

Interactive Theorem Proving using Isabelle/HOL

Session 10

René Thiemann

Department of Computer Science

- code equations - executable subset of Isabelle/HOL specifications of shape $f \mathrm{t}_{1} \ldots \mathrm{t}_{n}=\ldots$
- code equations are translated into intermediate program with datatypes and functions
- intermediate program is serialized into concrete programming language

Isabelle
Code Generation

Code Generator Architecture

- Code Generation
- Code Equations Beyond Defining Equations

Conditional Code Equations

Note
pen-and-paper proof that translation guarantees partial correctness [1]

Usage of the Code Generator

- value (code) "sort [7, 4, 8 :: nat]" - evaluate some expression
- lemma "sort [7, 4 :: nat] = [4, 7]" by code_simp - proof by evaluation
- lemma "sort [7, 4 :: nat] = [4, 7]" by eval - proof by evaluation
- lemma "sorted $[\mathrm{x}, \mathrm{y}]$ " quickcheck - find counterexample by instantiation and evaluation
- export_code sort in Language - generate code for sort in Language
remark: code_simp and eval differ
- code_simp - code equations are applied via Isabelle kernel (trusted)
- eval - reflection mechanism: code equations are translated to SML, compiled on the fly, then SML evaluation is started, and SML result true is reflected as Isabelle result True (more efficient)
RT (DCS @ Uibk)
\qquad 5/23

Declaring Code Equations

- some commands, like fun and definition, implicitly declare code equations
- declare fact [code del] - remove code equation fact
- declare [[code drop: f...]] - remove all code equations for functions f...
- use attribute [code] to declare code equation

Demo - Efficient Code of Reverse Function (Program Refinement)

```
fun itrev :: "'a list }=>\mathrm{ 'a list }=>\mathrm{ ' 'a list" where
    "itrev [] acc = acc"
| "itrev (x # xs) acc = itrev xs (x # acc)"
lemma itrev_rev [simp]: "itrev xs ys = rev xs @ ys"〈proof\rangle
declare [[code drop: rev]] (* drop old implementation of rev *)
lemma rev_code [code]: "rev xs = itrev xs []" <proof\rangle
code_thms rev (* obtain improved (refined) code equations *)
```


Code Equations might Introduce Type-Class Constraints

- some functions are not executable in their original form
- code equations can introduce additional type-class constraints
- example
definition test2 : : "('a \Rightarrow bool) \Rightarrow bool" where
"test2 $\mathrm{p}=(\exists \mathrm{x} . \mathrm{p} \mathrm{x})$ "
Isabelle generates code for test2 with the additional restriction that ' a must be a type in the enum-class, i.e., all elements of that type must be enumerable via a list

consequence

- definition "test2_nat $=$ test2 (λ x : : nat. x > 5)" - code generation fails
- definition "test2_char = test2 ($\lambda \mathrm{x} . \mathrm{x}>\mathrm{CHR}$ ''a'')" - code generation succeeds

Code Equations - Partial Implementations

```
definition "complex_predicate (x :: nat) = (x > 894105890)"
(* assume we don't know the rhs, might be complex algorithm *)
definition "unknown_problem = (\exists x. complex_predicate x)"
(* unknown problem is not executable *)
lemma [code]: "unknown_problem = (
    if (\existsx\in set [0..<10000]. complex_predicate x) then True
    else unknown_problem)" <proof\rangle
(* unknown problem will be executable and loops *)
lemma [code]: "unknown_problem = (
    if (\exists x \in set [0..<10000]. complex_predicate x) then True
    else Code.abort (STR ''giving up'') (\lambda _. unknown_problem))" \langleproof\rangle
(* unknown problem will be executable and fails *)
(* "Code.abort e (% _ . x) = x" in logic; throws error in evaluation *)
```


Code Equations - Phantom Arguments

we can implement Isabelle functions by functions that have auxiliary arguments that just exist in the implementation
definition approx_problem :: "nat \Rightarrow bool" where
"approx_problem $\mathrm{n}=$ unknown_problem"
(* n is phantom argument *)
lemma [code]: "approx_problem $n=$ (if complex_predicate n then True else approx_problem (n + 1))" $\langle p r o o f\rangle$
(* n controls the implementation *)
lemma [code]: "unknown_problem = approx_problem 0" $\langle p r o o f\rangle$
lemma unknown_problem by eval
(* evaluation succeeds because of unbounded iteration *)

Approximation Algorithm without Termination Proof

```
definition property :: "real g bool" ...
definition approx :: "nat }=>\mathrm{ real }=>\mathrm{ rat }\times\mathrm{ rat" ...
(* approximate real with precision n, e.g., via lower and upper bound *)
definition approx_alg :: "rat × rat }=>\mathrm{ bool option" ..
lemma "approx n r = lu \Longrightarrow approx_alg lu = Some b # b = property r"
(* if approximation is successful, then property is determined *)
definition check_property :: "nat }=>\mathrm{ real }=>\mathrm{ bool" where
    "check_property n r = property r" (* impl. with phantom argument *)
lemma [code]: "check_property n r =
    (case approx_alg (approx n r) of
        Some b = b
        | None => check_property (n+2) r)" (* increase precision by 2 *)
lemma [code]: "property r = check_property 10 r"
```


Reachability in Graphs - Conditional Code Equations

```
    ixes G :: "'a rel" (* fix local parameters (here: a graph) *)
```

 assumes fG: "finite G" (* add assumptions (here: graph is finite) *)
 begin (* context with G *)
fun reach main : : "'a set \Rightarrow 'a set \Rightarrow 'a set" where
"reach_main todo reached $=$ (if todo $=\{ \}$ then reached
else let successors $=$ snd - (Set.filter ($\lambda(x, y) . x \in$ todo) G);
new $=$ successors - reached
in reach_main new (reached \cup new))"
(* termination proof is not automatic, and requires finiteness of G ! *)
definition "reach A = reach_main A A"
lemma "reach $A=\left\{y . \exists \mathrm{x} \in \mathrm{A} .(\mathrm{x}, \mathrm{y}) \in \mathrm{G}^{\wedge} *\right\}$ " \langle proof \rangle
end (* of context *)
thm reach_main.simps ($*$ outside context obtain conditional equation $*$)
(* finite G ==> reach_main G todo reached = (if todo = ...) *)

Conditional Code Equations

- problem: conditional code equations cond $\mathrm{x} \Longrightarrow l h s \mathrm{x}=r h s \mathrm{x}$ are not accepted by code generator: code equations must be unconditional!
- possible solutions

1. move condition into code equation
lhs $\mathrm{x}=$ (if cond x then rhs x else (Code.abort) (lhs x)) disadvantage: condition is checked in every iteration
2. create dedicated type typedef 'a ctyp $=\{x::$ 'a. cond $x\}$, check condition initially once, but not in every iteration, work with lift-definitions to convert between types
3. if the conditional code equations are tail-recursive, use partial_function to define equivalent unconditional code equations, avoids type-conversions
4. just define desired property and from that prove a code equation without explicit function definition

- all solutions will be illustrated via the reachability example

Solution 2 - Create Type for Condition

typedef 'a fset = "\{ A : : 'a set. finite A\}" by auto setup_lifting type_definition_fset
lift_definition get_set : : "'a fset \Rightarrow 'a set" is " λ A. A".
lemma "finite (get_set A)" \langle proof \rangle
definition "reach_main_2 fG = reach_main (get_set fG)"
lemma [code]: "reach_main_2 fG todo reached $=$ (if todo $=\{ \}$
then reached else let successors $=$ snd - (Set.filter ($\lambda(x, y) . x \in$ todo) (get_set fG)); new = successors - reached
in reach_main_2 fG new (reached U new))" \langle proof \rangle

Solution 1 - Move Condition into If-Then-Else

```
definition "err = STR ''reach invoked on infinite graph''"
lemma [code]:
    "reach_main G todo reached = (if finite G (* check cond *) then
        if todo = {} then reached
        else let successors = snd ` (Set.filter ( \lambda (x,y). x \in todo) G);
            new = successors - reached
            in reach_main G new (reached U new)
        else Code.abort err ( }\lambda\mathrm{ _. reach_main G todo reached))" <proof 
lemma [code]: "reach G A = (if finite G then reach_main G A A
        else Code.abort err ( }\lambda\ldots.\operatorname{reach G A))" \langleproof\rangle
value (code) "reach {(1,2 :: nat), (3,4), (2,4), (4,1)} {1}"
(* {4, 2, 1} *)
```

Solution 2 - Continued
definition "reach_2 fG = reach (get_set fG)"
lemma [code]: "reach_2 fG A = reach_main_2 fG A A" \langle proof \rangle
(* problems: create elements of fset; get connection to reach *)
lift_definition (code_dt) get_fset : : "'a set \Rightarrow 'a fset option" is
" λ G. if finite G then Some G else None" \langle proof \rangle
lemma [code]: "reach G A = (case get_fset G of Some $f G \Rightarrow$ reach_2 fG A
| None \Rightarrow Code.abort err (λ_{\ldots}. reach G A))" \langle proof \rangle
(* note: (code_dt) is required to obtain executable code, since lifted type (fset) is wrapped within other type (option) *)

Solution 3 - partial_function

- partial_function (tailrec) allows user to specify unconditional defining equation, even if they are non-terminating, provided that the equation is tail-recursive
- syntactic constraints are similar to definition, except that recursion is allowed
- logically, non-termination is modeled via undefined
partial_function (tailrec) (* copy of reach_main *)
reach_main_3 :: "'a rel \Rightarrow 'a set \Rightarrow 'a set \Rightarrow 'a set" where
[code]: "reach_main_3 G todo reached = (if todo = \{\} then reached else let successors $=$ snd - (Set.filter ($\lambda(\mathrm{x}, \mathrm{y}) . \mathrm{x} \in$ todo) G); new $=$ successors - reached in reach_main_3 G new (reached U new))"
definition "reach_3 G A = reach_main_3 G A A" (* copy of reach *)
lemma "finite $G \Longrightarrow$ reach_3 G A = reach G A" (* via reach_main.induct *)
lemma [code]: "reach G A = (if finite G then reach_3 G A

$$
\text { else Code.abort err (} \lambda \ldots \text { reach G A))" }\langle\text { proof }\rangle
$$

Solution 4 - No Specification of Algorithm, Just Code Equation

```
definition reach' :: "'a rel }=>\mathrm{ 'a set }=>\mathrm{ 'a set" where
    "reach' G A = {y. \existsx\inA. (x, y) \in G^*}"
lemma [code]: "reach' G A = (if A = {} then {} else
    let A_edges = Set.filter ( }\lambda(x,y).x\inA)G
        successors = snd ` A_edges
        in A U reach' (G - A_edges) successors)" \langleproof\rangle
value (code) "reach' {(1,2 :: nat), (3,4), (2,4), (4,1)} {1}"
(* {2, 4, 1} *)
```


Further Reading

E Florian Haftmann and Tobias Nipkow. Code generation via higher-order rewrite systems.
In FLOPS, volume 6009 of LNCS, pages 103-117. Springer, 2010. doi:10.1007/978-3-642-12251-4_9.
圊 Florian Haftmann and Lukas Bulwahn. Code generation from Isabelle/HOL theories. isabelle doc codegen, 2021.

