
Interactive Theorem Proving and Automation
Lecture & Exercises Week 12

Jan Jakubův (and Cezary Kaliszyk)

Summary

Previous Lecture

• Higher-order logics and ITPs

Today

• Automated reasoning in First-order logic

• TPTP World: Language and problem library

• Clausification and Unification

• Resolution Calculus

• Applications in proof assistants

1

Language of First-order Logic

• Variables and signature:

x ::= x | y | z | . . . Variables (typically countable)

f ::= f | g | h | . . . Function symbols (typically finite)

P ::= P | Q | R | . . . Predicate symbols (typically finite)

• Each symbol from f , P has a fixed arity: f/2 (binary), P/3 (ternary), . . .
• Syntax of terms and formulae:

t ::= x | f(t1, . . . , tn) Terms (type ι)

α ::= P(t1, . . . , tn) Atoms (type o)

A,B,C ::= α | ¬(A) | (A) → (B) | ∀x (A) Formulae (type o)

• Convention: Drop unnecessary parenthesis, e.g., ¬¬A instead of ¬(¬(A)).
2

First-order Logic Abbreviations

• Abbreviations introduce other symbols:

A ∨ B ≡ ¬A → B

A ∧ B ≡ ¬(A → ¬B)
A ⇔ B ≡ (A → B) ∧ (B → A)

∃x (A) ≡ ¬∀x (¬A)
• Propositional logic is a special case:

▶ without function symbols and variables
▶ with only nulary predicate symbols P/0 (propositional constants)

• Alternative complete set of base connectives instead of {¬,→}:

▶ {∧,∨,¬}
▶ {↑} where A ↑ B ≡ ¬(A ⇔ B) (Sheffer stroke, NAND)

3

Axiomatization of First-order Logic

• Axiom schemes:

A → (B → A) (A1)

(A → (B → C)) → ((A → B) → (A → C)) (A2)

¬¬A → A (A3)

∀x(A[x]) → A[t] (A4) if substitutable

∀x(A → B) → (A → ∀xB) (A5) if x ̸∈ vars(A)

substitutable: No z ∈ vars(t) is ∃-bound in A (simplification).

• Every instance of A1,. . . ,A5 is an axiom and is valid.

• Inference rules:

A A → B

B
(Modus Ponens)

A

∀x(A)
(Generalization)

• Infer a valid formula from valid formulae.

4

Axiomatization of First-order Logic

• Axiom schemes:

A → (B → A) (A1)

(A → (B → C)) → ((A → B) → (A → C)) (A2)

¬¬A → A (A3)

∀x(A[x]) → A[t] (A4) if substitutable

∀x(A → B) → (A → ∀xB) (A5) if x ̸∈ vars(A)

• Every instance of A1,. . . ,A5 is an axiom and is valid.

• Inference rules:

A A → B

B
(Modus Ponens)

A

∀x(A)
(Generalization)

• Infer a valid formula from valid formulae.

4

Axiomatization of First-order Logic

• Axiom schemes:

A → (B → A) (A1)

(A → (B → C)) → ((A → B) → (A → C)) (A2)

¬¬A → A (A3)

∀x(A[x]) → A[t] (A4) if substitutable

∀x(A → B) → (A → ∀xB) (A5) if x ̸∈ vars(A)

• Every instance of A1,. . . ,A5 is an axiom and is valid.

• Inference rules:

A A → B

B
(Modus Ponens)

A

∀x(A)
(Generalization)

• Infer a valid formula from valid formulae.

4

Proofs in First-order Logic

• Proof of A in FOL is a sequence of formulae ending with A, where
every formula is either

▶ an axiom, or
▶ is derived from formula(s) coming before in the proof.

• A is probable (written ⊢ A) if there exists some proof of A.

• Axiom schemes A1,. . . ,A3 with MP, is a

▶ correct: only tautologies can be proved, and
▶ complete: all tautologies can be proved,

axiomatization of propositional logic.

• Schemes A1,. . . ,A5 with MP and Gen, is a correct and complete axiomatization
of First-order logic: only logically valid formulae are proved.

5

Exercise: Propositional Logic

• Axiom schemes:

A → (B → A) (A1)

(A → (B → C)) → ((A → B) → (A → C)) (A2)

¬¬A → A (A3)

• Inference rules:

A A → B

B
(Modus Ponens)

• Exercise: Prove ⊢ A → A using A1,. . . ,A3 with MP.
Proof can be represented by a tree/dag (the derivation of A → A).

6

Exercise: Solution

Claim: ⊢ A → A
Proof:

(1) A → ((B → A) → A) (instance of A1)

(2) (A → ((B → A) → A)) → ((A → (B → A)) → (A → A)) (instance of A2)

(3) (A → (B → A)) → (A → A) (from (1) and (2))

(4) A → (B → A) (instance of A1)

(6) A → A (from (4) and (3))

7

Theories in First-order Logic

• Theory T is an additional (countable) set of axioms.

• A is provable in T, written T ⊢ A, when there exists a proof of A (⊢ (∧T) → A).

• Equality axioms can be added:

t = t (reflexivity)

t = s → s = t (symmetry)

(t = s) ∧ (s = r) → (t = r) (transitivity)

• with congruence axioms:

t = s → f(t) = f(s) for every function f

(t = s ∧ P(t)) → P(s) for every predicate P

• for every term t, s, r.

• No new inference rule is necessary (but can be added).

8

TPTP World of Automated Theorem Provers

Thousands of Problems for Theorem Provers (TPTP)

• Library of first-order problems from various fields.

• Language to represent logic formulae as text for computers.

• Online interface to run many ATP provers (SystemOnTPTP).

TPTP syntax for terms (ASCII):

object syntax comment

variables X capital letter first

other symbols f lower case first

application f(X,a) prefix notation, comma-separated

9

TPTP Language

• Connectives:
FOL symbol ∧ ∨ → ¬ ≡
TPTP syntax & | => ~ <=>

• Formula:

composed p(a) & p(b) infix syntax for connectives

forall ![X]:(p(X)) don’t forget parenthesis

exists ?[X]:(p(X)) here as well

• TPTP file is a sequence of TPTP statements:

fof(name, role, (formula)). # this is a comment

where name is a user-defined text, and role is either axiom or conjecture.

• Exercise: Go to tptp.org and locate and investigate problem PUZ001+1.

10

tptp.org

TPTP Language

• Connectives:
FOL symbol ∧ ∨ → ¬ ≡
TPTP syntax & | => ~ <=>

• Formula:

composed p(a) & p(b) infix syntax for connectives

forall ![X]:(p(X)) don’t forget parenthesis

exists ?[X]:(p(X)) here as well

• TPTP file is a sequence of TPTP statements:

fof(name, role, (formula)). # this is a comment

where name is a user-defined text, and role is either axiom or conjecture.

• Exercise: Go to tptp.org and locate and investigate problem PUZ001+1.

10

tptp.org

System on TPTP

• SystemOnTPTP provides a web interface to experiment with provers.

• Exercise 1: Use SystemOnTPTP to prove problem PUZ001+1 by E or Vampire.

• Hint: Search for the text “SZS status” in the output.

• Exercise 2: Prove or disprove the Drinker’s paradox using E:

∃x (P(x) → ∀y P(y))

• Exercise 3: Compare with the results for:

∃x (P(x)) → ∀y P(y)

11

Core of Automated Theorem Proving (ATP)

Clauses

• Use simpler clauses instead of general formulae.

• Clause is a disjuction of literals (atom α or ¬α), e.g., P(x) ∨ ¬Q(x) ∨ R(x, f(y))

• No quantifiers in clauses.

• All (free) variables are implicitelly ∀-qualified.

• Every formula can be translated to a logically equivalent set of clauses.

Proof by contradiction

• To prove T ⊢ A, show that T ∪ {¬A} is contradictory (unsatisfiable).

• Proof is a sequence deriving the empty clause (□).

• We show: T ∪ {¬A} ⊢ □

• The empty clause represents the contradiction.
12

Clausal Normal Form

Clausification

Translation of first-order formula A to a set of clauses {C1, . . . ,Cn} such that

A and ∀x1 (C1) ∧ · · · ∧ ∀xn (Cn)

are equisatisfiable, where xi stands for all (free) variables in Ci.

Consists of

• Skolemization to eliminate existential quantifiers (∃).

• CNF transformation to construct a conjunction of disjunctions (of literals).

13

Clausification

Skolemization

1 Eliminate all but {∧,∨,¬}. A → B ≡ ¬A ∨ B A ⇔ B ≡ (A ∧ B) ∨ (¬A ∨ ¬B)

2 Translate to the prenex form with all quantifiers (∀,∃) at the top.

¬∀ x(A) ≡ ∃x (¬A) A ∧ ∀x (B) ≡ ∀x (A ∧ B) (if x ̸∈ vars(A))

3 Translate ∃ x(A) to A[x 7→ c] where c is new Skolem constant (witness).

4 Translate ∀ y∃ x(A) to ∀y (A[x 7→ f(y)]) where f is new Skolem function.

CNF transformation is done using

• de Morgan laws ¬(A ∧ B) ≡ (¬A) ∨ (¬B) ¬(A ∨ B) ≡ (¬A) ∧ (¬B)
• distributivity A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C) (etc.)

• double negation elimination

14

Clausification

Skolemization

1 Eliminate all but {∧,∨,¬}. A → B ≡ ¬A ∨ B A ⇔ B ≡ (A ∧ B) ∨ (¬A ∨ ¬B)
2 Translate to the prenex form with all quantifiers (∀,∃) at the top.

¬∀ x(A) ≡ ∃x (¬A) A ∧ ∀x (B) ≡ ∀x (A ∧ B) (if x ̸∈ vars(A))

3 Translate ∃ x(A) to A[x 7→ c] where c is new Skolem constant (witness).

4 Translate ∀ y∃ x(A) to ∀y (A[x 7→ f(y)]) where f is new Skolem function.

CNF transformation is done using

• de Morgan laws ¬(A ∧ B) ≡ (¬A) ∨ (¬B) ¬(A ∨ B) ≡ (¬A) ∧ (¬B)
• distributivity A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C) (etc.)

• double negation elimination

14

Clausification

Skolemization

1 Eliminate all but {∧,∨,¬}. A → B ≡ ¬A ∨ B A ⇔ B ≡ (A ∧ B) ∨ (¬A ∨ ¬B)
2 Translate to the prenex form with all quantifiers (∀,∃) at the top.

¬∀ x(A) ≡ ∃x (¬A) A ∧ ∀x (B) ≡ ∀x (A ∧ B) (if x ̸∈ vars(A))

3 Translate ∃ x(A) to A[x 7→ c] where c is new Skolem constant (witness).

4 Translate ∀ y∃ x(A) to ∀y (A[x 7→ f(y)]) where f is new Skolem function.

CNF transformation is done using

• de Morgan laws ¬(A ∧ B) ≡ (¬A) ∨ (¬B) ¬(A ∨ B) ≡ (¬A) ∧ (¬B)
• distributivity A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C) (etc.)

• double negation elimination

14

Clausification

Skolemization

1 Eliminate all but {∧,∨,¬}. A → B ≡ ¬A ∨ B A ⇔ B ≡ (A ∧ B) ∨ (¬A ∨ ¬B)
2 Translate to the prenex form with all quantifiers (∀,∃) at the top.

¬∀ x(A) ≡ ∃x (¬A) A ∧ ∀x (B) ≡ ∀x (A ∧ B) (if x ̸∈ vars(A))

3 Translate ∃ x(A) to A[x 7→ c] where c is new Skolem constant (witness).

4 Translate ∀ y∃ x(A) to ∀y (A[x 7→ f(y)]) where f is new Skolem function.

CNF transformation is done using

• de Morgan laws ¬(A ∧ B) ≡ (¬A) ∨ (¬B) ¬(A ∨ B) ≡ (¬A) ∧ (¬B)
• distributivity A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C) (etc.)

• double negation elimination

14

Clausification

Skolemization

1 Eliminate all but {∧,∨,¬}. A → B ≡ ¬A ∨ B A ⇔ B ≡ (A ∧ B) ∨ (¬A ∨ ¬B)
2 Translate to the prenex form with all quantifiers (∀,∃) at the top.

¬∀ x(A) ≡ ∃x (¬A) A ∧ ∀x (B) ≡ ∀x (A ∧ B) (if x ̸∈ vars(A))

3 Translate ∃ x(A) to A[x 7→ c] where c is new Skolem constant (witness).

4 Translate ∀ y∃ x(A) to ∀y (A[x 7→ f(y)]) where f is new Skolem function.

CNF transformation is done using

• de Morgan laws ¬(A ∧ B) ≡ (¬A) ∨ (¬B) ¬(A ∨ B) ≡ (¬A) ∧ (¬B)
• distributivity A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C) (etc.)

• double negation elimination
14

Exercises

• Translate the following to the clausal normal form.

• Exercise 1: ∃x (P(x) → ∀y P(y))
• Exercise 2: ∃x (P(x)) → ∀y P(y)
• Exercise 3: ∀x (P(x)) → ∃y P(y)
• By hand or with the help of SystemOnTptp.

15

Unification in First-order Logic

Most ATPs rely on unification.

Unificator σ of terms t and s

• Is a substitution (a mapping from variables to terms) such that σ(t) ≡ σ(s).

• Typically written postfix as tσ.

• Substitution can be applied to formulas: Aσ (modify free variables only!)

Most general unificator

• By example: Both σ1 = {x 7→ y} and σ2 = {x 7→ a, y 7→ a} unify f(x, y) and f(y, x).

• The first is more general w.r.t. composition: σ2 is σ1 composed with {y 7→ a}.

• But σ1 can not be written as composition of σ2 with something.

• All unifiable terms have a most general unifier (mgu).

16

Martelli-Montanari Unification Algorithm

• Work with set of equations of the shape t = s for terms t, s.

• To unify t and s start with a singleton set {t = s}.

Keep applying the following rules (nondeterministically)

• Delete all equations of shape t = t

• Eliminate equations of shape x = t if x ̸∈ vars(t):
Apply {x 7→ t} to all other equations (and remember the binding).

• Decompose equation f(t1, . . . , tn) = f(s1, . . . , sn) into t1 = s1,. . . ,tn = sn.

• Terminate with success if empty set reached, fail otherwise.

• The algorithm returns the mgu of s and t if exists.

• Exercise: Find the mgu of Q(a,g(x, a), f(y)) and Q(a,g(f(b), a), x).

17

Martelli-Montanari Unification Algorithm

• Work with set of equations of the shape t = s for terms t, s.

• To unify t and s start with a singleton set {t = s}.

Keep applying the following rules (nondeterministically)

• Delete all equations of shape t = t

• Eliminate equations of shape x = t if x ̸∈ vars(t):
Apply {x 7→ t} to all other equations (and remember the binding).

• Decompose equation f(t1, . . . , tn) = f(s1, . . . , sn) into t1 = s1,. . . ,tn = sn.

• Terminate with success if empty set reached, fail otherwise.

• The algorithm returns the mgu of s and t if exists.

• Exercise: Find the mgu of Q(a,g(x, a), f(y)) and Q(a,g(f(b), a), x).

17

Resolution Calculus: Inference Rules

Binary resolution

L1 ∨ C ¬L2 ∨ D
(C ∨ D)σ

σ = mgu(L1, L2)

• C,D are disjunctions of literals, and premises do not share variables.

Factorization

L1 ∨ L2 ∨ C
(L1 ∨ C)σ

σ = mgu(L1, L2)

• Resolution with factorization are refutationally complete:
If T ⊢ □ (in FOL) then □ can be derived by resolution from axioms T.

• Exercise 2: Prove ⊢ ∃x (P(x) → ∀y P(y)).

18

Resolution Calculus: Inference Rules

Binary resolution

L1 ∨ C ¬L2 ∨ D
(C ∨ D)σ

σ = mgu(L1, L2)

• C,D are disjunctions of literals, and premises do not share variables.

Factorization

L1 ∨ L2 ∨ C
(L1 ∨ C)σ

σ = mgu(L1, L2)

• Resolution with factorization are refutationally complete:
If T ⊢ □ (in FOL) then □ can be derived by resolution from axioms T.

• Exercise 1: Prove ⊢ A → A by resolution.

• Exercise 2: Prove ⊢ ∃x (P(x) → ∀y P(y)).

18

Resolution Calculus: Inference Rules

Binary resolution

L1 ∨ C ¬L2 ∨ D
(C ∨ D)σ

σ = mgu(L1, L2)

• C,D are disjunctions of literals, and premises do not share variables.

Factorization

L1 ∨ L2 ∨ C
(L1 ∨ C)σ

σ = mgu(L1, L2)

• Resolution with factorization are refutationally complete:
If T ⊢ □ (in FOL) then □ can be derived by resolution from axioms T.

• Exercise 2: Prove ⊢ ∃x (P(x) → ∀y P(y)).18

Application: ATPs for ITPs

ATPs are used by ITP Hammers

• Translate ITP problem to FOL.

• Select appropriate definition and lemmas as axioms.

• Call the ATP prover(s).

• Translate ATP proof back to ITP.

Proof Assistant ⋆Hammer ATP

Current Goal First Order Problem

ITP Proof ATP Proof
.

19

	ITP

