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Summary

Previous Lecture

• Dependent types

• λP

• Curry Howard for λP

Today

• Tactics

• Lambda 2
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Exercises

• Give λP derivations whose types are the conclusions of:
1 (∀y.Qy → Py) → Qa → Pa
2 (∀x.∀y.Px → Py) → Pa → ∀x.Px
3 (∀x.Px → A) → (A → ∀x.∀y.Qyx) → Pa → Qbb

• In the last PS we have looked at backwards proof
• Find the definition of the type tactic defined in HOL Light.
• Prove in HOL-Light using tactics:

a) A \/ B ==> B \/ A

b) (A ==> B ==> C) ==> (A ==> B) ==> A ==> C

(optional)

(!x. P x ==> Q x) ==> ((?y. Q y) ==> P a) ==> Q b ==> Q (a : A)

Using non-automated tactics. Hint: look for the tactics in
VERY_QUICK_REFERENCE.txt
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Correspondence with first order logic

FOL corresponds to a fairly weak fragment of λP

• Only one type variable 0 (constant, type of individuals)

• All kinds are of the form 0 ⇒ . . . ⇒ 0 ⇒ ⋆

• Function symbols are distinguished object variables 0 → ... → 0

• Constants are distinguished variables of type 0

• Other declarations may only be of the form x : 0

Proof correspondence

• Proof by generalization
• abstraction λx : 0.Mφ

• Proof by MP
• application M∀x:0φN0
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More properties of λP

• Strong Normalization

• Subject Reduction

• In Church style: Type checking and type inference decidable in PTIME.
• In Curry style: Already type checking is undecidable [Dowek’93]

• Type inhabitation in λP is undecidable

• Curry-Howard isomorphism of a weak fragment of λP and IFOL.
• Still we have only implications

• Possible to add other connectives [Urzyczyn,Geuvers]
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Automaton with two counters

A =< Q,q0,qf , δ >

• Q - finite set of states

• q0 - initial state

• qf - final state
• δ - transition function

• Domain: Q− qf
• δ(q) is one of the three forms, for i = 1 or 2:

• ci := ci + 1; goto p
• ci := ci − 1; goto p
• if ci = 0 then goto p else goto q

• Configuration of the automaton: C =< q,n1,n2 >
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Automaton with two counters

Definition (accept)

An automaton accepts a configuration C if there exists a sequence:

C → C1 → C2 → ... → Cn

Where Cn is a configuration with a final state.

Halting problem

Does a given automaton A accept the given configuration C?

Theorems

1 The halting problem is undecidable.

2 There exists an A, st. the halting problem is undecidable with A fixed.
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Helper definitions

•
τn(α) = αn−1 → α

•
σ(α) = (α → α) → α

• Lemma: For any m ̸= n, the types cannot be unified. For any α, β and any
substitution S: S(τm(α)) ̸= S(τn(β))

• Lemma: The type σ(α) cannot be unified with any τn(β). For any S, α, β,n.
S(τn(α)) ̸= S(σ(β))

• States are numbered 4...F. q0 = 4 and qf = F.
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Encoding the configuration

• The code of the number n is any formula of the form:

τ2(α1) → ... → τ2(αn) → τ3(β)

• The code of a state q is any formula τq(α).

• The code of C =< q,n1,n2 > is any formula:

code(q) → code(n1) → code(n2) → σ(ξ)
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Encoding the state transition function

• For δ(q) = c++;goto p

(τp(α) → (τ2(ϵ) → β) → γ → σ(ξ)) → (τq(α) → β → γ → σ(ξ))

• For δ(q) = c−−;goto p

(τp(α) → β → γ → σ(ξ)) → (τq(α) → (τ2(ϵ) → β) → γ → σ(ξ))

• For δ(q) = if c1 = 0 then goto p else goto r two formulas:

(τp(α) → τ3(β) → γ → σ(ξ)) → (τq(α) → τ3(β) → γ → σ(ξ))

(τr(α) → (τ2(ϵ) → β) → γ → σ(ξ)) → (τq(α) → (τ2(ϵ) → β) → γ → σ(ξ))

• Finally
τF(α) → β → γ → σ(ξ)
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Main result

For any configuration C and any formula φ, which codes C, the following are
equivalent:

• Automaton A accepts the configuration C.

• The formula φ of automaton A has a proof in the predicate calculus

Proof:

• (↓): Induction w.r.t. the computation length.

• (↑): Induction w.r.t. the length of the proof.
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Curry Howard again

1st order propositional logic ↔ simple type theory

e.g. λ→

1st order predicate logic ↔ type theory with dependent types

e.g. λP

2nd order propositional logic ↔ polymorphic type theory

e.g. λ2
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Second Order propositional logic (syntax)

• a b c . . .
• A → B
• ⊥
• ⊤
• ¬A
• A ∧ B
• A ∨ B
• ∀a .A
• ∃ a .A

Example

∀α.α → α
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Second Order propositional logic (rules)

• I[x]→, E→
• I⊤, E⊥
• I[x]¬, E¬
• I∧, E∧{1,2}
• I∨{1,2}, E∨
• I∀, E∀
• I∃, E∃
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New rules: Universal quantification

Universal introduction

...

A

∀a.A
I∀

a cannot be free variable in any open assumption!

Universal elimination

...

∀a.A
A[a := B]

E∀
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New rules: Existential quantification

Existential intro

...

A[a := B]

∃a.A
I∃

Existential elimination

...

∃a.A

...

∀a. (A → B)

B
E∃

a cannot be free in B!
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Exercise

Prove in second-order propositional logic two of the following:

• (∀b.b) → a

• a → ∀b. ((a → b) → b)

• (∃b. a) → a

• ∃b.((a → b) ∨ (b → a))

• ∀a. ∀b. ((a → b) ∨ (b → a))

• ∀a. (a ∨ ¬a)
• a → ∀a. a
• (∃a. a) → a

(you can choose the ones corresponding to the last two digits of your matrikelnummer
mod 8. If the two are the same consider additionally the previous digit).
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The “order”

First order

Object

Second order

• Set of objects

• Predicate on objects

• Function from objects to objects.

Third order

• Set of second order objects

• Predicate on predicates of objects

• Function from second order objects to ...

Etc
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Example

Induction on nat is a second order predicate logic formula

∀a.
(
a(0) → (∀m. a(m) → a(S(m))) → ∀n. a(n)

)
m,n 1st order variables

0 1st order constant

a 2nd order variable

S 2nd order constant
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Syntax of λ2

∗, □

x, y, z, . . .

MN

λx : M.N

Πx : M.N
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Rules of λ2 (1/2)

⊢ ∗ : □
axiom

Γ ⊢ M : Πx : A.B Γ ⊢ N : A

Γ ⊢ MN : B[x := N]
application

Γ, x : A ⊢ M : B Γ ⊢ Πx : A.B : s

Γ ⊢ λx : A.M : Πx : A.B
abstraction

Γ ⊢ A : s Γ, x : A ⊢ B : ∗
Γ ⊢ Πx : A.B : ∗

product

(where s is ⋆ or □)
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Rules of λ2 (2/2)

Γ ⊢ A : B Γ ⊢ C : s

Γ, x : C ⊢ A : B
weakening

Γ ⊢ A : s

Γ, x : A ⊢ x : A
variable

Γ ⊢ A : B Γ ⊢ B′ : s

Γ ⊢ A : B′ conversion

with B =β B′
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The product rules

all systems
Γ ⊢ A : ∗ Γ, x : A ⊢ B : ∗

Γ ⊢ Πx : A.B : ∗

only in λP
Γ ⊢ A : ∗ Γ, x : A ⊢ B : □

Γ ⊢ Πx : A.B : □

nat → ∗

only in λ2
Γ ⊢ A : □ Γ, x : A ⊢ B : ∗

Γ ⊢ Πx : A.B : ∗

Πa : ∗. a → a
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Exercises (Optional)

For one of the following λ2 find a term, or give a model that would say why this is not
possible:

1 (∀b.b) → a
2 a → ∀b. ((a → b) → b)
3 (∃b. a) → a
4 ∃b.((a → b) ∨ (b → a))
5 ∀a.∀b. ((a → b) ∨ (b → a))
6 ∀a. (a ∨ ¬a)
7 a → ∀a. a
8 (∃a. a) → a
9 ∀a.(a → ∀b.(b → (a ∧ b)))
10 ∀b.(∀a.((a → b) ∧ (b → a)))
11 (⋆) ∃a.∃b.((a ∨ b) ∧ (¬a ∨ ¬b))

Hint: We have not formally defined what a “model” in λ2 is, so presenting such a
notion is a good way to start the exercise for the non-provable theorems.
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