. un |Ve rsrtat Summer Term 2024
™ innsbruck

Interactive Theorem Proving using Isabelle/HOL

Session 11

René Thiemann

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ss24/itpIsa/
https://isabelle.in.tum.de
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Outline

* Code Generation using Target Language Types

* Code Generation with Subtypes

* Datatype Refinement

RT (DCS @ UIBK) session 11 2/16

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Previous Lecture
e turn function definitions into programs
® program refinement: change generated code by means of code equations

® 4 ways to handle conditional code equations

This Lecture: Code Generation for Types
® type-synonyms and datatype definitions: trivial
® usage of target language types
® subtypes and lift-definitions

¢ datatype refinement

RT (DCS @ UIBK) session 11 3/16

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Code Generation using Target Language Types

Code Generation using Target Language Types

Code Generation using Target Language Types

® examples: map Isabelle lists, integers,. .. to Haskell lists, integers, ...
® advantages
® resulting code is most likely more efficient
¢ resulting code is more easily accessible; input to function might just be a Haskell type such
as [Integer], instead of some Isabelle-created list type with elements of some

Isabelle-created integer type, which has nothing to do with Haskell’s built-in lists and
integers

® challenge

® operations on lists, integers, ... should(!) behave identical, regardless of whether execution
is performed w.r.t. their Isabelle specification or whether the target language
implementation is invoked

RT (DCS @ UIBK) session 11 5/16

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Code Generation using Target Language Types

Integration of Target Language Types

® mapping types and constants to target language elements decreases level of trust
® mapping to target language elements is often optional, e.g., activated only via explicit
import of "HOL-Library.Code_Target_Numeral"
® consequence: eases possibility of comparing verified code vs. target language primitives
® reliability is often ensured in form of code equations; these ensure that target-language
functions are only invoked on well-defined inputs; example: modulo on integers
® [sabelle: x mod 0 = x and (-3) mod (-4) = -3
® target languages will throw division-by-zero error and might deviate for negative inputs
® solution: code equation does preprocessing and captures corner cases
definition target_mod :: "integer = integer = integer" where
"x >0 = y > 0 = target_mod x y = x mod y"
(* there is some further setup which tells code generator to map
target_mod to target-language modulo operation *)

(x verified code equation for mod *)
lemma [code]l: "x mod y = (if y = O then x else
if x >0 A y > 0 then target_mod x y else
if x <0 A y < 0 then - target_mod (- x) (- y) else ...)" (proof)

RT (DCS @ UIBK) session 11 6/16

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Code Generation with Subtypes

Code Generation with Subtypes

Recall Subtypes

® create a new (abstract) type by restricting a representative type via some predicate
® Abs and Rep convert between abstract and representative type

e 1lift_definition lifts functions on representative type to abstract type;
proofs are required that predicate is satisfied whenever elements of abstract type are
created

Example - Large Integers

typedef large_int = "{ n :: integer. n > 1000}" (proof)

setup_lifting type_definition_large_int

lift_definition get_int :: "large_int = integer" is "A x. x"
lift_definition add_10 :: "large_int = large_int" is "A x. x + 10" (proof)

RT (DCS @ UIBK) session 11 8/16

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Code Generation with Subtypes

Translation into Code

® Abs and Rep convert between abstract and representative type
® create datatype for abstract type where Abs is viewed as constructor
® Rep is selector of that constructor
typedef large_int = "{ n :: integer. n > 1000}" (proof)
setup_lifting type_definition_large_int
lift_definition get_int :: "large_int = integer" is "A x. x"
lift_definition add_10 :: "large_int = large_int" is "A x. x + 10" (proof)

data Large int = Abs_large int Integer {— predicate > 1000 omitted —}

rep_large int :: Large int —> Integer {— rep is just selector —}
rep _large int (Abs large int x) = x {— predicate missing in equality —}
get_int :: Large int —> Integer {— defining equations are easy —}

get_int x = rep_large _int x

add_10 :: Large_int —> Large_int
add 10 x = Abs_large int (rep large int x + 10)

RT (DCS @ UIBK) session 11 9/16

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Code Generation with Subtypes

Validity of Translated Code
® logic: x > 1000 = Rep_large_int (Abs_large_int x) = x
® code: rep_large int (Abs large int x) =X

® lemma "1000 < (5 :: integer)" proof -
have "1000 < get_int (Abs_large_int 5)" (proof)

also have " ... = Rep_large_int (Abs_large_int 5)" (proof)
also have " ... = 56" by eval
finally show "1000 < 5"

qed

above Isabelle “proof” is not accepted: abstraction violation in eval-method

® code generator takes care that abstraction functions are only invoked at places where a
proof exists that predicate is satisfied (e.g., via 1ift_definition)

® in particular, code generation will raise abstraction violation error for both
definition "foo x = Abs_large_int x" and
definition "bar x = Abs_large_int (x * x + 5000)"

® warning: after generation of Haskell code, it is no problem to define foo manually in
Haskell or just write an expression like Abs large int 5

RT (DCS @ UIBK) session 11 10/16

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Datatype Refinement

Datatype Refinement

Datatype Refinement

aim: pick any type-constructor and provide implementation of that type and operations
running example: implement 'a set and operations like {}, insert, (L), (€), ...
advantage of datatype refinement

¢ state and reason about algorithms abstractly (e.g., using sets)

¢ independently verify an executable implementation (e.g., working on lists or trees)
example from previous lecture
definition reach :: "'a rel = 'a set = 'a set" where

"reach G A = {y. IxeA. (x, y) € G~*}"

lemma [code]: "reach G A = (if A = {} then {} else
let A_edges = Set.filter (A (x,y). x € A) G;
successors = snd - A_edges
in A U reach (G - A_edges) successors)" (proof)

value (code) "reach {(1,2 :: nat), (3,4), (2,4), (4,1)} {1}"
(* upcoming: how does value work in this case? *)

RT (DCS @ UIBK) session 11 12/16

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Datatype Refinement
Datatype Refinement — First Step: Identify Required Operations
® code equation and invocation provide operations
lemma [code]: "reach G A = (if A = {} then {} else
let A_edges = Set.filter (A (x,y). x € A) G;
successors = snd - A_edges
in A U reach (G - A_edges) successors)" (proof)

value (code) "reach {(1,2 :: nat), (3,4), (2,4), (4,1} {1}"
® required operations

® Set.is_empty :: 'a set = bool code unfold on A = {}
e {} :: 'a set

® (¢) :: 'a = 'a set = bool

® (U) :: 'aset = 'a set = 'a set

e (-) :: 'a set = 'a set = 'a set

® (") :: ("a = 'b) = 'a set = 'b set

® Set.filter :: ('a = bool) = 'a set = 'a set

® insert :: 'a = 'a set = 'a set from value command

RT (DCS @ UIBK) session 11 13/16

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Datatype Refinement

Datatype Refinement — Second Step: Implement Required Operations

® example: (extended) implementation of set-operations via ordered trees
lift_definition set_o :: "'a :: linorder otree => 'a set" is

lift_definition insert_o

"'a :: linorder => 'a otree => 'a otree" is
definition union_o
"'a :: linorder otree => 'a otree => 'a otree" where

(* soundness properties *)
lemma "set_o (insert_o x t) = insert x (set_o t)" (proof)
lemma "set_o (union_o t1 t2) = set_o tl1 U set_o t2" (proof)

® remark 1: it doesn’t matter how the implementation is defined (via fun, definition,
lift_definition,...), only the soundness properties are important

® remark 2: one could have used lists, hashmaps, ... instead of trees to represent sets

RT (DCS @ UIBK) session 11 14/16

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

RT (DCS @ UIBK)

Datatype Refinement — Third Step: Activate Implementation priappe fefnement

® set_o :: 'a otree = 'a set ignoring linorder
® view set_o as constructor of type 'a set
® activation in Isabelle: code_datatype set_o

® now code generator interprets type 'a set as if there would have been a declaration
datatype 'a set = set_o "'a otree"
¢ generated code in Haskell:

data Set a = Set_o (Otree a)

— or equivalent definition via "newtype" instead of "data"

® symmetric versions of soundness properties can be used as code equations
lemma [code]: "insert x (set_o t) = set_o (imsert_o x t)" (proof)
lemma [code]: "set_o tl1 U set_o t2 = set_o (union_o t1 t2)" (proof)

union :: (Eq a, Linorder a) => Set a —> Set a —> Set a
union (Set o tl) (Set o t2) = Set o (union o tl t2)

session 11 15/16

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Datatype Refinement
Further Reading

[Florian Haftmann and Tobias Nipkow.
Code generation via higher-order rewrite systems.
In FLOPS, volume 6009 of LNCS, pages 103-117. Springer, 2010.
doi:10.1007/978-3-642-12251-4_9.

[Florian Haftmann and Lukas Bulwahn.
Code generation from Isabelle/HOL theories.
isabelle doc codegen, 2021.

[@ Brian Huffman and Ondiej Kunéar.
Lifting and transfer: A modular design for quotients in Isabelle/HOL.
In CPP, volume 8307 of LNCS, pages 131-146. Springer, 2013.
doi:10.1007/978-3-319-03545-1_9.

RT (DCS @ UIBK) session 11 16/16

http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://isabelle.in.tum.de/dist/Isabelle2021-1/doc/codegen.pdf
http://dx.doi.org/10.1007/978-3-319-03545-1_9
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Code Generation using Target Language Types
	Code Generation with Subtypes
	Datatype Refinement

