M universitat
M innsbruck

Interactive Theorem Proving and Automation

Lecture & Exercises Week 12

Jan JakubUlv (and Cezary Kaliszyk)

Summary

Previous Lecture

¢ Higher-order logics and ITPs

Today

e Automated reasoning in First-order logic

TPTP World: Language and problem library

Clausification and Unification
® Resolution Calculus
® Applications in proof assistants

Language of First-order Logic

® Variables and signature:

x:=x|ylz]| ... Variables (typically countable)
fzo=flglh]| ... Function symbols (typically finite)
P:=P|Q|R]| ... Predicate symbols (typically finite)

® Each symbol from f, P has a fixed arity: f/2 (binary), P/3 (ternary), ...
®* Syntax of terms and formulae:

to=x|f(tr,...,tn) Terms (type ¢)
a = P(ty,..., t) Atoms (type o)
AB,C:=a|—(A)|(A) — (B) | Vx(A) Formulae (type o)

e Convention: Drop unnecessary parenthesis, e.g., =—A instead of =(—(A)).

First-order Logic Abbreviations

® Abbreviations introduce other symbols:

AVB
AANB
A& B
x (A)

® Propositional logic is a special case:

-A—B

—(A — -B)
(A—=B)A(B—A)
—Vx (—A)

» without function symbols and variables
» with only nulary predicate symbols P/0 (propositional constants)

¢ Alternative complete set of base connectives instead of {—, —}:

> {r Vv, -}

> {1} where A1B=-(A<B)

(Sheffer stroke, NAND)

Axiomatization of First-order Logic

* Axiom schemes:

A—(B—A) (A1)
A—-B—C)—=(A—=B)—=(A—=0) (A2

——A A (A3)

Vx(A[x]) — Alt] (Ag) if substitutable
Vx(A — B) — (A — VxB) (As) if x & vars(A)

substitutable: No z € vars(t) is 3-bound in A (simplification).

Axiomatization of First-order Logic

¢ Axiom schemes:

A— (B—A) (A1)

A= B—=C)—=(A—=>B)—=(A—=0)) (A)

A = A (A3)

Vx(A[x]) — Alt] (Ag) if substitutable
Vx(A — B) — (A — VxB) (As) if x & vars(A)

® Every instance of Aj,...,As is an axiom and is valid.

Axiomatization of First-order Logic

¢ Axiom schemes:

A— (B—A) (A1)
A—-B—C)—=((A—-B)—=(A—=0) (A2)

-—A = A (A3)

Vx(A[x]) — Alt] (Ag) if substitutable
Vx(A — B) — (A — VxB) (As) if x & vars(A)

® Every instance of Aj,...,As is an axiom and is valid.
® Inference rules:

A A—B A
———— (Modus Ponens) —
B Vx(A)

® |nfer a valid formula from valid formulae.

(Generalization)

Proofs in First-order Logic

® Proof of A in FOL is a sequence of formulae ending with A, where
every formula is either

> an axiom, or

» is derived from formula(s) coming before in the proof.
® A is probable (written - A) if there exists some proof of A.
® Axiom schemes A,,...,A3 with MP, is a

> correct: only tautologies can be proved, and
> complete: all tautologies can be proved,

axiomatization of propositional logic.

® Schemes As,...,As with MP and Gen, is a correct and complete axiomatization
of First-order logic: only logically valid formulae are proved.

Exercise: Propositional Logic

® Axiom schemes:

A— (B—A) (A1)
A—=B—=C)—(A—=B)—=(A—=0C) (A2)
-—A — A (A3)
* Inference rules:
A A—B

5 (Modus Ponens)

* Exercise: Prove - A — A using A1,... A3 with MP.
Proof can be represented by a tree/dag (the derivation of A — A).

Exercise: Solution

Claim:-FA— A

Proof:
(1) —((B—A) = A) (instance of A7)
(2) (A —((B—A)—A)) = ((A—(B—A)) - (A—A)) (instance of Ay)
3) A—=>(B—A)— (A=A (from (1) and (2))
(4) A—(B—A) (instance of A;)

6) A—A (from (4) and (3))

Theories in First-order Logic

Theory T is an additional (countable) set of axioms.
® Ais provable in T, written T - A, when there exists a proof of A (- (AT) — A).

Equality axioms can be added:
t=t (reflexivity)
t=s—>s=t (symmetry)
(t=s)A(s=r)— (t=r) (transitivity)
® with congruence axioms:
t=s—f(t)="f(s) forevery function f
(t=sAP(t)) — P(s) forevery predicate P
for every term t, s, r.

® No new inference rule is necessary (but can be added).

TPTP World of Automated Theorem Provers

Thousands of Problems for Theorem Provers (TPTP)

® Library of first-order problems from various fields.
¢ Language to represent logic formulae as text for computers.
® Online interface to run many ATP provers (SystemOnTPTP).

TPTP syntax for terms (ASCII):

object ‘ syntax ‘ comment
variables X capital letter first
other symbols | £ lower case first

application f(X,a) | prefix notation, comma-separated

10

TPTP Language

i FOLsymbol‘/\‘v‘—wﬁ‘z
® Connectives:

TPTP syntax ‘ & ‘ | ‘ = |~ | <=>
°* Formula:
composed | p(a) & p(b) infix syntax for connectives
forall '[X]:(C p(X)) | don't forget parenthesis
exists ?7[X]:(C p(X)) | here as well
® TPTP file is a sequence of TPTP statements:
fof (name, role, (formula)). # this is a comment

where name is a user-defined text, and role is either axiom or conjecture.

tptp.org

10

TPTP Language

FOLsymbol‘/\‘v‘—wﬁ‘z

Connectives:
TPTP syntax ‘ & ‘ | ‘ = |~ | <=>
Formula:
composed | p(a) & p(b) infix syntax for connectives
forall '[X]:(C p(X)) | don't forget parenthesis
exists ?7[X]:(C p(X)) | here as well
TPTP file is a sequence of TPTP statements:
fof (name, role, (formula)). # this is a comment

where name is a user-defined text, and role is either axiom or conjecture.

Exercise: Go to tptp.org and locate and investigate problem PUZ001+1.

tptp.org

11

System on TPTP

SystemONTPTP provides a web interface to experiment with provers.
® Exercise 1: Use SystemONnTPTP to prove problem PUZ001+1 by E or Vampire.

Hint: Search for the text “SZS status” in the output.

Exercise 2: Prove or disprove the Drinker’s paradox using E:

Ix (P(x) — Yy P(y))

Exercise 3: Compare with the results for:

Ix (P(x)) — Vy P(y)

Core of Automated Theorem Proving (ATP)

Clauses

® Use simpler clauses instead of general formulae.
¢ Clause is a disjuction of literals (atom « or —a), e.g., P(x) V =Q(x) V R(x, f(y))
® No quantifiers in clauses.

All (free) variables are implicitelly V-qualified.
® Every formula can be translated to a logically equivalent set of clauses.

Proof by contradiction

® To prove T - A, show that T U {—A} is contradictory (unsatisfiable).

® Proof is a sequence deriving the empty clause ([J).
* Weshow: TU{-A} 0O
® The empty clause represents the contradiction.

Clausal Normal Form

Clausification
Translation of first-order formula A to a set of clauses {Cy,...,Cn} such that

are equisatisfiable, where x; stands for all (free) variables in C;.

® Skolemization to eliminate existential quantifiers ().
® CNF transformation to construct a conjunction of disjunctions (of literals).

13

14

Clausification

Skolemization

El Eliminate all but {A,V,—}. A—-B=-AVB AsB=(AAB)V(-AV —B)

14

Clausification

Skolemization

El Eliminate all but {A,V,—}. A—-B=-AVB AsB=(AAB)V(-AV —B)
F1 Translate to the prenex form with all quantifiers (V, 9) at the top.

—Vx(A) = Ix (—A) AANVX(B)=VYx(AAB) (ifx ¢ vars(A))

14

Clausification

Skolemization

El Eliminate all but {A,V,—}. A—-B=-AVB AsB=(AAB)V(-AV —B)
F1 Translate to the prenex form with all quantifiers (V, 9) at the top.

—Vx(A) = Ix (—A) AANVX(B)=VYx(AAB) (ifx ¢ vars(A))

El Translate 3x(A) to A[x — c] where c is new Skolem constant (witness).

14

Clausification

Skolemization

El Eliminate all but {A,V,—}. A—-B=-AVB AsB=(AAB)V(-AV —B)
F1 Translate to the prenex form with all quantifiers (V, 9) at the top.

—Vx(A) = Ix (—A) AANVX(B)=VYx(AAB) (ifx ¢ vars(A))

El Translate 3x(A) to A[x — c] where c is new Skolem constant (witness).
I3 Translate Vy3x(A) to Yy (A[x — f(y)]) where f is new Skolem function.

14

Clausification

Skolemization

El Eliminate all but {A,V,—}. A—B=-AVB AsB=(AAB)V(-AV —B)
F1 Translate to the prenex form with all quantifiers (V, 9) at the top.

—Vx(A) = Ix (—A) AANVX(B)=VYx(AAB) (ifx ¢ vars(A))

El Translate 3x(A) to A[x — c] where c is new Skolem constant (witness).
I3 Translate Vy3x(A) to Yy (A[x — f(y)]) where f is new Skolem function.

CNF transformation is done using
* de Morgan laws —(AAB)=(-A)V(-B) —(AVB)=(-A)A(-B)
e distributivity AA(BVC)=(AAB)V(AAC) (etc.)
* double negation elimination

15

Exercises

® Translate the following to the clausal normal form.
Exercise 1: 3x (P(x) — Yy P(y))

Exercise 2: Ix (P(x)) — Yy P(y)

* Exercise 3: Vx (P(x)) — 3y P(y)

By hand or with the help of SystemOnTptp.

16

Unification in First-order Logic

Most ATPs rely on unification.

Unificator o of terms t and s

* Is a substitution (a mapping from variables to terms) such that o(t) = o(s).
® Typically written postfix as to.
® Substitution can be applied to formulas: Ao (modify free variables only!)

Most general unificator

® By example: Both o1 = {x — y} and 02 = {x — a,y — a} unify f(x,y) and f(y, x).
The first is more general w.r.t. composition: o3 is o1 composed with {y — a}.

® But o7 can not be written as composition of o, with something.

All unifiable terms have a most general unifier (mgu).

17

Martelli-Montanari Unification Algorithm

® Work with set of equations of the shape t = s for terms t, s.
¢ To unify t and s start with a singleton set {t = s}.

Keep applying the following rules (nondeterministically)

Delete all equations of shapet =t

Eliminate equations of shape x =t if x ¢ vars(t):
Apply {x — t} to all other equations (and remember the binding).

* Decompose equation f(ty,...,t,) = f(S1,...,5n) into t1 = s1,...,th = Sp.

°* Terminate with success if empty set reached, fail otherwise.

The algorithm returns the mgu of s and t if exists.

17

Martelli-Montanari Unification Algorithm

® Work with set of equations of the shape t = s for terms t, s.
¢ To unify t and s start with a singleton set {t = s}.

Keep applying the following rules (nondeterministically)

Delete all equations of shapet =t

Eliminate equations of shape x =t if x ¢ vars(t):
Apply {x — t} to all other equations (and remember the binding).

* Decompose equation f(ty,...,t,) = f(S1,...,5n) into t1 = s1,...,th = Sp.

°* Terminate with success if empty set reached, fail otherwise.

The algorithm returns the mgu of s and t if exists.
Exercise: Find the mgu of Q(a, g(x, a), f(y)) and Q(a, g(f(b), a), x).

18

Resolution Calculus: Inference Rules

Binary resolution

L, VC —-L, VD

(C\/D)O’ 0 = mgu(LlaLZ)

® C,D are disjunctions of literals, and premises do not share variables.

Factorization

LiVL,VC
- = mgu(Ly,L
Voo ° gu(Ly, L2)
® Resolution with factorization are refutationally complete:

If TFHO(inFOL) then [can be derived by resolution from axioms T.

Resolution Calculus: Inference Rules

Binary resolution

L, VC —-L, VD
(CV D)o

o =mgu(Ly,Ly)

® C,D are disjunctions of literals, and premises do not share variables.

LiVL,VC
(I_l \/C)J

g = mgu(Ll, L2)

® Resolution with factorization are refutationally complete:
If TFHO(inFOL) then [can be derived by resolution from axioms T.
® Exercise 1: Prove - A — A by resolution.

Resolution Calculus: Inference Rules

Binary resolution

L, VC —-L, VD
(CV D)o

o =mgu(Ly,Ly)

® C,D are disjunctions of literals, and premises do not share variables.

LiVL,VC
(I_l \/C)J

o = mgu(Ly,L2)

® Resolution with factorization are refutationally complete:
If TFHO(inFOL) then [can be derived by resolution from axioms T.
® Exercise 2: Prove i~ 3x (P(x) — Yy P(y)).

Application: ATPs for ITPs

ATPs are used by ITP Hammers

® Translate ITP problem to FOL.

Select appropriate definition and lemmas as axioms.
Call the ATP prover(s).
® Translate ATP proof back to ITP.

Current Goal First Order Problem
— — =
V_/ u

Proof Assistant ITP Proof *Hammer ATP Proof ATP

19

	ITP

