- universität innsbruck

Interactive Theorem Proving and Automation
Lecture \& Exercises
Week 12
Jan Jakubův (and Cezary Kaliszyk)

Summary

Previous Lecture

- Higher-order logics and ITPs

Today

- Automated reasoning in First-order logic
- TPTP World: Language and problem library
- Clausification and Unification
- Resolution Calculus
- Applications in proof assistants

Language of First-order Logic

- Variables and signature:

$$
\begin{aligned}
& x::=x|y| z \mid \ldots \\
& f::=f|g| h \mid \ldots \\
& P::=P|Q| R \mid \ldots
\end{aligned}
$$

Variables (typically countable) Function symbols (typically finite)
Predicate symbols (typically finite)

- Each symbol from f, P has a fixed arity: $f / 2$ (binary), $P / 3$ (ternary), ...
- Syntax of terms and formulae:

$$
\begin{array}{rlr}
t::=x \mid f\left(t_{1}, \ldots, t_{n}\right) & \text { Terms (type } \iota \text {) } \\
\alpha::=P\left(t_{1}, \ldots, t_{n}\right) & \text { Atoms (type o) } \\
A, B, C & :=\alpha|\neg(A)|(A) \rightarrow(B) \mid \forall x(A) & \text { Formulae (type o) }
\end{array}
$$

- Convention: Drop unnecessary parenthesis, e.g., $\neg \neg A$ instead of $\neg(\neg(A))$.

First-order Logic Abbreviations

- Abbreviations introduce other symbols:

$$
\begin{aligned}
A \vee B & \equiv \neg A \rightarrow B \\
A \wedge B & \equiv \neg(A \rightarrow \neg B) \\
A \Leftrightarrow B & \equiv(A \rightarrow B) \wedge(B \rightarrow A) \\
\exists x(A) & \equiv \neg \forall x(\neg A)
\end{aligned}
$$

- Propositional logic is a special case:
- without function symbols and variables
- with only nulary predicate symbols P/0 (propositional constants)
- Alternative complete set of base connectives instead of $\{\neg, \rightarrow\}$:
- $\{\wedge, \vee, \neg\}$
- $\{\uparrow\} \quad$ where $\quad A \uparrow B \equiv \neg(A \Leftrightarrow B) \quad$ (Sheffer stroke, NAND)

Axiomatization of First-order Logic

- Axiom schemes:

$$
\begin{array}{ll}
A \rightarrow(B \rightarrow A) & \left(A_{1}\right) \\
(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C)) & \left(A_{2}\right) \\
\neg \neg A \rightarrow A & \left(A_{3}\right) \\
\forall x(A[x]) \rightarrow A[t] & \left(A_{4}\right) \quad \text { if substitutable } \\
\forall x(A \rightarrow B) \rightarrow(A \rightarrow \forall x B) & \left(A_{5}\right) \quad \text { if } x \notin \operatorname{vars}(A) \\
& \text { substitutable: No } z \in \operatorname{vars}(t) \text { is } \exists \text {-bound in } A \text { (simplification). }
\end{array}
$$

Axiomatization of First-order Logic

- Axiom schemes:

$$
\begin{array}{ll}
A \rightarrow(B \rightarrow A) & \left(A_{1}\right) \\
(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C)) & \left(A_{2}\right) \\
\neg \neg A \rightarrow A & \left(A_{3}\right) \\
\forall x(A[x]) \rightarrow A[t] & \left(A_{4}\right) \quad \text { if substitutabl } \\
\forall x(A \rightarrow B) \rightarrow(A \rightarrow \forall x B) & \left(A_{5}\right) \quad \text { if } x \notin \operatorname{vars}(A)
\end{array}
$$

- Every instance of A_{1}, \ldots, A_{5} is an axiom and is valid.

Axiomatization of First-order Logic

- Axiom schemes:

$$
\begin{array}{ll}
A \rightarrow(B \rightarrow A) & \left(A_{1}\right) \\
(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C)) & \left(A_{2}\right) \\
\neg \neg A \rightarrow A & \left(A_{3}\right) \\
\forall x(A[x]) \rightarrow A[t] & \left(A_{4}\right) \quad \text { if substitutabl } \\
\forall x(A \rightarrow B) \rightarrow(A \rightarrow \forall x B) & \left(A_{5}\right) \quad \text { if } x \notin \operatorname{vars}(A)
\end{array}
$$

- Every instance of A_{1}, \ldots, A_{5} is an axiom and is valid.
- Inference rules:

$$
\frac{A \quad A \rightarrow B}{B} \text { (Modus Ponens) } \quad \frac{A}{\forall x(A)} \text { (Generalization) }
$$

- Infer a valid formula from valid formulae.

Proofs in First-order Logic

- Proof of \mathbf{A} in FOL is a sequence of formulae ending with A, where every formula is either
- an axiom, or
- is derived from formula(s) coming before in the proof.
- A is probable (written $\vdash A$) if there exists some proof of A.
- Axiom schemes A_{1}, \ldots, A_{3} with MP, is a
- correct: only tautologies can be proved, and
- complete: all tautologies can be proved, axiomatization of propositional logic.
- Schemes A_{1}, \ldots, A_{5} with MP and Gen, is a correct and complete axiomatization of First-order logic: only logically valid formulae are proved.

Exercise: Propositional Logic

- Axiom schemes:

$$
\begin{array}{ll}
A \rightarrow(B \rightarrow A) & \left(A_{1}\right) \\
(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C)) & \left(A_{2}\right) \\
\neg \neg A \rightarrow A & \left(A_{3}\right)
\end{array}
$$

- Inference rules:

$$
\frac{A \quad A \rightarrow B}{B} \text { (Modus Ponens) }
$$

- Exercise: Prove $\vdash A \rightarrow A$ using A_{1}, \ldots, A_{3} with MP.

Proof can be represented by a tree/dag (the derivation of $A \rightarrow A$).

Exercise: Solution

Claim: $\vdash A \rightarrow A$

Proof:

(1) $\quad A \rightarrow((B \rightarrow A) \rightarrow A)$
(2) $\quad(A \rightarrow((B \rightarrow A) \rightarrow A)) \rightarrow((A \rightarrow(B \rightarrow A)) \rightarrow(A \rightarrow A))$
(3) $(A \rightarrow(B \rightarrow A)) \rightarrow(A \rightarrow A)$
(4) $\quad A \rightarrow(B \rightarrow A)$
(6) $A \rightarrow A$
(instance of A_{1})
(instance of A_{2})
(from (1) and (2))
(instance of A_{1})
(from (4) and (3))

Theories in First-order Logic

- Theory \mathbf{T} is an additional (countable) set of axioms.
- A is provable in \mathbf{T}, written $T \vdash A$, when there exists a proof of $A(\vdash(\wedge T) \rightarrow A)$.
- Equality axioms can be added:

$$
\begin{array}{ll}
t=t & \text { (reflexivity) } \\
t=s \rightarrow s=t & \text { (symmetry) } \\
(t=s) \wedge(s=r) \rightarrow(t=r) & \text { (transitivity) }
\end{array}
$$

- with congruence axioms:

$$
\begin{array}{ll}
t=s \rightarrow f(t)=f(s) & \text { for every function } f \\
(t=s \wedge P(t)) \rightarrow P(s) & \text { for every predicate } P
\end{array}
$$

- for every term t, s, r.
- No new inference rule is necessary (but can be added).

TPTP World of Automated Theorem Provers

Thousands of Problems for Theorem Provers (TPTP)

- Library of first-order problems from various fields.
- Language to represent logic formulae as text for computers.
- Online interface to run many ATP provers (SystemOnTPTP).

TPTP syntax for terms (ASCII):

object	syntax	comment
variables	X	capital letter first
other symbols	f	lower case first
application	$\mathrm{f}(\mathrm{X}, \mathrm{a})$	prefix notation, comma-separated

TPTP Language

- Connectives:

FOL symbol	\wedge	\vee	\rightarrow	\neg	\equiv
TPTP syntax	$\&$	I	$\Rightarrow>$	\sim	$\ll>$

- Formula:

composed	$p(a) \& p(b)$	infix syntax for connectives
forall	$![X]:(p(X))$	don't forget parenthesis
exists	$?[X]:(p(X))$	here as well

- TPTP file is a sequence of TPTP statements:
fof(name, role, (formula)). \# this is a comment
where name is a user-defined text, and role is either axiom or conjecture.

TPTP Language

- Connectives:

FOL symbol	\wedge	\vee	\rightarrow	\neg	\equiv
TPTP syntax	$\&$	I	$\Rightarrow>$	\sim	$\ll>$

- Formula:

composed	$p(a) \& p(b)$	infix syntax for connectives
forall	$![X]:(p(X))$	don't forget parenthesis
exists	$?[X]:(p(X))$	here as well

- TPTP file is a sequence of TPTP statements:
fof (name, role, (formula)). \# this is a comment
where name is a user-defined text, and role is either axiom or conjecture.
- Exercise: Go to tptp.org and locate and investigate problem PUZ001+1.

System on TPTP

- SystemOnTPTP provides a web interface to experiment with provers.
- Exercise 1: Use SystemOnTPTP to prove problem PUZ001+1 by E or Vampire.
- Hint: Search for the text "SZS status" in the output.
- Exercise 2: Prove or disprove the Drinker's paradox using E:

$$
\exists x(P(x) \rightarrow \forall y P(y))
$$

- Exercise 3: Compare with the results for:

$$
\exists x(P(x)) \rightarrow \forall y P(y)
$$

Core of Automated Theorem Proving (ATP)

Clauses

- Use simpler clauses instead of general formulae.
- Clause is a disjuction of literals (atom α or $\neg \alpha$), e.g., $P(x) \vee \neg Q(x) \vee R(x, f(y))$
- No quantifiers in clauses.
- All (free) variables are implicitelly \forall-qualified.
- Every formula can be translated to a logically equivalent set of clauses.

Proof by contradiction

- To prove $T \vdash A$, show that $T \cup\{\neg A\}$ is contradictory (unsatisfiable).
- Proof is a sequence deriving the empty clause (\square).
- We show: $T \cup\{\neg A\} \vdash \square$
- The empty clause represents the contradiction.

Clausal Normal Form

Clausification

Translation of first-order formula A to a set of clauses $\left\{C_{1}, \ldots, C_{n}\right\}$ such that

$$
A \quad \text { and } \quad \forall x_{1}\left(C_{1}\right) \wedge \cdots \wedge \forall x_{n}\left(C_{n}\right)
$$

are equisatisfiable, where x_{i} stands for all (free) variables in C_{i}.

Consists of

- Skolemization to eliminate existential quantifiers (\exists).
- CNF transformation to construct a conjunction of disjunctions (of literals).

Clausification

Skolemization

1 Eliminate all but $\{\wedge, \vee, \neg\} . \quad A \rightarrow B \equiv \neg A \vee B \quad A \Leftrightarrow B \equiv(A \wedge B) \vee(\neg A \vee \neg B)$

Clausification

Skolemization

1 Eliminate all but $\{\wedge, \vee, \neg\} . \quad A \rightarrow B \equiv \neg A \vee B \quad A \Leftrightarrow B \equiv(A \wedge B) \vee(\neg A \vee \neg B)$
2 Translate to the prenex form with all quantifiers (\forall, \exists) at the top.

$$
\neg \forall x(A) \equiv \exists x(\neg A) \quad A \wedge \forall x(B) \equiv \forall x(A \wedge B) \quad(\text { if } x \notin \operatorname{vars}(A))
$$

Clausification

Skolemization

1 Eliminate all but $\{\wedge, \vee, \neg\} . \quad A \rightarrow B \equiv \neg A \vee B \quad A \Leftrightarrow B \equiv(A \wedge B) \vee(\neg A \vee \neg B)$
2 Translate to the prenex form with all quantifiers (\forall, \exists) at the top.

$$
\neg \forall x(A) \equiv \exists x(\neg A) \quad A \wedge \forall x(B) \equiv \forall x(A \wedge B) \quad(\text { if } x \notin \operatorname{vars}(A))
$$

3 Translate $\exists x(A)$ to $A[x \mapsto C]$ where c is new Skolem constant (witness).

Clausification

Skolemization

1 Eliminate all but $\{\wedge, \vee, \neg\} . \quad A \rightarrow B \equiv \neg A \vee B \quad A \Leftrightarrow B \equiv(A \wedge B) \vee(\neg A \vee \neg B)$
2 Translate to the prenex form with all quantifiers (\forall, \exists) at the top.

$$
\neg \forall x(A) \equiv \exists x(\neg A) \quad A \wedge \forall x(B) \equiv \forall x(A \wedge B) \quad(\text { if } x \notin \operatorname{vars}(A))
$$

3 Translate $\exists x(A)$ to $A[x \mapsto c]$ where c is new Skolem constant (witness).
4 Translate $\forall y \exists x(A)$ to $\forall y(A[x \mapsto f(y)])$ where f is new Skolem function.

Clausification

Skolemization

1 Eliminate all but $\{\wedge, \vee, \neg\} . \quad A \rightarrow B \equiv \neg A \vee B \quad A \Leftrightarrow B \equiv(A \wedge B) \vee(\neg A \vee \neg B)$
2 Translate to the prenex form with all quantifiers (\forall, \exists) at the top.

$$
\neg \forall x(A) \equiv \exists x(\neg A) \quad A \wedge \forall x(B) \equiv \forall x(A \wedge B) \quad(\text { if } x \notin \operatorname{vars}(A))
$$

3 Translate $\exists x(A)$ to $A[x \mapsto c]$ where c is new Skolem constant (witness).
4 Translate $\forall y \exists x(A)$ to $\forall y(A[x \mapsto f(y)])$ where f is new Skolem function.

CNF transformation is done using

- de Morgan laws $\neg(A \wedge B) \equiv(\neg A) \vee(\neg B) \quad \neg(A \vee B) \equiv(\neg A) \wedge(\neg B)$
- distributivity $A \wedge(B \vee C) \equiv(A \wedge B) \vee(A \wedge C) \quad$ (etc.)
- double negation elimination

Exercises

- Translate the following to the clausal normal form.
- Exercise 1: $\exists x(P(x) \rightarrow \forall y P(y))$
- Exercise 2: $\exists x(P(x)) \rightarrow \forall y P(y)$
- Exercise 3: $\forall x(P(x)) \rightarrow \exists y P(y)$
- By hand or with the help of SystemOnTptp.

Unification in First-order Logic

Most ATPs rely on unification.

Unificator σ of terms \mathbf{t} and \mathbf{s}

- Is a substitution (a mapping from variables to terms) such that $\sigma(t) \equiv \sigma(s)$.
- Typically written postfix as t σ.
- Substitution can be applied to formulas: $A \sigma$ (modify free variables only!)

Most general unificator

- By example: Both $\sigma_{1}=\{x \mapsto y\}$ and $\sigma_{2}=\{x \mapsto a, y \mapsto a\}$ unify $f(x, y)$ and $f(y, x)$.
- The first is more general w.r.t. composition: σ_{2} is σ_{1} composed with $\{y \mapsto a\}$.
- But σ_{1} can not be written as composition of σ_{2} with something.
- All unifiable terms have a most general unifier (mgu).

Martelli-Montanari Unification Algorithm

- Work with set of equations of the shape $t=s$ for terms t, s.
- To unify t and s start with a singleton set $\{t=s\}$.

Keep applying the following rules (nondeterministically)

- Delete all equations of shape $t=t$
- Eliminate equations of shape $x=t$ if $x \notin \operatorname{vars}(t)$:

Apply $\{x \mapsto t\}$ to all other equations (and remember the binding).

- Decompose equation $f\left(t_{1}, \ldots, t_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right)$ into $t_{1}=s_{1}, \ldots, t_{n}=s_{n}$.
- Terminate with success if empty set reached, fail otherwise.
- The algorithm returns the mgu of s and t if exists.

Martelli-Montanari Unification Algorithm

- Work with set of equations of the shape $t=s$ for terms t, s.
- To unify t and s start with a singleton set $\{t=s\}$.

Keep applying the following rules (nondeterministically)

- Delete all equations of shape $t=t$
- Eliminate equations of shape $x=t$ if $x \notin \operatorname{vars}(t)$:

Apply $\{x \mapsto t\}$ to all other equations (and remember the binding).

- Decompose equation $f\left(t_{1}, \ldots, t_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right)$ into $t_{1}=s_{1}, \ldots, t_{n}=s_{n}$.
- Terminate with success if empty set reached, fail otherwise.
- The algorithm returns the mgu of s and t if exists.
- Exercise: Find the mgu of $Q(a, g(x, a), f(y))$ and $Q(a, g(f(b), a), x)$.

Resolution Calculus: Inference Rules

Binary resolution

$$
\frac{L_{1} \vee \mathcal{C} \quad \neg L_{2} \vee \mathcal{D}}{(\mathcal{C} \vee \mathcal{D}) \sigma} \quad \sigma=\operatorname{mgu}\left(L_{1}, L_{2}\right)
$$

- \mathcal{C}, \mathcal{D} are disjunctions of literals, and premises do not share variables.

Factorization

$$
\frac{L_{1} \vee L_{2} \vee \mathcal{C}}{\left(L_{1} \vee \mathcal{C}\right) \sigma} \quad \sigma=\operatorname{mgu}\left(L_{1}, L_{2}\right)
$$

- Resolution with factorization are refutationally complete:

If $T \vdash \square$ (in FOL) then \square can be derived by resolution from axioms T.

Resolution Calculus: Inference Rules

Binary resolution

$$
\frac{L_{1} \vee \mathcal{C} \quad \neg L_{2} \vee \mathcal{D}}{(\mathcal{C} \vee \mathcal{D}) \sigma} \quad \sigma=\operatorname{mgu}\left(L_{1}, L_{2}\right)
$$

- \mathcal{C}, \mathcal{D} are disjunctions of literals, and premises do not share variables.

Factorization

$$
\frac{L_{1} \vee L_{2} \vee \mathcal{C}}{\left(L_{1} \vee \mathcal{C}\right) \sigma} \quad \sigma=\operatorname{mgu}\left(L_{1}, L_{2}\right)
$$

- Resolution with factorization are refutationally complete:

If $T \vdash \square$ (in FOL) then \square can be derived by resolution from axioms T.

- Exercise 1: Prove $\vdash A \rightarrow A$ by resolution.

Resolution Calculus: Inference Rules

Binary resolution

$$
\frac{L_{1} \vee \mathcal{C} \quad \neg L_{2} \vee \mathcal{D}}{(\mathcal{C} \vee \mathcal{D}) \sigma} \quad \sigma=\operatorname{mgu}\left(L_{1}, L_{2}\right)
$$

- \mathcal{C}, \mathcal{D} are disjunctions of literals, and premises do not share variables.

Factorization

$$
\frac{L_{1} \vee L_{2} \vee \mathcal{C}}{\left(L_{1} \vee \mathcal{C}\right) \sigma} \quad \sigma=\operatorname{mgu}\left(L_{1}, L_{2}\right)
$$

- Resolution with factorization are refutationally complete:

If $\quad T \vdash \square$ (in FOL) then \square can be derived by resolution from axioms T.

- Exercise 2: Prove $\vdash \exists x(P(x) \rightarrow \forall y P(y))$.

Application: ATPs for ITPs

ATPs are used by ITP Hammers

- Translate ITP problem to FOL.
- Select appropriate definition and lemmas as axioms.
- Call the ATP prover(s).
- Translate ATP proof back to ITP.

