
Summer Term 2024

Interactive Theorem Proving using Isabelle/HOL
Session 10

René Thiemann

Department of Computer Science

Outline

• Code Generation

• Code Equations Beyond Defining Equations

• Conditional Code Equations

RT (DCS @ UIBK) session 10 2/23

Code Generation

Code Generation
Code Generator Architecture
• code equations – executable subset of Isabelle/HOL specifications of shape
f t1 . . . t n = . . .
• code equations are translated into intermediate program with datatypes and functions
• intermediate program is serialized into concrete programming language

Isabelle

specifications

code equations

prove

intermediate program
translate

SML OCaml Haskell Scala

Note

pen-and-paper proof that translation guarantees partial correctness [1]

RT (DCS @ UIBK) session 10 4/23

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss24/itpIsa/
https://isabelle.in.tum.de
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Code Generation

Usage of the Code Generator

• value (code) "sort [7, 4, 8 :: nat]" – evaluate some expression
• lemma "sort [7, 4 :: nat] = [4, 7]" by code_simp – proof by evaluation
• lemma "sort [7, 4 :: nat] = [4, 7]" by eval – proof by evaluation
• lemma "sorted [x,y]" quickcheck – find counterexample by instantiation and

evaluation
• export_code sort in Language – generate code for sort in Language

remark: code_simp and eval differ
• code_simp – code equations are applied via Isabelle kernel (trusted)
• eval – reflection mechanism: code equations are translated to SML, compiled on the fly,

then SML evaluation is started, and SML result true is reflected as Isabelle result True
(more efficient)

RT (DCS @ UIBK) session 10 5/23

Code Generation

Exporting Haskell Code
• code_thms f – print code equations for f
• export_code f g in Haskell – generate Haskell code for functions f and g
• export_code f in Haskell module_name Name – generate code as module Name

Demo – Reverse

fun rev :: "'a list ⇒ 'a list" where
"rev [] = []"

| "rev (x # xs) = rev xs @ [x]"
code_thms rev
export_code rev in Haskell module_name Rev1
• append equations are visible in code_thms
• however, Isabelle’s append is mapped to Haskell’s append function (++)
• similarly, Isabelle’s list type is mapped to Haskell’s list type
• mapping of Isabelle constants/types to target language const./types won’t be discussed

RT (DCS @ UIBK) session 10 6/23

Code Generation

Declaring Code Equations
• some commands, like fun and definition, implicitly declare code equations
• declare fact [code del] – remove code equation fact
• declare [[code drop: f . . .]] – remove all code equations for functions f . . .
• use attribute [code] to declare code equation

Demo – Efficient Code of Reverse Function (Program Refinement)

fun itrev :: "'a list ⇒ 'a list ⇒ 'a list" where
"itrev [] acc = acc"

| "itrev (x # xs) acc = itrev xs (x # acc)"

lemma itrev_rev [simp]: "itrev xs ys = rev xs @ ys" 〈proof 〉
declare [[code drop: rev]] (* drop old implementation of rev *)
lemma rev_code [code]: "rev xs = itrev xs []" 〈proof 〉
code_thms rev (* obtain improved (refined) code equations *)

RT (DCS @ UIBK) session 10 7/23

Code Generation

Code Unfold – Automatic Rewriting of Code Equations

• some functions are not executable, in particular if defining equations contain quantifiers
definition "test0 = (∀ x :: nat. even x)"
• however, certain patterns with quantifiers look executable
definition "test1 (xs :: nat list) = (Ball (set xs) even)"
reason: bounded quantification over set xs is identical to iteration over all list elements
• such an implementation for bounded quantification can be expressed via an equation
lemma [code_unfold]: "Ball (set xs) p = list_all p xs" 〈proof 〉
• effect of code unfold lemma
• whenever rhs of code equation contains pattern Ball (set xs) p then it will be

rewritten to list_all p xs
• in example: code equation for test1 gets rewritten to
test1 xs = list_all even xs

RT (DCS @ UIBK) session 10 8/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Code Generation

Code Equations might Introduce Type-Class Constraints

• some functions are not executable in their original form
• code equations can introduce additional type-class constraints
• example
definition test2 :: "('a ⇒ bool) ⇒ bool" where

"test2 p = (∃ x. p x)"
Isabelle generates code for test2 with the additional restriction that 'a must be a type
in the enum-class, i.e., all elements of that type must be enumerable via a list
• consequences
• definition "test2_nat = test2 (λ x :: nat. x > 5)" – code generation fails
• definition "test2_char = test2 (λ x. x > CHR ''a'')" – code generation

succeeds

RT (DCS @ UIBK) session 10 9/23

Code Equations Beyond Defining Equations

Code Equations Beyond Defining Equations

Code Equations – Limits and Opportunities
• limit: via code generation we will only get partial correctness

if evaluation of generated code on input returns some result, then this result is correct
• opportunity: code equations can be arbitrary equations that can be proven
• examples
• program refinement (write more efficient code equations):
lemma [code]: "rev xs = itrev xs []"
• implement any function in a trivial way: lemma [code]: "f x y = f x y"

• upcoming: examples illustrating the power of code equations

RT (DCS @ UIBK) session 10 11/23

Code Equations Beyond Defining Equations

Code Equations – Partial Implementations

definition "complex_predicate (x :: nat) = (x > 894105890)"
(* assume we don't know the rhs, might be complex algorithm *)

definition "unknown_problem = (∃ x. complex_predicate x)"
(* unknown problem is not executable *)

lemma [code]: "unknown_problem = (
if (∃ x ∈ set [0..<10000]. complex_predicate x) then True
else unknown_problem)" 〈proof 〉

(* unknown problem will be executable and loops *)

lemma [code]: "unknown_problem = (
if (∃ x ∈ set [0..<10000]. complex_predicate x) then True
else Code.abort (STR ''giving up'') (λ _. unknown_problem))" 〈proof 〉

(* unknown problem will be executable and fails *)
(* "Code.abort e (% _ . x) = x" in logic; throws error in evaluation *)

RT (DCS @ UIBK) session 10 12/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Code Equations Beyond Defining Equations

Code Equations – Phantom Arguments

we can implement Isabelle functions by functions that have auxiliary arguments that just exist
in the implementation

definition approx_problem :: "nat ⇒ bool" where
"approx_problem n = unknown_problem"

(* n is phantom argument *)

lemma [code]: "approx_problem n = (if complex_predicate n then True
else approx_problem (n + 1))" 〈proof 〉

(* n controls the implementation *)

lemma [code]: "unknown_problem = approx_problem 0" 〈proof 〉

lemma unknown_problem by eval
(* evaluation succeeds because of unbounded iteration *)

RT (DCS @ UIBK) session 10 13/23

Code Equations Beyond Defining Equations

Approximation Algorithm without Termination Proof

definition property :: "real ⇒ bool" . . .
definition approx :: "nat ⇒ real ⇒ rat × rat" . . .
(* approximate real with precision n, e.g., via lower and upper bound *)

definition approx_alg :: "rat × rat ⇒ bool option" . . .
lemma "approx n r = lu =⇒ approx_alg lu = Some b =⇒ b = property r"
(* if approximation is successful, then property is determined *)

definition check_property :: "nat ⇒ real ⇒ bool" where
"check_property n r = property r" (* impl. with phantom argument *)

lemma [code]: "check_property n r =
(case approx_alg (approx n r) of

Some b ⇒ b
| None ⇒ check_property (n+2) r)" (* increase precision by 2 *)

lemma [code]: "property r = check_property 10 r"

RT (DCS @ UIBK) session 10 14/23

Conditional Code Equations

Conditional Code Equations
Reachability in Graphs – Conditional Code Equations

context
fixes G :: "'a rel" (* fix local parameters (here: a graph) *)
assumes fG: "finite G" (* add assumptions (here: graph is finite) *)

begin (* context with G *)
fun reach_main :: "'a set ⇒ 'a set ⇒ 'a set" where

"reach_main todo reached = (if todo = {} then reached
else let successors = snd ` (Set.filter (λ (x,y). x ∈ todo) G);

new = successors - reached
in reach_main new (reached ∪ new))"

(* termination proof is not automatic, and requires finiteness of G! *)

definition "reach A = reach_main A A"
lemma "reach A = {y. ∃ x ∈ A. (x,y) ∈ G^*}" 〈proof 〉
end (* of context *)

thm reach_main.simps (* outside context obtain conditional equation *)
(* finite G ==> reach_main G todo reached = (if todo = ...) *)

RT (DCS @ UIBK) session 10 16/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Conditional Code Equations

Conditional Code Equations

• problem: conditional code equations cond x =⇒ l h s x = rhs x are not accepted
by code generator: code equations must be unconditional!
• possible solutions

1. move condition into code equation
l h s x = (if cond x then rhs x else (Code.abort) (l h s x))
disadvantage: condition is checked in every iteration

2. create dedicated type typedef 'a ctyp = { x :: 'a. cond x },
check condition initially once, but not in every iteration,
work with lift-definitions to convert between types

3. if the conditional code equations are tail-recursive, use partial_function to define
equivalent unconditional code equations, avoids type-conversions

4. just define desired property and from that prove a code equation without explicit function
definition

• all solutions will be illustrated via the reachability example

RT (DCS @ UIBK) session 10 17/23

Conditional Code Equations

Solution 1 – Move Condition into If-Then-Else

definition "err = STR ''reach invoked on infinite graph''"

lemma [code]:
"reach_main G todo reached = (if finite G (* check cond *) then

if todo = {} then reached
else let successors = snd ` (Set.filter (λ (x,y). x ∈ todo) G);

new = successors - reached
in reach_main G new (reached ∪ new)

else Code.abort err (λ _. reach_main G todo reached))" 〈proof 〉

lemma [code]: "reach G A = (if finite G then reach_main G A A
else Code.abort err (λ _. reach G A))" 〈proof 〉

value (code) "reach {(1,2 :: nat), (3,4), (2,4), (4,1)} {1}"
(* {4, 2, 1} *)

RT (DCS @ UIBK) session 10 18/23

Conditional Code Equations

Solution 2 – Create Type for Condition

typedef 'a fset = "{ A :: 'a set. finite A}" by auto
setup_lifting type_definition_fset

lift_definition get_set :: "'a fset ⇒ 'a set" is "λ A. A" .

lemma "finite (get_set A)" 〈proof 〉

definition "reach_main_2 fG = reach_main (get_set fG)"

lemma [code]: "reach_main_2 fG todo reached = (if todo = {}
then reached else let

successors = snd ` (Set.filter (λ (x,y). x ∈ todo) (get_set fG));
new = successors - reached

in reach_main_2 fG new (reached ∪ new))" 〈proof 〉

RT (DCS @ UIBK) session 10 19/23

Conditional Code Equations

Solution 2 – Continued

definition "reach_2 fG = reach (get_set fG)"

lemma [code]: "reach_2 fG A = reach_main_2 fG A A" 〈proof 〉

(* problems: create elements of fset; get connection to reach *)

lift_definition (code_dt) get_fset :: "'a set ⇒ 'a fset option" is
"λ G. if finite G then Some G else None" 〈proof 〉

lemma [code]: "reach G A = (case get_fset G of
Some fG ⇒ reach_2 fG A

| None ⇒ Code.abort err (λ _. reach G A))" 〈proof 〉

(* note: (code_dt) is required to obtain executable code,
since lifted type (fset) is wrapped within other type (option) *)

RT (DCS @ UIBK) session 10 20/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Conditional Code Equations

Solution 3 – partial_function
• partial_function (tailrec) allows user to specify unconditional defining

equation, even if they are non-terminating, provided that the equation is tail-recursive
• syntactic constraints are similar to definition, except that recursion is allowed
• logically, non-termination is modeled via undefined

partial_function (tailrec) (* copy of reach_main *)
reach_main_3 :: "'a rel ⇒ 'a set ⇒ 'a set ⇒ 'a set" where
[code]: "reach_main_3 G todo reached = (if todo = {} then reached

else let successors = snd ` (Set.filter (λ (x,y). x ∈ todo) G);
new = successors - reached

in reach_main_3 G new (reached ∪ new))"
definition "reach_3 G A = reach_main_3 G A A" (* copy of reach *)

lemma "finite G =⇒ reach_3 G A = reach G A" (* via reach_main.induct *)
lemma [code]: "reach G A = (if finite G then reach_3 G A

else Code.abort err (λ _. reach G A))" 〈proof 〉

RT (DCS @ UIBK) session 10 21/23

Conditional Code Equations

Solution 4 – No Specification of Algorithm, Just Code Equation

definition reach' :: "'a rel ⇒ 'a set ⇒ 'a set" where
"reach' G A = {y. ∃x∈A. (x, y) ∈ G^*}"

lemma [code]: "reach' G A = (if A = {} then {} else
let A_edges = Set.filter (λ (x,y). x ∈ A) G;

successors = snd ` A_edges
in A ∪ reach' (G - A_edges) successors)" 〈proof 〉

value (code) "reach' {(1,2 :: nat), (3,4), (2,4), (4,1)} {1}"
(* {2, 4, 1} *)

RT (DCS @ UIBK) session 10 22/23

Conditional Code Equations

Further Reading

Florian Haftmann and Tobias Nipkow.
Code generation via higher-order rewrite systems.
In FLOPS, volume 6009 of LNCS, pages 103–117. Springer, 2010.
doi:10.1007/978-3-642-12251-4_9.

Florian Haftmann and Lukas Bulwahn.
Code generation from Isabelle/HOL theories.
isabelle doc codegen, 2021.

RT (DCS @ UIBK) session 10 23/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://isabelle.in.tum.de/dist/Isabelle2021-1/doc/codegen.pdf
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Code Generation
	Code Equations Beyond Defining Equations
	Conditional Code Equations

