
Interactive Theorem Proving
Lecture & Exercises Week 8

Cezary Kaliszyk



Summary

Previous Lecture

• Dependent types

• λP

• Curry Howard for λP

Today

• Tactics

• Lambda 2

1



Exercises

• Give λP derivations whose types are the conclusions of:
1 (∀y.Qy → Py) → Qa → Pa
2 (∀x.∀y.Px → Py) → Pa → ∀x.Px
3 (∀x.Px → A) → (A → ∀x.∀y.Qyx) → Pa → Qbb

• In the last PS we have looked at backwards proof
• Find the definition of the type tactic defined in HOL Light.
• Prove in HOL-Light using tactics:

a) A \/ B ==> B \/ A

b) (A ==> B ==> C) ==> (A ==> B) ==> A ==> C

(optional)

(!x. P x ==> Q x) ==> ((?y. Q y) ==> P a) ==> Q b ==> Q (a : A)

Using non-automated tactics. Hint: look for the tactics in
VERY_QUICK_REFERENCE.txt

2



Exercises

• Give λP derivations whose types are the conclusions of:
1 (∀y.Qy → Py) → Qa → Pa
2 (∀x.∀y.Px → Py) → Pa → ∀x.Px
3 (∀x.Px → A) → (A → ∀x.∀y.Qyx) → Pa → Qbb

• In the last PS we have looked at backwards proof
• Find the definition of the type tactic defined in HOL Light.
• Prove in HOL-Light using tactics:

a) A \/ B ==> B \/ A

b) (A ==> B ==> C) ==> (A ==> B) ==> A ==> C

(optional)

(!x. P x ==> Q x) ==> ((?y. Q y) ==> P a) ==> Q b ==> Q (a : A)

Using non-automated tactics. Hint: look for the tactics in
VERY_QUICK_REFERENCE.txt

2



Correspondence with first order logic

FOL corresponds to a fairly weak fragment of λP

• Only one type variable 0 (constant, type of individuals)

• All kinds are of the form 0 ⇒ . . . ⇒ 0 ⇒ ⋆

• Function symbols are distinguished object variables 0 → ... → 0

• Constants are distinguished variables of type 0

• Other declarations may only be of the form x : 0

Proof correspondence

• Proof by generalization
• abstraction λx : 0.Mφ

• Proof by MP
• application M∀x:0φN0

3



Correspondence with first order logic

FOL corresponds to a fairly weak fragment of λP

• Only one type variable 0 (constant, type of individuals)

• All kinds are of the form 0 ⇒ . . . ⇒ 0 ⇒ ⋆

• Function symbols are distinguished object variables 0 → ... → 0

• Constants are distinguished variables of type 0

• Other declarations may only be of the form x : 0

Proof correspondence

• Proof by generalization
• abstraction λx : 0.Mφ

• Proof by MP
• application M∀x:0φN0

3



More properties of λP

• Strong Normalization

• Subject Reduction

• In Church style: Type checking and type inference decidable in PTIME.
• In Curry style: Already type checking is undecidable [Dowek’93]

• Type inhabitation in λP is undecidable

• Curry-Howard isomorphism of a weak fragment of λP and IFOL.
• Still we have only implications

• Possible to add other connectives [Urzyczyn,Geuvers]

4



Automaton with two counters

A =< Q,q0,qf , δ >

• Q - finite set of states

• q0 - initial state

• qf - final state
• δ - transition function

• Domain: Q− qf
• δ(q) is one of the three forms, for i = 1 or 2:

• ci := ci + 1; goto p
• ci := ci − 1; goto p
• if ci = 0 then goto p else goto q

• Configuration of the automaton: C =< q,n1,n2 >

5



Automaton with two counters

Definition (accept)

An automaton accepts a configuration C if there exists a sequence:

C → C1 → C2 → ... → Cn

Where Cn is a configuration with a final state.

Halting problem

Does a given automaton A accept the given configuration C?

Theorems

1 The halting problem is undecidable.

2 There exists an A, st. the halting problem is undecidable with A fixed.

6



Helper definitions

•
τn(α) = αn−1 → α

•
σ(α) = (α → α) → α

• Lemma: For any m ̸= n, the types cannot be unified. For any α, β and any
substitution S: S(τm(α)) ̸= S(τn(β))

• Lemma: The type σ(α) cannot be unified with any τn(β). For any S, α, β,n.
S(τn(α)) ̸= S(σ(β))

• States are numbered 4...F. q0 = 4 and qf = F.

7



Encoding the configuration

• The code of the number n is any formula of the form:

τ2(α1) → ... → τ2(αn) → τ3(β)

• The code of a state q is any formula τq(α).

• The code of C =< q,n1,n2 > is any formula:

code(q) → code(n1) → code(n2) → σ(ξ)

8



Encoding the state transition function

• For δ(q) = c++;goto p

(τp(α) → (τ2(ϵ) → β) → γ → σ(ξ)) → (τq(α) → β → γ → σ(ξ))

• For δ(q) = c−−;goto p

(τp(α) → β → γ → σ(ξ)) → (τq(α) → (τ2(ϵ) → β) → γ → σ(ξ))

• For δ(q) = if c1 = 0 then goto p else goto r two formulas:

(τp(α) → τ3(β) → γ → σ(ξ)) → (τq(α) → τ3(β) → γ → σ(ξ))

(τr(α) → (τ2(ϵ) → β) → γ → σ(ξ)) → (τq(α) → (τ2(ϵ) → β) → γ → σ(ξ))

• Finally
τF(α) → β → γ → σ(ξ)

9



Main result

For any configuration C and any formula φ, which codes C, the following are
equivalent:

• Automaton A accepts the configuration C.

• The formula φ of automaton A has a proof in the predicate calculus

Proof:

• (↓): Induction w.r.t. the computation length.

• (↑): Induction w.r.t. the length of the proof.

10



Curry Howard again

1st order propositional logic ↔ simple type theory

e.g. λ→

1st order predicate logic ↔ type theory with dependent types

e.g. λP

2nd order propositional logic ↔ polymorphic type theory

e.g. λ2

11



Second Order propositional logic (syntax)

• a b c . . .
• A → B
• ⊥
• ⊤
• ¬A
• A ∧ B
• A ∨ B
• ∀a .A
• ∃ a .A

Example

∀α.α → α

12



Second Order propositional logic (rules)

• I[x]→, E→
• I⊤, E⊥
• I[x]¬, E¬
• I∧, E∧{1,2}
• I∨{1,2}, E∨
• I∀, E∀
• I∃, E∃

13



New rules: Universal quantification

Universal introduction

...

A

∀a.A
I∀

a cannot be free variable in any open assumption!

Universal elimination

...

∀a.A
A[a := B]

E∀

14



New rules: Existential quantification

Existential intro

...

A[a := B]

∃a.A
I∃

Existential elimination

...

∃a.A

...

∀a. (A → B)

B
E∃

a cannot be free in B!
15



Exercise

Prove in second-order propositional logic two of the following:

• (∀b.b) → a

• a → ∀b. ((a → b) → b)

• (∃b. a) → a

• ∃b.((a → b) ∨ (b → a))

• ∀a. ∀b. ((a → b) ∨ (b → a))

• ∀a. (a ∨ ¬a)
• a → ∀a. a
• (∃a. a) → a

(you can choose the ones corresponding to the last two digits of your matrikelnummer
mod 8. If the two are the same consider additionally the previous digit).

16



The “order”

First order

Object

Second order

• Set of objects

• Predicate on objects

• Function from objects to objects.

Third order

• Set of second order objects

• Predicate on predicates of objects

• Function from second order objects to ...

Etc
17



Example

Induction on nat is a second order predicate logic formula

∀a.
(
a(0) → (∀m. a(m) → a(S(m))) → ∀n. a(n)

)
m,n 1st order variables

0 1st order constant

a 2nd order variable

S 2nd order constant

18



Syntax of λ2

∗, □

x, y, z, . . .

MN

λx : M.N

Πx : M.N

19



Rules of λ2 (1/2)

⊢ ∗ : □
axiom

Γ ⊢ M : Πx : A.B Γ ⊢ N : A

Γ ⊢ MN : B[x := N]
application

Γ, x : A ⊢ M : B Γ ⊢ Πx : A.B : s

Γ ⊢ λx : A.M : Πx : A.B
abstraction

Γ ⊢ A : s Γ, x : A ⊢ B : ∗
Γ ⊢ Πx : A.B : ∗

product

(where s is ⋆ or □)

20



Rules of λ2 (2/2)

Γ ⊢ A : B Γ ⊢ C : s

Γ, x : C ⊢ A : B
weakening

Γ ⊢ A : s

Γ, x : A ⊢ x : A
variable

Γ ⊢ A : B Γ ⊢ B′ : s

Γ ⊢ A : B′ conversion

with B =β B′

21



The product rules

all systems
Γ ⊢ A : ∗ Γ, x : A ⊢ B : ∗

Γ ⊢ Πx : A.B : ∗

only in λP
Γ ⊢ A : ∗ Γ, x : A ⊢ B : □

Γ ⊢ Πx : A.B : □

nat → ∗

only in λ2
Γ ⊢ A : □ Γ, x : A ⊢ B : ∗

Γ ⊢ Πx : A.B : ∗

Πa : ∗. a → a

22



Exercises (Optional)

For one of the following λ2 find a term, or give a model that would say why this is not
possible:

1 (∀b.b) → a
2 a → ∀b. ((a → b) → b)
3 (∃b. a) → a
4 ∃b.((a → b) ∨ (b → a))
5 ∀a.∀b. ((a → b) ∨ (b → a))
6 ∀a. (a ∨ ¬a)
7 a → ∀a. a
8 (∃a. a) → a
9 ∀a.(a → ∀b.(b → (a ∧ b)))
10 ∀b.(∀a.((a → b) ∧ (b → a)))
11 (⋆) ∃a.∃b.((a ∨ b) ∧ (¬a ∨ ¬b))

Hint: We have not formally defined what a “model” in λ2 is, so presenting such a
notion is a good way to start the exercise for the non-provable theorems.

23


	ITP

