M universitat
™ innsbruck

Interactive Theorem Proving
Lecture 1 (VU)

Cezary Kaliszyk



Administration

Teacher

® Cezary Kaliszyk
® Consultation hours: Wednesday midday, 3M12, on demand

® Exercises: Assignments and participation
® Presentations
® Closed book test (last week)

Practical Assignments

e Software: HOL Light, Coq, Set Theory
® Laptops convenient



Content

® Proof Assistants
® Lambda calculus
® types, Church vs Curry, derivation formats, well-typedness, term finding
® Second-order typed lambda calculus
® [l-types, second-order abstraction and application, A2
® Types dependent on types
® Sorts, weakening, formation, properties
® Dependent types
® AP, minimal logic, natural deduction again
e CoC
® )\-cube, Girard’s paradox, classical logic
® Definitions
® terms, types, §-conversion, —a, axioms
® Sets and set theory
® Numbers and arithmetic
® N, bits, efficient computation, divisibility, proof irrelevance



Outline

® Proof assistants

e Common uses
® Comparison with other tools

Course Prerequisites

® Propositional and predicate logic

® Functional programming



Automated Reasoning

® Computer used to reason in a logic

Traditionally part of artificial intelligence
® (not machine learning)

Field of research since the fifties

Applications: program verification, mathematical deduction, ...

Theorem proving logics, precision, automation, ... very varied.



What is a Proof Assistant? (1/2)

A Proof Assistant is a

a computer program

to assist a mathematician

in the production of a proof
that is mechanically checked

What does a Proof Assistant do?

Keep track of theories, definitions, assumptions
Interaction - proof editing

Proof checking

Automation - proof search

What does it implement? (And how?)

® a formal logical system intended as foundation for mathematics
® decision procedures 5



The Kepler Conjecture (year 1611)

mum pro sprec;effo Gr alsa copy
e

oA |z

fap

& B
:: The most compact way of stacking
% c ; balls of the same size in space is a

pyramid.

rroi

i
@D b V=1 ~74%
~vis 7

pec
<
3 E fa

€ CE%'& gwﬁ
Par
mecefrareconcurrente cunra







The Kepler Conjecture (year 1611)

® Tom Hales, 300 page proof using computer programs

® Submitted to the Annals of Mathematics



The Kepler Conjecture (year 1611)

® Tom Hales, 300 page proof using computer programs

® Submitted to the Annals of Mathematics
® 99% correct. .. but we cannot verify the programs

1039 equalities and inequalities

For example:
—X1X3—X2X4+X1X5+X3X6 —X5X6+ .
+x2(—x24+Xx1+X3—Xa+X5+X
e R R < tan(z — 0.74)

X2X4(—X2+X1+X3—X4+X5+Xe )+
4x, +X1X5(X2 —X1-+X3+Xa—X5+X6 )+

“+X3X6(X2+X1—X3+Xa+X5—X6)—
—X1X3X4—X2X3X5—X2X1X6—X4X5Xe



The Kepler Conjecture (year 1611)

Solution? Formalized Proof!

® Formalize the proof using Proof Assistants

® Implement the computer code in the system
® Prove the code correct
® Run the programs inside the Proof Assistant

Flyspeck Project

® Completed 2017
® Many Proof Assistants and contributors




Intel Pentium P5 (1994)

® Division lookup table

® For certain inputs division result off

Replacement

® Few customers cared, still 450M$
® Birth of HOL Light
® |ntel and AMD processors formally verified




theorem sqrt2 not rational:
"sqrt (real 2) ¢ Q"
proof

ged

11



theorem sqrt2 not rational:
"sqrt (real 2) ¢ Q"

proof
assume "sqrt (real 2) € Q"

thus False
ged

11



theorem sqrt2 not rational:
"sqrt (real 2) € Q"

proof
assume "sqrt (real 2) € Q"
then obtain m n :: nat where

n_nonzero: "n # 0" and sqrt_rat:
and lowest terms: "gcd m n = 1"

thus False
ged

real m / real n"



theorem sqrt2 not rational:
"sqrt (real 2) € Q"

proof
assume "sqrt (real 2) € Q"
then obtain m n :: nat where

n_nonzero: "n # 0" and sqrt_rat:
and lowest terms: "gcd m n = 1"

have eq: "m? = 2 * np2"
hence "2 dvd m?"

hence "2 dvd n2" ..
have "2 dvd n"
have "2 dvd gcd m n"

thus False
ged

"lsqrt

Have dvd m: "2 dvd m"

(real 2)|

real m / real n"

11



theorem sqrt2 not rational:

"sqrt (real 2) ¢ Q"
proof
assume "sqrt (real 2) € Q"
then obtain m n nat where
n_nonzero: "n # 0" and sqrt _rat: "|sqrt (real 2)] = real m / real n"
and lowest terms: "gcd m n = 1" ..
from n_nonzero and sqrt rat have "real m = |sqrt (real 2)}] * real n" by simp
then have "real (m?) = (sqrt (real 2))2 * real (n2)"

by (auto simp add: power2 eq square)

also have "(sqrt (real 2))? = real 2" by simp

also have "... * real (m?) = real (2 * n?)" by simp

finally have eq: "m? = 2 * n2"

hence "2 dvd m2"

with two is prime have dvd m: "2 dvd m" by (rule prime dvd power two)

then obtain k where "m = 2 * k" ..

with eq have "2 * n? = 22 * k2" by (auto simp add: power2 eq square mult ac)
hence "n2 = 2 * k2" by simp

hence "2 dvd n2"

with two_is_prime have
with dvd m have "2 dvd
with lowest terms have
thus False by arith

ged

"2 dvd n" by (rule prime _dvd power two)
gcd m n" by (rule gcd greatest)
"2 dvd 1" by simp

11



W The Irrationality of the Square Root of 2

theorem Thil:

for p being Element of NAT st p is prime holds

sqrt p is irrational
proof

let p be Element of NAT ;

assume Al: p is prime ;

then A2: p > 1 by mwr 2:der 4;

assume sqrt p is rational ;

then consider i being Integer, n being Element of NAT such that

A3: n <> 0 and

A4: sqrt p =1 / n and

A5: for il being Integer

for nl being Element of NAT st nl <> 0 & sqrt p = i1 / nl holds

n <= nl by mr1:9;

A6: i = (sqrt p) * n by A3, A4, xawrrx 1:87;

sqrt p >= 0 by souare 1:def 2;

then reconsider m = i as Element of NAT by A6, mwri:3;

A7: m "2 = ((sqrt p) "2) * (n ~2) by A6

.= p * (n "2) by squre 1:def 2 ;

then p divides m "2 by waT p:def 3;

then p divides m by AI, wewon:se;

then consider ml being Nat such that

A8: m = p * ml by mar p:def 3;

n”"2=(p*(p*(ml~"2))) / phby A2, A7, A8, xawrLx1:89

.= p * (ml ~2) by A2, xawrix1:89 ;

then p divides n "2 by w7 p:der 3;

then p divides n by Al, wewron:so;

then consider nl being Nat such that

A9: n = p * nl by war p:der 3;

Al10: ml / nl = sqrt p by A2, A4, A8, A9, xawix 1:91;

All: nl <> 0 by A3, A9;

then p * nl > 1 * nl by A2, xreaL 1:98;

hence contradiction by A5, A9, All, Al0; 12
end;



Proof Assistant (2/2)

e Keep track of theories, definitions, assumptions

set up a theory that describes mathematical concepts
(or models a computer system)
express logical properties of the objects

Interaction - proof editing

typically interactive

specified theory and proofs can be edited

provides information about required proof obligations
allows further refinement of the proof

often manually providing a direction in which to proceed.

Automation - proof search

various strategies
decision procedures

Proof checking

checking of complete proofs
sometimes providing certificates of correctness

Why should we trust it?

small core

13



Can a Proof Assistant do all proofs?

14



Can a Proof Assistant do all proofs?

Decidability!

® Validity of formulas is undecidable
e (for non-trivial logical systems)

Automated Theorem Provers

® Specific domains

® Adjust your problem
® Answers: Valid (Theorem with proof)
® Or: Countersatisfiable (Possibly with counter-model)

Proof Assistants

® Generally applicable

® Direct modelling of problems



Other Tools

Computer Algebra

® Solving equations, simplifications, numerical approximations

® Maple, Mathematica, ...

Model Checkers

® Space state abstraction

® Spin, Uppaal, ...

ATPs

® Built in automation (model elimination, resolution)
e ACL2, Vampire, Eprover, SPASS, ...

15



Spread of theorem proving (1/2)

Special Theory
reasoning

Math +— \REASONING
reasoning

Built-in axioms
of equality

EQUALITY
REASONING

REASONING with
NON-CLASSICAL
LOGICS

OMMON<—~ Models of discovery
and poor reasoning

Large domain -
/‘ hints, heuristics,

belief logics
\a Deductive _ ——

databases

deduction =
execution

THEOREM
PROVING

Proof LOGIC
’/ Temporal checking PROGRAMMING
Description Reasonlng Program
Loglcs vi/nflcanon ‘
Web guidance

[K. Broda]

16



Spread of theorem proving (2/2)

Propositional First-order .
logic logic Higher-order
Non-classical logics Prolog
(Lambda)
SAT Resolution b inti
escription Logical
o Logics Frameworks ACL2
SMT rders
. Modal Logics
Paramodulation Type Theory
e ASP
SUMO Superposition — Set Theory




Users of Proof Assistants

Computer Science

® Modelling and specifying systems

® Proving properties of systems

® Proving software correct

® Defining concepts and theories

® Proving (mostly verifying) proofs
® (currently less common)



Theorems and programs that use ITP

Theorems

® Kepler Conjecture (2014)
® 4 color theorem
® Feit-Thomson theorem (2012)

® Processors and Chips

® Security Protocols

® Project Cristal (Comp-Cert)
® |4-Verified

Java Bytecode



History of Proof Assistants

A-calculus (Church, 1940)

® Simple Type Theory
® Higher-Order Logic

Formulas as Types (Curry-Howard, de Bruijn)

® Proofs as Terms
® Reduce Proof Checking to Type Checking

® First implementation

LCF (Milner)

® ML programming language



Multitude of Proof Assistants

Characterized by various

® Foundations
® |nteraction models

Automation strategies
® Libraries

Size of trusted core

® HOL (HOL4, HOL-Light, ProofPower, HOLO), Mizar (and variants), PVS, Coq,
Otter/lvy, Isabelle/lsar (HOL, ZF, CTT, ...), Alfa/Agda, ACL2, IMPS, Metamath,
Theorema, Lego, Nuprl, 2mega, B method, Minlog

21



Coverage of Basic Mathematics

Freek Wiedijk’s list of 100 theorems

Isabelle 89
HOL Light | 87
Coq 79
Lean 76
MetaMath | 74
Mizar 69
any 99

http://www.cs.ru.nl/"freek/100/


http://www.cs.ru.nl/~freek/100/

Summary

This Lecture

® What is a Proof Assistant
® Common Uses

® Comparison with other tools

® Formal proof examples

® De Bruijn factor

® History

® Characteristics

® Coverage of Basic Mathematics

® LCF and HOL Light
® |ntroduction to the \-calculus 3




Homework / Work here

Have a look at an OCaml introduction and familiarize yourself with:
® Toplevel interaction (loading of files)
® Algebraic Datatypes
® Pattern Matching



Homework / Work here

Have a look at an OCaml introduction and familiarize yourself with:
® Toplevel interaction (loading of files)
® Algebraic Datatypes
® Pattern Matching
Tasks:
® How would you define the type of propositional logic terms?
e What about first-order logic?
® Can you define some basic operation like checking if a term is in CNF?



	ITP

