M universitat
™ innsbruck

Interactive Theorem Proving

Lecture & Exercises Week 6

Cezary Kaliszyk



Summary

Previous Lecture

® Lambda calculus

® Type checking and inference

® Beta reduction and cut elimination




Presentation Topic Assignment

e (!) Dedukti and Lambda-calculus modulo

e (I) Programming with dependent types: (Epigram / AgdaZ2 / Idris)
® ACL2 (and Ngthm)

® Lean and its type theory

® HOL Zero and checking formal proofs

® Metamath

® SMTCoq and decision procedures

® |nteraction between proof assistants (Flyspeck...,)
® Project Cristal and verified compiler

® sel4 operating system

e your idea: Formalization / System / Extension ...



Different Foundations

Set Theory

® sets and membership

® semantic information

® “collections of things”

® membership is undecidable

e extensional; talk about things that exist

Type Theory

® typing judgement

® syntactic information

® what objects can be constructed

® intentional

® type checking (and sometimes inference) is decidable



Typed A-calculus

Basis for a Proof Assistant

® Terms: Programs and Proofs

® Types: Specifications and Formulas

Brings together

® Programming

® Proving



Simple Type Theory (STT) or A_,

e Atomic types a By ... ,
® Function types a— S

For example: (¢« = ) > a —

Terms

® Variables with explicit types: x7,x9, ...
® Countably many for each o

® Applications: if M: 0 — 7 and N : o then (MN) : 7
e Abstractions: if P: 7 then (Ax?.P) : 0 — 7

XN X:0—=>T—>0 5



Conventions

Parentheses

® Types associate to the right
® Applications associate to the left

a-convertibility

XXX R ALYy
Capture avoiding substitution

B-reduction




Terms in STT (\,)

e Can we find a term for every type?



Terms in STT (\_,)

e Can we find a term for every type?

® Can we find a closed term for every type?



Terms in STT (\,)

e Can we find a term for every type?

® Can we find a closed term for every type?

(a = a) >«

® No! Not every type is inhabited.



Type assignment

Typing a la Church

e All terms have the type information in the A-abstractions
® Unique term types can be computed from the variable types

Typing a la Curry

® Given an untyped A-term assign types
® Types are no longer unique
¢ Unification gives principal types

Example: Type Ax.\y.x(\z.y)




Type assignment

Typing a la Church

e All terms have the type information in the A-abstractions
® Unique term types can be computed from the variable types

Typing a la Curry

® Given an untyped A-term assign types
® Types are no longer unique
¢ Unification gives principal types

Example: Type Ax.\y.x(\z.y)

* (f—a)—a)—a—a
*(B=a)=7)—=a—=y :

~ \



Type assignment

Typing a la Church

e All terms have the type information in the A-abstractions
® Unique term types can be computed from the variable types
® Useful in proving

Typing a la Curry

Given an untyped \-term assign types
Types are no longer unique
Unification gives principal types
Useful in programming

Example: Type Ax.\y.x(\z.y)

* (f—a)—a)—a—a
*(B=a)=7)—=a—=y :

~ \



Connection between STT a la Church and a la Curry

Erasure map: | - |

Ix*| = x
[MN| = [M||N|
[AXY.M| = Ax.|M|

If M: o in STT a la Church, then |M| : ¢ in STT a la Curry

If N: o in STT a la Curry, then IM.|M| =N AM : ¢ in STT a la Church




Inductive definition of terms

M:c—7 N:o P:T
MN : T MPP:o—T

With a context

® Declare the free variables

X% .0

X1:01...,Xp:0opbt:T

® Usually denoted I
® Derivation tree



The three typing rules with a context

[ treated as a set: not possible for a variable to appear twice

variable rule

xX:o0o€el
' Xx:0
abstraction rule

M x:0FP:7T
N (Ax:0.P): (0 — 1)

application rule

Fr=M:0—71 F=N:o
'~ MN: T




Provability

Provability in )\_,

rl—)\ﬁMZU

iff there exists a derivation using the rules with the conclusion - M : o



Formulas as Types (Curry-Howard isomorphism)

A typing judgement M : ¢ can be read in two ways:

M is a function with the type o

® term is an algorithm (program)
® type is its specification

M is a proof of the proposition o

® type is a proposition
® term is its proof

One to one correspondence between

® Terms in A_, (typable)
® Derivations in minimal propositional logic

13



Example derivations in A\_,

Blackboard

e Kand S combinators

14



Minimal Proposition Logic

Subset of Intuitionistic Propositional Logic

Only one connective: —

Definition cut

—_
R)
L
5

D1
T D
1 2
g —T g

15



Minimal Proposition Logic

Subset of Intuitionistic Propositional Logic

Only one connective: —

Definition cut-elimination

[o1] D,
D, ”
T D
1 2
g — T o Dy

15



Cut Elimination vs A\_,

Lemma

Cut-elimination in minimal proposition logic corresponds to S-reduction in A_,.

if D1 —cye Dy then Dy —3 D,

16



Gentzen style natural deduction

A Ak

conjunction introduction

' A
AAB AAB



Gentzen style natural deduction

conjunction elimination left

conjunction elimination right

18



Gentzen style natural deduction

disjunction introduction left

AVB AVB

disjunction introduction right

' v
AV B AVB

19



Gentzen style natural deduction

disjunction elimination

[A]Hl [B]H2
: N AVB C C y
€ [H1,
c c [H1,H2]
(Al
. R B .
—i
A—B A—p

20



Gentzen style natural deduction

implication elimination

' — e
5 B
negation introduction
[A]*
: _ 1
— —i[H
A “A [H]

21



Gentzen style natural deduction

negation elimination

3 N —-A A
L 4L

bottom elimination

—e

— J‘L
—le
A

22



Gentzen style natural deduction

universal introduction

Aly/x]

Vi
Vx A — Vx A
Vx A

A T A

23



Gentzen style natural deduction

existential introduction

A[f./X]

i
IxA IxA
[Aly/x]]*
: . IxA B3
—Je
5 5 [H]

24



Example Derivation

[~o(a)]™ [0(a)* .

PO L
[P(b) v =Q(a)]™®  IxP(x) Ix P(x) y
[HX(P(X) V ﬁQ(a))]Hi Ix P(X) : € [H4,H5]
2x Px) —i [H2] o
Q(a) — IxP(x) .

Ix(P(x) V ~Q(a)) — Q(a) — Ix P(x)

25



Corresponding Box-style Proof

1

u A~ W N

©O© 00 N O

10
11
12

Ax(P(x) vV —0Q(a)) assumption
Q(a) assumption
P(b) vV —Q(a) assumption
P(b) assumption
Ix P(x) Jdi4

-Q(a) assumption
L —e 6,2

Ix P(x) le7

x P(x) Ve 3,4—5,6—8
Ix P(x) de 1,3—9
Q(a) — IxP(x) —i2—10
Ix(P(x) V-0Q(a)) — Q(a) — IxP(x) —il—11

26



Properties of A\_,

® Uniqueness of Types
fr=M:ocand F'=M: 7, then o =T

Subject Reduction
fr=™M:ocand M —g, N, then I =N :o.

Substitution Property
Urx:7,A-M:o,TEP:7, then A+ M[x:=P]:o0.

Thinning
fIrEM:ocand N C A, then A-M: 0.

Strengthening
Il x:7HEM:0 and x ¢ FV(M), then ' =M : 0.

Strong Normalization

IfI'EM: o, then all fn-reductions from M terminate.



Consequences

® Subterm property
* Condensing: |ry(m)
® Permutation

No self application

(-normal forms

Some terms do not have fixed points

28



Intuitionistic Logic

Drawbacks of classical logic

® Therearex ¢ Qandy ¢ Qst. X € Q.
* Proof: by cases ﬂﬁ €cQ
® There are seven 7s in a row in the decimal representation of .

Brouwer, beginning of 20th century

Intuitionistic logic developed later around 1930

® A — ——A has an intuitionistic interpretation
® but =—A — A does not

Easier correspondence to \;-calculi

Constructive proofs have computational content



Brouwer-Heyting-Kolmogorov interpretation

Proof of A — B

Function that maps proofs of A to proofs B

Proof of AAB
Pair of proofs of A and B

Proof of AV B
Either a proof of A or a proof of B

Proof of Vx.P(x)

Function that maps an object x to a proof of P(x)

Proof of |

Does not exist.Negation of A turns a proof of A into a nonexistant object




Exercises

® A more natural way of working with proofs, is to start with a goal and simplify it in
order to prove it.

® Propose a mechanism that works with the HOL inference rules, that allows
working backwards

® How would you add a type inhabitation procedure to your minimal type checker /
reducer? (No implementation)

31



	ITP

