
Interactive Theorem Proving
Lecture & Exercises Week 2

Cezary Kaliszyk

Summary

Previous Lecture

• What is a Proof Assistant

• Uses, other tools

• Formal proof example, de Bruijn factor

• History, characteristics

• Coverage of Basic Mathematics

Today

• LCF Style

• Minimal Kernel

• HOL Light

1

How to make a trusted core?

LCF Style

• theorems as an abstract datatype

• basic logical inferences as functions

• no other way to create theorems (values of that type) due to strong typing

Example Rules

assume : term → thm

imp_elim : thm → thm → thm

Implement

A ⊢ A
assume Γ ⊢ A → B ∆ ⊢ A

Γ ∪∆ ⊢ B
imp_elim

2

LCF-style theorem proving

Starts with Edinburgh LCF 1977

Small set of simple inference rules

• All proofs are reduced to this set

Functions in a programming language

• The power of the underlying programming language makes the approach practical

HOL prover are more radical examples of LCF

• Very few simple rules

• Bigger proofs may expand to millions or billions of inferences

3

Timeline

Alonzo Church
Simple Theory of Types

1940

Dana Scott
Logic for Computable Functions1969

Robin Milner
Stanford LCF

1972

Standard ML
Meta Language1973

Edinburgh LCF1977

Larry Paulson
Cambridge LCF

1985

Isabelle1986
Mike Gordon
HOL41988

Tobias Nipkow
Isabelle/HOL

1993

John Harrison
HOL Light1999

Makarius Wenzel
Isabelle/Isar

1999

Isabelle/jEdit
Prover IDE

2011

1919 2019

4

HOL Light

Member of the HOL family of provers

• Inspired by Mike Gordon’s original HOL system from the 80s

LCF-style proof checker

• Simply typed lambda calculus

• Polymorphic

• + Classical higher-order logic

(Relatively) Simple foundation

• Minimal (uncluttered) implementation

OCaml
5

HOL Family Diagram [Harrison]

Google
HOL

Proof
Peer

Zhan's
HOL

CakeML
6

Simplicity of HOL Light

Close to the programming language top-level

• Easy to program tactics etc

Easy to experiment with new ideas

• User Interfaces [Harrison’96, Giero’04, Wiedijk’08]

• Logical Foundations [Voelker’07, Fleuriot’12]

• Architectures [Wiedijk’09]

• Interaction Modes [Tankink’14]

• Machine Learning Premise Selection [K., Urban]

Disadvantages

• Interface is primitive (spartan)

• Not user-friendly
7

HOL Light’s use

Analysis and Number Theory

• Multivariate Analysis (for Flyspeck)

Formal verification of hardware and software

• Intel’s floating point verification

• HOL in HOL

Algebra and algorithms less convenient

• Only simple function definitions

• No co-induction

8

Interesting Results

• Kepler conjecture

• Jordan curve theorem

• Prime number theorem

• Radon’s theorem

• ...

9

OCaml (in 1 slide, by example). Homework!

Syntax

l e t w = 1;;

l e t x =

l e t y = w in
l e t w = 2 in
l e t z = w in
y + z;;

Algebraic Datatypes (Variant Types)

• type direction = North | East | South | West

• type nat = Zero | Succ of nat

• type 'a mylist = Nil | Cons of 'a * 'a mylist 10

HOL types

Simply typed lambda calculus

• Parametric polymorphism: Similar to functional programming types

• A theorem can talk about (α)list

• Inference rules allow instantiating the α to other types

type hol_type =

Tyvar of string

| Tyapp of string * hol_type list;;

Two primitive types

l e t the_type_constants = ref ["bool",0; "fun",2];;

Later individuals and typedef
11

HOL Terms

Terms of simply typed lambda calculus

type term =

Var of string * hol_type

| Const of string * hol_type

| Comb of term * term

| Abs of term * term;;

Type information only at variables and constants

(Is this enough?) Abstract type and term interface allows only well typed terms

12

Primitive Constants

Only primitive constant is equality

l e t the_term_constants =

ref ["=", `A -> A -> bool`];;

Abstract term interface makes sure that constants are well typed

Later choice

ϵx.P(x)

13

The type of theorems

Abstract sequents: Γ ⊢ t

type thm = Sequent (term list * term)

14

Exercises

• How do you get the type of booleans?

• How to make a variable?

• How to apply a function to a variable?

15

The basic inference rules (1/2)

⊢ t = t
REFL Γ ⊢ s = t ∆ ⊢ t = u

Γ ∪∆ ⊢ s = u
TRANS

Γ ⊢ s = t ∆ ⊢ u = v
Γ ∪∆ ⊢ s(u) = t(v)

MK_COMB Γ ⊢ s = t
Γ ⊢ (λx.s) = (λx.t)

ABS

⊢ (λx.t) x = t
BETA {p} ⊢ p

ASSUME

Γ ⊢ p ⇔ q ∆ ⊢ p
Γ ∪∆ ⊢ q

EQ_MP

16

The basic inference rules (2/2)

Γ ⊢ p ∆ ⊢ q

(Γ− {q}) ∪ (∆− {p}) ⊢ p ⇔ q
DEDUCT_ANTISYM_RULE

Γ[x1, . . . , xn] ⊢ p[x1, . . . , xn]

Γ[t1, . . . , tn] ⊢ p[t1, . . . , tn]
INST

Γ[α1, . . . , αn] ⊢ p[α1, . . . , αn]

Γ[γ1, . . . , γn] ⊢ p[γ1, . . . , γn]
INST_TYPE

17

Exercises

• Assume a = b. Show f(a) = f(b).

18

Highlights of HOL Light

1 Higher-level. Close to abstract algorithm descriptions. Easy to investigate what
happens.

2 Sound and Coherent: Thanks to LCF. Logically clean and comprehensible
structure.

3 Extensible: Examples of decision procedures and tools.

4 Easy to connect to other systems. Clean interface. LCF ensures soundness.

5 Small and lightweight: Few MB of memory sufficient to run some challenging
examples.

6 Different proof styles: Backwards and Mizar-style.

7 Special proof procedures: TAUT, Meson, Metis, ...

19

Summary

This Lecture

• LCF style

• HOL provers family

• HOL logic

• HOL Kernel

Next

• (typed) λ-calculus

• Curry-Howard isomorphism

20

Exercises

• Show symmetry of equality (using the HOL inference rules), namely show
A = B ⊢ B = A.

• How would you implement an LCF system that corresponds to some minimal basic
propositional logic? What would be the types? Terms? Are there theorems and
what would the rules to construct them be?

• Figure out how to run HOL Light

• Bonus: How would you show the S combinator (A → B → C) → (A → B) → A → C
with the basic HOL inference rules? (On paper or in a HOL system).

21

	ITP

