
Interactive Theorem Proving
Lecture & Exercises Week 6

Cezary Kaliszyk

Summary

Previous Lecture

• Lambda calculus

• Type checking and inference

Today

• Beta reduction and cut elimination

1

Presentation Topic Assignment

• (!) Dedukti and Lambda-calculus modulo

• (!) Programming with dependent types: (Epigram / Agda2 / Idris)

• ACL2 (and Nqthm)

• Lean and its type theory

• HOL Zero and checking formal proofs

• Metamath

• SMTCoq and decision procedures

• Interaction between proof assistants (Flyspeck...,)

• Project Cristal and verified compiler

• seL4 operating system

• your idea: Formalization / System / Extension ...

2

Different Foundations

Set Theory

• sets and membership

• semantic information

• “collections of things”

• membership is undecidable

• extensional; talk about things that exist

Type Theory

• typing judgement

• syntactic information

• what objects can be constructed

• intentional

• type checking (and sometimes inference) is decidable
3

Typed λ-calculus

Basis for a Proof Assistant

• Terms: Programs and Proofs

• Types: Specifications and Formulas

Brings together

• Programming

• Proving

4

Simple Type Theory (STT) or λ→

Types

• Atomic types α β γ . . . ,
• Function types α → β .

For example: (α → β) → α → β

Terms

• Variables with explicit types: xσ1 , x
σ
2 , . . .

• Countably many for each σ

• Applications: if M : σ → τ and N : σ then (MN) : τ
• Abstractions: if P : τ then (λxσ.P) : σ → τ

Examples

λxσ.λyτ .x : σ → τ → σ

λxα→β→γ .λyα→β.λzα.xz : β → γ

5

Conventions

Parentheses

• Types associate to the right

• Applications associate to the left

α-convertibility

λxσ. . . . x . . . x . . . ≈α λyσ. . . . y . . . y . . .

Capture avoiding substitution

M[x := N]

β-reduction

(λxσ.M)N −→β M[x := N]

6

Terms in STT (λ→)

• Can we find a term for every type?

xα : α

• Can we find a closed term for every type?

(α → α) → α

• No! Not every type is inhabited.

7

Terms in STT (λ→)

• Can we find a term for every type?

xα : α

• Can we find a closed term for every type?

(α → α) → α

• No! Not every type is inhabited.

7

Terms in STT (λ→)

• Can we find a term for every type?

xα : α

• Can we find a closed term for every type?

(α → α) → α

• No! Not every type is inhabited.

7

Type assignment

Typing à la Church

• All terms have the type information in the λ-abstractions
• Unique term types can be computed from the variable types

• Useful in proving

Typing à la Curry

• Given an untyped λ-term assign types
• Types are no longer unique
• Unification gives principal types

• Useful in programming

Example: Type λx.λy.x(λz.y)

• ((β → α) → α) → α → α
• ((β → α) → γ) → α → γ
• ((β → α → α) → γ) → (α → α) → γ

8

Type assignment

Typing à la Church

• All terms have the type information in the λ-abstractions
• Unique term types can be computed from the variable types

• Useful in proving

Typing à la Curry

• Given an untyped λ-term assign types
• Types are no longer unique
• Unification gives principal types

• Useful in programming

Example: Type λx.λy.x(λz.y)

• ((β → α) → α) → α → α
• ((β → α) → γ) → α → γ
• ((β → α → α) → γ) → (α → α) → γ

8

Type assignment

Typing à la Church

• All terms have the type information in the λ-abstractions
• Unique term types can be computed from the variable types
• Useful in proving

Typing à la Curry

• Given an untyped λ-term assign types
• Types are no longer unique
• Unification gives principal types
• Useful in programming

Example: Type λx.λy.x(λz.y)

• ((β → α) → α) → α → α
• ((β → α) → γ) → α → γ
• ((β → α → α) → γ) → (α → α) → γ

8

Connection between STT à la Church and à la Curry

Erasure map: | · |

|xα| = x

|MN| = |M||N|

|λxα.M| = λx.|M|

Theorem

If M : σ in STT à la Church, then |M| : σ in STT à la Curry

Theorem

If N : σ in STT à la Curry, then ∃M.|M| = N ∧M : σ in STT à la Church

9

Inductive definition of terms

Rule form

·
xσ : σ

M : σ → τ N : σ

MN : τ

P : τ

λxσ.P : σ → τ

With a context

• Declare the free variables

x1 : σ1 . . . , xn : σn ⊢ t : τ

• Usually denoted Γ

• Derivation tree

10

The three typing rules with a context

Γ treated as a set: not possible for a variable to appear twice

variable rule

x : σ ∈ Γ

Γ ⊢ x : σ

abstraction rule

Γ, x : σ ⊢ P : τ

Γ ⊢ (λx : σ. P) : (σ → τ)

application rule

Γ ⊢ M : σ → τ Γ ⊢ N : σ

Γ ⊢ MN : τ

11

Provability

Provability in λ→

Γ ⊢λ→ M : σ

iff there exists a derivation using the rules with the conclusion Γ ⊢ M : σ

12

Formulas as Types (Curry-Howard isomorphism)

A typing judgement M : σ can be read in two ways:

M is a function with the type σ

• term is an algorithm (program)

• type is its specification

M is a proof of the proposition σ

• type is a proposition

• term is its proof

One to one correspondence between

• Terms in λ→ (typable)

• Derivations in minimal propositional logic
13

Example derivations in λ→

Blackboard
• K and S combinators

14

Minimal Proposition Logic

Subset of Intuitionistic Propositional Logic

Only one connective: →

Definition cut

-elimination

[σ1]
D1

τ

σ → τ
1

D2

σ

τ

D2

σ

D1

τ

15

Minimal Proposition Logic

Subset of Intuitionistic Propositional Logic

Only one connective: →

Definition cut-elimination

[σ1]
D1

τ

σ → τ
1

D2

σ

τ

D2

σ

D1

τ

15

Cut Elimination vs λ→

Lemma

Cut-elimination in minimal proposition logic corresponds to β-reduction in λ→.

if D1 −→cut D2 then D1 −→β D2

16

Gentzen style natural deduction

assumption

...

A
→

[A]H

conjunction introduction

...

A ∧ B
→

...

A

...

B

A ∧ B
∧i

17

Gentzen style natural deduction

conjunction elimination left

...

A
→

...

A ∧ B

A
∧e1

conjunction elimination right

...

B
→

...

A ∧ B

B
∧e2

18

Gentzen style natural deduction

disjunction introduction left

...

A ∨ B
→

...

A

A ∨ B
∨i1

disjunction introduction right

...

A ∨ B
→

...

B

A ∨ B
∨i2

19

Gentzen style natural deduction

disjunction elimination

...

C
→

...

A ∨ B

[A]H1
...

C

[B]H2
...

C

C
∨e [H1,H2]

implication introduction

...

A → B
→

[A]H
...

B

A → B
→i [H]

20

Gentzen style natural deduction

implication elimination

...

B
→

...

A → B

...

A

B
→e

negation introduction

...

¬A →

[A]H
...

⊥
¬A

¬i [H]

21

Gentzen style natural deduction

negation elimination

...

⊥ →

...

¬A

...

A

⊥
¬e

bottom elimination

...

A
→

...

⊥
A
⊥e

22

Gentzen style natural deduction

universal introduction

...

∀x A →

...

A[y/x]

∀x A
∀i

universal elimination

...

A[t/x]
→

...

∀x A
A[t/x]

∀e

23

Gentzen style natural deduction

existential introduction

...

∃x A →

...

A[t/x]

∃x A
∃i

existential elimination

...

B
→

...

∃x A

[
A[y/x]

]
H

...

B

B
∃e [H]

24

Example Derivation

[∃x(P(x) ∨ ¬Q(a))]H1
[P(b) ∨ ¬Q(a)]H3

[P(b)]H4

∃x P(x)
∃i

[¬Q(a)]H5 [Q(a)]H2

⊥
¬e

∃x P(x)
⊥e

∃x P(x)
∨e [H4,H5]

∃x P(x)
∃e [H3]

Q(a) → ∃x P(x)
→i [H2]

∃x(P(x) ∨ ¬Q(a)) → Q(a) → ∃x P(x)
→i [H1]

25

Corresponding Box-style Proof
1 ∃x(P(x) ∨ ¬Q(a)) assumption

2 Q(a) assumption

3 b P(b) ∨ ¬Q(a) assumption

4 P(b) assumption

5 ∃x P(x) ∃i 4

6 ¬Q(a) assumption

7 ⊥ ¬e 6,2

8 ∃x P(x) ⊥e 7

9 ∃x P(x) ∨e 3,4—5,6—8

10 ∃x P(x) ∃e 1,3—9

11 Q(a) → ∃x P(x) →i 2—10

12 ∃x(P(x) ∨ ¬Q(a)) → Q(a) → ∃x P(x) →i 1—11 26

Properties of λ→
• Uniqueness of Types

If Γ ⊢ M : σ and Γ ⊢ M : τ , then σ = τ.

• Subject Reduction

If Γ ⊢ M : σ and M →βη N , then Γ ⊢ N : σ.

• Substitution Property

If Γ, x : τ,∆ ⊢ M : σ, Γ ⊢ P : τ , then Γ,∆ ⊢ M[x := P] : σ.

• Thinning
If Γ ⊢ M : σ and Γ ⊂ ∆, then ∆ ⊢ M : σ.

• Strengthening

If Γ, x : τ ⊢ M : σ and x /∈ FV(M), then Γ ⊢ M : σ.

• Strong Normalization

If Γ ⊢ M : σ, then all βη-reductions from M terminate. 27

Consequences

• Subterm property

• Condensing: Γ|FV(M)

• Permutation

• No self application

• β-normal forms

• Some terms do not have fixed points

28

Intuitionistic Logic

Drawbacks of classical logic

• There are x /∈ Q and y /∈ Q st. xy ∈ Q.

• Proof: by cases
√

2
√

2 ∈ Q
• There are seven 7s in a row in the decimal representation of π.

Brouwer, beginning of 20th century

Intuitionistic logic developed later around 1930

• A → ¬¬A has an intuitionistic interpretation

• but ¬¬A → A does not

Easier correspondence to λ?-calculi

Constructive proofs have computational content

29

Brouwer-Heyting-Kolmogorov interpretation

Proof of A → B

Function that maps proofs of A to proofs B

Proof of A ∧ B

Pair of proofs of A and B

Proof of A ∨ B

Either a proof of A or a proof of B

Proof of ∀x.P(x)

Function that maps an object x to a proof of P(x)

Proof of ⊥
Does not exist.Negation of A turns a proof of A into a nonexistant object

30

Exercises

• A more natural way of working with proofs, is to start with a goal and simplify it in
order to prove it.

• Propose a mechanism that works with the HOL inference rules, that allows
working backwards

• How would you add a type inhabitation procedure to your minimal type checker /
reducer? (No implementation)

31

	ITP

