quantified properties on type int are
immediately available for type NAT; example: in lemma x :: int + y = y + x both
x and y can also be instantiated by numbers of type NAT

RT (DCS @ UIBK) session 9 12/19

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Type Definitions in Isabelle

Quotient-Types
• recall: typedef selects elements by predicate
• alternative: split universe into equivalence classes (quotient-type)
• example
• model integers as pair of two natural numbers (n, m) which model integer n−m
• several representation are equivalent: (1, 3)≡ (2, 4)≡ ...

• in Isabelle
quotient_type int = "nat × nat" / "(λ(x, y) (u, v). x + v = u + y)"
• also for quotient types you will get conversion functions between abstract type and

representative type
• further details: isabelle doc isar-ref (Chapter 11.9)

RT (DCS @ UIBK) session 9 13/19

Lifting and Transfer

Lifting and Transfer

Motivation
• problems
• working with Abs_type and Rep_type manually in definitions is tedious (inserting

conversions at correct places is somehow trivial)
• working with Abs_type and Rep_type in proofs is even more tedious

• solutions
• the lifting package allows user to directly define functions on abstract type by just giving

definition on representative type (automatic insertion of Abs_type and Rep_type)
• the transfer package converts statements of abstract type into proof obligation that works on

representative types (no reasoning on Abs_type and Rep_type required)
• the predicate, that defined the abstract type, will become visible at certain places (proof

obligation or precondition)

RT (DCS @ UIBK) session 9 15/19

Lifting and Transfer
Lifting Package

general workflow
• define type (via predicate p) as before
• make type-definition known to lifting package
• create several lifted definitions on abstract types by giving definitions on representative

types
• whenever result of function contains abstract type, then a proof is required that resulting

values satisfy p
(but one can also assume that each input corresponding to the abstract type satisfies p)

Transfer Package

general workflow
• given property on abstract type
• convert it into property on representative type
• one may assume that each representative element satisfies p

RT (DCS @ UIBK) session 9 16/19

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Lifting and Transfer

Example: Integer Operations via Lifting Package

typedef INTEGER = "{ bn. case bn of (b,n :: nat) ⇒ n = 0 −→ b}" by auto

setup_lifting type_definition_INTEGER

lift_definition Zero :: INTEGER is "(True,0)" 〈proof 〉
(* show that (True,0) satisfies predicate *)

fun add_integer :: "bool × nat ⇒ bool × nat ⇒ bool × nat" where . . .

lift_definition Add :: "INTEGER ⇒ INTEGER ⇒ INTEGER" is add_integer 〈proof 〉
(* show that add_integer bn1 bn2 satisfies predicate,

whenever bn1 and bn2 satisfy predicate *)

lemma "Add x Zero = x"
proof transfer
(* show that add_integer bn (True,0) = bn,

whenever bn satisfies predicate *)

RT (DCS @ UIBK) session 9 17/19

Lifting and Transfer

Goal-Cases

• lift_definition and transfer often produce completely new proof obligation
(using representative types instead of abstract types)
• typing these manually is tedious (fix . . .assume . . .show . . . )
• structured way to get access is via proof method goal_cases
• goal_cases produces one case for each subgoal
• case (1 x y z) starts the first subgoal where x, y, z are user-chosen names for the

meta-quantified variables
• then the label 1 refers to all assumptions and show ?case is the current conclusion that

has to be shown
• next separates the cases, and a full proof outline is available in output panel

Demos

• demo of proofs of previous slides
• demo of binary search trees

RT (DCS @ UIBK) session 9 18/19

Lifting and Transfer

Final Remarks on Lifting and Transfer

• lifting- and transfer package are more versatile than the use-case that was illustrated here
• further informations
• isabelle doc isar-ref (Chapter 11.9)
• Brian Huffman and Ondřej Kunčar: Lifting and Transfer: A Modular Design for Quotients in

Isabelle/HOL, CPP 2013

RT (DCS @ UIBK) session 9 19/19

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.1007/978-3-319-03545-1_9
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Type Definitions in Isabelle
	Lifting and Transfer

