

Interactive Theorem Proving

Cezary Kaliszyk

Summary

Previous Lecture

- Lambda calculus
- Type checking and inference

Today

• Beta reduction and cut elimination

Presentation Topic Assignment

- (!) Dedukti and Lambda-calculus modulo
- (!) Programming with dependent types: (Epigram / Agda2 / Idris)
- ACL2 (and Nqthm)
- Lean and its type theory
- HOL Zero and checking formal proofs
- Metamath
- SMTCoq and decision procedures
- Interaction between proof assistants (Flyspeck...,)
- Project Cristal and verified compiler
- seL4 operating system
- your idea: Formalization / System / Extension ...

Different Foundations

Set Theory

- sets and membership
- semantic information
- "collections of things"
- membership is undecidable
- extensional; talk about things that exist

Type Theory

- typing judgement
- syntactic information
- what objects can be constructed
- intentional
- type checking (and sometimes inference) is decidable

Typed $\lambda\text{-calculus}$

Basis for a Proof Assistant

- Terms: Programs and Proofs
- Types: Specifications and Formulas

Brings together

- Programming
- Proving

Simple Type Theory (STT) or λ_{\rightarrow}

Types

- Atomic types
- Function types

$$\begin{array}{ccc} \alpha & \beta & \gamma & \dots \\ & \alpha \to \beta \end{array}$$

For example: $(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta$

Terms

- Variables with explicit types: $x_1^{\sigma}, x_2^{\sigma}, \dots$
 - Countably many for each σ
- Applications: if $M : \sigma \rightarrow \tau$ and $N : \sigma$ then $(MN) : \tau$
- Abstractions: if $P : \tau$ then $(\lambda x^{\sigma}.P) : \sigma \to \tau$

Examples

$$\lambda \mathbf{x}^{\sigma} . \lambda \mathbf{y}^{\tau} . \mathbf{x} : \sigma \to \tau \to \sigma$$

Conventions

Parentheses

- Types associate to the right
- Applications associate to the left

α -convertibility

$$\lambda x^{\sigma} \dots x \dots x \dots \approx_{\alpha} \lambda y^{\sigma} \dots y \dots y \dots$$

Capture avoiding substitution

$$M[x := N]$$

β -reduction

Terms in STT ($\lambda_{\rightarrow})$

• Can we find a term for every type?

Terms in STT ($\lambda_{ ightarrow}$)

• Can we find a term for every type?

 \mathbf{x}^{α} : α

• Can we find a closed term for every type?

Terms in STT ($\lambda_{ ightarrow}$)

• Can we find a term for every type?

 \mathbf{x}^{lpha} : lpha

• Can we find a closed term for every type?

$$(\alpha \to \alpha) \to \alpha$$

• No! Not every type is inhabited.

Type assignment

Typing à la Church

- All terms have the type information in the λ -abstractions
- Unique term types can be computed from the variable types

Typing à la Curry

- Given an untyped λ -term assign types
- Types are no longer unique
- Unification gives principal types

Example: Type $\lambda x.\lambda y.x(\lambda z.y)$

Type assignment

Typing à la Church

- All terms have the type information in the λ -abstractions
- Unique term types can be computed from the variable types

Typing à la Curry

- Given an untyped λ -term assign types
- Types are no longer unique
- Unification gives principal types

Example: Type $\lambda x.\lambda y.x(\lambda z.y)$

•
$$((\beta \to \alpha) \to \alpha) \to \alpha \to \alpha$$

• $((\beta \to \alpha) \to \gamma) \to \alpha \to \gamma$

Type assignment

Typing à la Church

- All terms have the type information in the λ -abstractions
- Unique term types can be computed from the variable types
- Useful in proving

Typing à la Curry

- Given an untyped λ -term assign types
- Types are no longer unique
- Unification gives principal types
- Useful in programming

Example: Type $\lambda x.\lambda y.x(\lambda z.y)$

•
$$((\beta \to \alpha) \to \alpha) \to \alpha \to \alpha$$

•
$$((\beta \to \alpha) \to \gamma) \to \alpha \to \gamma$$

Connection between STT à la Church and à la Curry

Erasure map: | · |

 $|x^{\alpha}| = x$ |MN| = |M||N| $|\lambda x^{\alpha}.M| = \lambda x.|M|$

Theorem

If $M : \sigma$ in STT à la Church, then $|M| : \sigma$ in STT à la Curry

Theorem

If $N : \sigma$ in STT à la Curry, then $\exists M | M | = N \land M : \sigma$ in STT à la Church

Inductive definition of terms

Rule form $\frac{\cdot}{x^{\sigma}:\sigma}$ $\frac{M:\sigma \to \tau \ N:\sigma}{MN:\tau}$ $\frac{P:\tau}{\lambda x^{\sigma}.P:\sigma \to \tau}$

With a context

• Declare the free variables

$$x_1:\sigma_1\ldots,x_n:\sigma_n\vdash t:\tau$$

- Usually denoted F
- Derivation tree

The three typing rules with a context

 Γ treated as a set: not possible for a variable to appear twice

Provability

Provability in λ_{\rightarrow}

$\Gamma \vdash_{\lambda_{\rightarrow}} M : \sigma$

iff there exists a derivation using the rules with the conclusion $\Gamma \vdash M : \sigma$

Formulas as Types (Curry-Howard isomorphism)

A typing judgement $M : \sigma$ can be read in two ways:

M is a function with the type σ

- term is an algorithm (program)
- type is its specification

M is a proof of the proposition σ

- type is a proposition
- term is its proof

One to one correspondence between

- Terms in λ_{\rightarrow} (typable)
- Derivations in minimal propositional logic

Example derivations in $\lambda_{ ightarrow}$

Blackboard

• K and S combinators

Minimal Proposition Logic

Subset of Intuitionistic Propositional Logic

Only one connective: \rightarrow

Definition cut

$$\begin{bmatrix} \sigma^{1} \\ \mathbb{D}_{1} \\ \\ \frac{\tau}{\sigma \to \tau} \mathbf{1} \\ \frac{\sigma}{\tau} \end{bmatrix}$$

Minimal Proposition Logic

Subset of Intuitionistic Propositional Logic

Only one connective: \rightarrow

Definition *cut*-elimination

Cut Elimination vs $\lambda_{ ightarrow}$

Lemma

Cut-elimination in minimal proposition logic corresponds to β -reduction in λ_{\rightarrow} .

if
$$\mathbb{D}_1 \longrightarrow_{cut} \mathbb{D}_2$$
 then $\mathbb{D}_1 \longrightarrow_{\beta} \mathbb{D}_2$

conjunction elimination left

conjunction elimination right

disjunction introduction left

disjunction introduction right

disjunction elimination

implication introduction

implication elimination

negation introduction

negation elimination

bottom elimination

universal introduction

universal elimination

existential introduction $\begin{array}{ccc} \vdots \\ \exists x A \end{array} \rightarrow \begin{array}{c} \vdots \\ \exists x A \\ \exists x A \end{array} \exists i \end{array}$

existential elimination

Example Derivation

$$\frac{\left[\exists x(P(x) \lor \neg Q(a))\right]^{\text{H1}}}{\left[\exists x P(x) \\ \overline{Q(a) \to \exists x P(x)} \\ \overline{\exists x P(x)} \\ \overline{\exists x P(x)} \\ \overline{dx(P(x) \lor \neg Q(a))} \\ \rightarrow i \text{ [H2]} \\ \overline{\exists x(P(x) \lor \neg Q(a)) \to Q(a) \to \exists x P(x)} \\ \rightarrow i \text{ [H1]} \\ \frac{\left[\neg Q(a)\right]^{\text{H5}}}{\left[Q(a)\right]^{\text{H2}}} \frac{\left[Q(a)\right]^{\text{H2}}}{\left[\exists x P(x) \\ \forall e \text{ [H4,H5]} \\ \overline{dx(P(x) \lor \neg Q(a)) \to Q(a) \to \exists x P(x)} \\ \rightarrow i \text{ [H1]} \\ \end{array} \right]}$$

Corresponding Box-style Proof

1			$\exists x(P(x) \lor \neg Q(a))$	assumption	
2			Q(a)	assumption	
3		b	$P(b) \lor eg Q(a)$	assumption	
4			<i>P</i> (<i>b</i>)	assumption	
5			$\exists x P(x)$	∃i 4	
6			eg Q(a)	assumption	
7			\perp	¬e 6,2	
8			$\exists x P(x)$	⊥e 7	
9			$\exists x P(x)$	∨e 3,4—5,6—8	
10			$\exists x P(x)$	∃e 1,3—9	
11			$Q(a) ightarrow \exists x P(x)$	→i 2—10	-
12			$\exists x (P(x) \lor \neg Q(a)) \to Q(a) \to \exists x P(x)$	→i 1—11	

Properties of $\lambda_{ ightarrow}$

Uniqueness of Types

If
$$\Gamma \vdash M : \sigma$$
 and $\Gamma \vdash M : \tau$, then $\sigma = \tau$.

Subject Reduction

If
$$\Gamma \vdash M : \sigma$$
 and $M \rightarrow_{\beta\eta} N$, then $\Gamma \vdash N : \sigma$.

Substitution Property

If
$$\Gamma, \mathbf{x} : \tau, \Delta \vdash \mathbf{M} : \sigma, \Gamma \vdash \mathbf{P} : \tau$$
, then $\Gamma, \Delta \vdash \mathbf{M}[\mathbf{x} := \mathbf{P}] : \sigma$.

• Thinning

If
$$\Gamma \vdash M : \sigma$$
 and $\Gamma \subset \Delta$, then $\Delta \vdash M : \sigma$.

Strengthening

If
$$\Gamma, \mathbf{x} : \tau \vdash \mathbf{M} : \sigma$$
 and $\mathbf{x} \notin FV(\mathbf{M})$, then $\Gamma \vdash \mathbf{M} : \sigma$.

• Strong Normalization

If $\Gamma \vdash M : \sigma$, then all $\beta \eta$ -reductions from M terminate.

Consequences

- Subterm property
- Condensing: $\Gamma|_{FV(M)}$
- Permutation
- No self application
- β -normal forms
- Some terms do not have fixed points

Intuitionistic Logic

Drawbacks of classical logic

- There are $x \notin \mathbb{Q}$ and $y \notin \mathbb{Q}$ st. $x^y \in \mathbb{Q}$.
 - Proof: by cases $\sqrt{2}^{\sqrt{2}} \in \mathbb{Q}$
- There are seven 7s in a row in the decimal representation of π .

Brouwer, beginning of 20th century

Intuitionistic logic developed later around 1930

- $A \rightarrow \neg \neg A$ has an intuitionistic interpretation
- but $\neg \neg A \rightarrow A$ does not

Easier correspondence to $\lambda_{?}$ -calculi

Constructive proofs have computational content

Brouwer-Heyting-Kolmogorov interpretation

Proof of $A \rightarrow B$

Function that maps proofs of A to proofs B

Proof of $A \land B$

Pair of proofs of A and B

Proof of $A \lor B$

Either a proof of A or a proof of B

Proof of $\forall x.P(x)$

Function that maps an object x to a proof of P(x)

Proof of \bot

Does not exist.Negation of A turns a proof of A into a nonexistant object

Exercises

- A more natural way of working with proofs, is to start with a goal and simplify it in order to prove it.
- Propose a mechanism that works with the HOL inference rules, that allows working backwards
- How would you add a type inhabitation procedure to your minimal type checker / reducer? (No implementation)