



# Interactive Theorem Proving and Automation

Lecture & Exercises Week 12

Jan Jakubův (and Cezary Kaliszyk)



#### **Previous Lecture**

Higher-order logics and ITPs

### Today

- Automated reasoning in First-order logic
- TPTP World: Language and problem library
- Clausification and Unification
- Resolution Calculus
- Applications in proof assistants

# Language of First-order Logic

• Variables and signature:

 $x ::= x \mid y \mid z \mid \dots$ Variables (typically countable) $f ::= f \mid g \mid h \mid \dots$ Function symbols (typically finite) $P ::= P \mid Q \mid R \mid \dots$ Predicate symbols (typically finite)

- Each symbol from f, P has a fixed arity: f/2 (binary), P/3 (ternary), ...
- Syntax of terms and formulae:

$$\begin{split} t &::= x \mid f(t_1, \dots, t_n) & \text{Terms (type } \iota) \\ \alpha &::= P(t_1, \dots, t_n) & \text{Atoms (type } o) \\ A, B, C &::= \alpha \mid \neg(A) \mid (A) \rightarrow (B) \mid \forall x (A) & \text{Formulae (type } o) \end{split}$$

• Convention: Drop unnecessary parenthesis, e.g.,  $\neg \neg A$  instead of  $\neg (\neg (A))$ .

# First-order Logic Abbreviations

• Abbreviations introduce other symbols:

$$\begin{array}{lll} A \lor B &\equiv & \neg A \to B \\ A \land B &\equiv & \neg (A \to \neg B) \\ A \Leftrightarrow B &\equiv & (A \to B) \land (B \to A) \\ \exists x (A) &\equiv & \neg \forall x (\neg A) \end{array}$$

- Propositional logic is a special case:
  - without function symbols and variables
  - with only nulary predicate symbols P/0 (propositional constants)
- Alternative complete set of base connectives instead of  $\{\neg, \rightarrow\}$ :

{∧, ∨, ¬}
{↑} where 
$$A ↑ B ≡ ¬(A ⇔ B)$$
 (Sheffer stroke, NAND)

### Axiomatization of First-order Logic

• Axiom schemes:

$$\begin{array}{ll} A \to (B \to A) & (A_1) \\ (A \to (B \to C)) \to ((A \to B) \to (A \to C)) & (A_2) \\ \neg \neg A \to A & (A_3) \\ \forall x(A[x]) \to A[t] & (A_4) & \text{if substitutable} \\ \forall x(A \to B) \to (A \to \forall xB) & (A_5) & \text{if } x \notin \text{vars}(A) \end{array}$$

substitutable: No  $z \in vars(t)$  is  $\exists$ -bound in A (simplification).

### Axiomatization of First-order Logic

• Axiom schemes:

$$\begin{array}{ll} A \to (B \to A) & (A_1) \\ (A \to (B \to C)) \to ((A \to B) \to (A \to C)) & (A_2) \\ \neg \neg A \to A & (A_3) \\ \forall x(A[x]) \to A[t] & (A_4) & \text{if substitutable} \\ \forall x(A \to B) \to (A \to \forall xB) & (A_5) & \text{if } x \notin \text{vars}(A) \end{array}$$

• Every instance of  $A_1, \ldots, A_5$  is an axiom and is valid.

### Axiomatization of First-order Logic

• Axiom schemes:

$$\begin{array}{ll} A \to (B \to A) & (A_1) \\ (A \to (B \to C)) \to ((A \to B) \to (A \to C)) & (A_2) \\ \neg \neg A \to A & (A_3) \\ \forall x(A[x]) \to A[t] & (A_4) & \text{if substitutable} \\ \forall x(A \to B) \to (A \to \forall xB) & (A_5) & \text{if } x \notin \text{vars}(A) \end{array}$$

- Every instance of  $A_1, \ldots, A_5$  is an axiom and is valid.
- Inference rules:

$$rac{A \qquad A o B}{B}$$
 (Modus Ponens)  $rac{A}{orall x(A)}$  (Generalization

• Infer a valid formula from valid formulae.

# Proofs in First-order Logic

- **Proof of A** in FOL is a sequence of formulae ending with *A*, where every formula is either
  - an axiom, or
  - is derived from formula(s) coming before in the proof.
- **A is probable** (written ⊢ *A*) if there exists some proof of A.
- Axiom schemes  $A_1, \ldots, A_3$  with MP, is a
  - correct: only tautologies can be proved, and
  - complete: all tautologies can be proved,

axiomatization of **propositional logic**.

• Schemes  $A_1, \ldots, A_5$  with MP and Gen, is a **correct and complete** axiomatization of **First-order logic**: only logically valid formulae are proved.

### Exercise: Propositional Logic

• Axiom schemes:

$$egin{aligned} A &
ightarrow (B &
ightarrow A) & (A_1) \ (A &
ightarrow (B &
ightarrow C)) &
ightarrow ((A &
ightarrow B) &
ightarrow (A &
ightarrow C)) & (A_2) \ 
egin{aligned} & 
egin{aligned} 
egin{aligned} 
gin{aligned} 
gin{aligned}$$

• Inference rules:

$$\frac{A \qquad A \rightarrow B}{B} \quad (\text{Modus Ponens})$$

• **Exercise:** Prove  $\vdash A \rightarrow A$  using  $A_1, \ldots, A_3$  with MP. Proof can be represented by a tree/dag (the derivation of  $A \rightarrow A$ ). Claim:  $\vdash A \rightarrow A$ Proof:

(1) 
$$A \to ((B \to A) \to A)$$
(instance of  $A_1$ )(2)  $(A \to ((B \to A) \to A)) \to ((A \to (B \to A)) \to (A \to A))$ (instance of  $A_2$ )(3)  $(A \to (B \to A)) \to (A \to A)$ (from (1) and (2))(4)  $A \to (B \to A)$ (instance of  $A_1$ )(6)  $A \to A$ (from (4) and (3))

# Theories in First-order Logic

- Theory T is an additional (countable) set of axioms.
- A is provable in T, written  $T \vdash A$ , when there exists a proof of  $A (\vdash (\land T) \rightarrow A)$ .
- Equality axioms can be added:

$$egin{aligned} t &= t & (reflexivity) \ t &= s &
ightarrow s &= t & (symmetry) \ (t &= s) \wedge (s &= r) 
ightarrow (t &= r) & (transitivity) \end{aligned}$$

• with **congruence** axioms:

$$t = s 
ightarrow f(t) = f(s)$$
 for every function  $f$   
 $(t = s \land P(t)) 
ightarrow P(s)$  for every predicate  $P$ 

- for every term *t*, *s*, *r*.
- No new inference rule is necessary (but can be added).

# **TPTP World of Automated Theorem Provers**

#### **Thousands of Problems for Theorem Provers (TPTP)**

- Library of first-order problems from various fields.
- Language to represent logic formulae as text for computers.
- Online interface to run many ATP provers (SystemOnTPTP).

#### **TPTP** syntax for terms (ASCII):

| object        | syntax | comment                          |
|---------------|--------|----------------------------------|
| variables     | Х      | capital letter first             |
| other symbols | f      | lower case first                 |
| application   | f(X,a) | prefix notation, comma-separated |

# **TPTP** Language

| • Connectives: | nactivos  | FOL symbol  | $\wedge$ | $\vee$ | $\rightarrow$ | - | $\equiv$ |  |
|----------------|-----------|-------------|----------|--------|---------------|---|----------|--|
|                | mectives. | TPTP syntax | &        | Ι      | =>            | ~ | <=>      |  |

• Formula:

|        |               | infix syntax for connectives             |
|--------|---------------|------------------------------------------|
| forall | ![X]:( p(X) ) | don't forget parenthesis<br>here as well |
| exists | ?[X]:( p(X) ) | here as well                             |

• **TPTP file** is a sequence of TPTP statements:

fof(name, role, (formula)). # this is a comment
where name is a user-defined text, and role is either axiom or conjecture.

# **TPTP** Language

| • Connectives: | FOL symbol   | $\wedge$    | $\vee$ | $\rightarrow$ |    | $\equiv$ |     |
|----------------|--------------|-------------|--------|---------------|----|----------|-----|
| Ū              | connectives. | TPTP syntax | &      | Ι             | => | ~        | <=> |

• Formula:

| composed | p(a) & p(b)   | infix syntax for connectives |
|----------|---------------|------------------------------|
| forall   | ![X]:( p(X) ) | don't forget parenthesis     |
| exists   | ?[X]:( p(X) ) | here as well                 |

• **TPTP file** is a sequence of TPTP statements:

fof(name, role, (formula)). # this is a comment
where name is a user-defined text, and role is either axiom or conjecture.

• **Exercise:** Go to tptp.org and locate and investigate problem PUZ001+1.

# System on TPTP

- SystemOnTPTP provides a web interface to experiment with provers.
- Exercise 1: Use SystemOnTPTP to prove problem PUZ001+1 by E or Vampire.
- Hint: Search for the text "SZS status" in the output.
- Exercise 2: Prove or disprove the Drinker's paradox using E:

$$\exists x (P(x) \to \forall y P(y))$$

• **Exercise 3:** Compare with the results for:

 $\exists x (P(x)) \rightarrow \forall y P(y)$ 

# Core of Automated Theorem Proving (ATP)

#### Clauses

- Use simpler clauses instead of general formulae.
- Clause is a disjuction of literals (atom  $\alpha$  or  $\neg \alpha$ ), e.g.,  $P(x) \lor \neg Q(x) \lor R(x, f(y))$
- No quantifiers in clauses.
- All (free) variables are implicitelly ∀-qualified.
- Every formula can be translated to a logically equivalent set of clauses.

#### **Proof by contradiction**

- To prove  $T \vdash A$ , show that  $T \cup \{\neg A\}$  is contradictory (unsatisfiable).
- Proof is a sequence deriving the empty clause (□).
- We show:  $T \cup \{\neg A\} \vdash \Box$
- The empty clause represents the contradiction.

### **Clausal Normal Form**

### Clausification

Translation of first-order formula A to a set of clauses  $\{C_1, \ldots, C_n\}$  such that

A and 
$$\forall x_1(C_1) \land \cdots \land \forall x_n(C_n)$$

are equisatisfiable, where  $x_i$  stands for all (free) variables in  $C_i$ .

#### **Consists of**

- **Skolemization** to eliminate existential quantifiers (∃).
- **CNF transformation** to construct a conjunction of disjunctions (of literals).

### Skolemization

### **1** Eliminate all but $\{\land,\lor,\neg\}$ . $A \to B \equiv \neg A \lor B$ $A \Leftrightarrow B \equiv (A \land B) \lor (\neg A \lor \neg B)$

#### Skolemization

**1** Eliminate all but  $\{\land,\lor,\neg\}$ .  $A \to B \equiv \neg A \lor B$   $A \Leftrightarrow B \equiv (A \land B) \lor (\neg A \lor \neg B)$ 

**2** Translate to the **prenex** form with all quantifiers  $(\forall, \exists)$  at the top.

 $\neg \forall x(A) \equiv \exists x (\neg A) \qquad A \land \forall x (B) \equiv \forall x (A \land B) \quad (\text{if } x \notin \text{vars}(A))$ 

#### Skolemization

**1** Eliminate all but  $\{\land,\lor,\neg\}$ .  $A \to B \equiv \neg A \lor B$   $A \Leftrightarrow B \equiv (A \land B) \lor (\neg A \lor \neg B)$ 

**2** Translate to the prenex form with all quantifiers  $(\forall, \exists)$  at the top.

 $\neg \forall x(A) \equiv \exists x (\neg A) \qquad A \land \forall x (B) \equiv \forall x (A \land B) \quad (\text{if } x \notin \text{vars}(A))$ 

**3** Translate  $\exists x(A)$  to  $A[x \mapsto c]$  where c is new Skolem constant (witness).

#### Skolemization

**1** Eliminate all but  $\{\land,\lor,\neg\}$ .  $A \to B \equiv \neg A \lor B$   $A \Leftrightarrow B \equiv (A \land B) \lor (\neg A \lor \neg B)$ 

**2** Translate to the **prenex** form with all quantifiers  $(\forall, \exists)$  at the top.

 $\neg \forall x(A) \equiv \exists x (\neg A) \qquad A \land \forall x (B) \equiv \forall x (A \land B) \quad (\text{if } x \notin \text{vars}(A))$ 

**I** Translate  $\exists x(A)$  to  $A[x \mapsto c]$  where c is new Skolem constant (witness).

**4** Translate  $\forall y \exists x(A)$  to  $\forall y (A[x \mapsto f(y)])$  where f is new Skolem function.

#### Skolemization

**1** Eliminate all but  $\{\land,\lor,\neg\}$ .  $A \to B \equiv \neg A \lor B$   $A \Leftrightarrow B \equiv (A \land B) \lor (\neg A \lor \neg B)$ 

**2** Translate to the **prenex** form with all quantifiers  $(\forall, \exists)$  at the top.

 $\neg \forall x(A) \equiv \exists x (\neg A) \qquad A \land \forall x (B) \equiv \forall x (A \land B) \quad (\text{if } x \notin \text{vars}(A))$ 

**Translate**  $\exists x(A)$  to  $A[x \mapsto c]$  where c is new Skolem constant (witness).

**4** Translate  $\forall y \exists x(A)$  to  $\forall y (A[x \mapsto f(y)])$  where *f* is new Skolem function.

#### **CNF transformation is done using**

- de Morgan laws  $\neg(A \land B) \equiv (\neg A) \lor (\neg B) \quad \neg(A \lor B) \equiv (\neg A) \land (\neg B)$
- **distributivity**  $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$  (etc.)
- double negation elimination

### Exercises

- Translate the following to the clausal normal form.
- **Exercise 1:**  $\exists x (P(x) \rightarrow \forall y P(y))$
- **Exercise 2:**  $\exists x (P(x)) \rightarrow \forall y P(y)$
- Exercise 3:  $\forall x (P(x)) \rightarrow \exists y P(y)$
- By hand or with the help of SystemOnTptp.

# Unification in First-order Logic

Most ATPs rely on unification.

### Unificator $\sigma$ of terms t and s

- Is a substitution (a mapping from variables to terms) such that  $\sigma(t) \equiv \sigma(s)$ .
- Typically written postfix as  $t\sigma$ .
- Substitution can be applied to formulas:  $A\sigma$  (modify free variables only!)

#### Most general unificator

- By example: Both  $\sigma_1 = \{x \mapsto y\}$  and  $\sigma_2 = \{x \mapsto a, y \mapsto a\}$  unify f(x, y) and f(y, x).
- The first is more general w.r.t. composition:  $\sigma_2$  is  $\sigma_1$  composed with  $\{y \mapsto a\}$ .
- But  $\sigma_1$  can not be written as composition of  $\sigma_2$  with something.
- All unifiable terms have a most general unifier (mgu).

# Martelli-Montanari Unification Algorithm

- Work with set of equations of the shape *t* = *s* for terms *t*, *s*.
- To unify t and s start with a singleton set  $\{t = s\}$ .

### Keep applying the following rules (nondeterministically)

- Delete all equations of shape t = t
- Eliminate equations of shape x = t if  $x \notin vars(t)$ : Apply  $\{x \mapsto t\}$  to all other equations (and remember the binding).
- **Decompose** equation  $f(t_1, ..., t_n) = f(s_1, ..., s_n)$  into  $t_1 = s_1, ..., t_n = s_n$ .
- **Terminate** with success if empty set reached, fail otherwise.
- The algorithm returns the mgu of *s* and *t* if exists.

# Martelli-Montanari Unification Algorithm

- Work with set of equations of the shape *t* = *s* for terms *t*, *s*.
- To unify t and s start with a singleton set  $\{t = s\}$ .

### Keep applying the following rules (nondeterministically)

- Delete all equations of shape t = t
- Eliminate equations of shape x = t if  $x \notin vars(t)$ : Apply  $\{x \mapsto t\}$  to all other equations (and remember the binding).
- **Decompose** equation  $f(t_1, ..., t_n) = f(s_1, ..., s_n)$  into  $t_1 = s_1, ..., t_n = s_n$ .
- Terminate with success if empty set reached, fail otherwise.
- The algorithm returns the mgu of *s* and *t* if exists.
- Exercise: Find the mgu of Q(a, g(x, a), f(y)) and Q(a, g(f(b), a), x).

### **Resolution Calculus: Inference Rules**

### **Binary resolution**

$$\frac{L_1 \vee \mathcal{C} \quad \neg L_2 \vee \mathcal{D}}{(\mathcal{C} \vee \mathcal{D})\sigma} \quad \sigma = \mathsf{mgu}(L_1, L_2)$$

•  $\mathcal{C}, \mathcal{D}$  are disjunctions of literals, and premises do not share variables.

#### Factorization

$$\frac{L_1 \vee L_2 \vee \mathcal{C}}{(L_1 \vee \mathcal{C})\sigma} \quad \sigma = \mathrm{mgu}(L_1, L_2)$$

• Resolution with factorization are **refutationally complete**:

If  $T \vdash \Box$  (in FOL) then  $\Box$  can be derived by resolution from axioms *T*.

### **Resolution Calculus: Inference Rules**

### **Binary resolution**

$$\frac{L_1 \vee \mathcal{C} \quad \neg L_2 \vee \mathcal{D}}{(\mathcal{C} \vee \mathcal{D})\sigma} \quad \sigma = \mathsf{mgu}(L_1, L_2)$$

•  $\mathcal{C}, \mathcal{D}$  are disjunctions of literals, and premises do not share variables.

#### Factorization

$$\frac{L_1 \vee L_2 \vee \mathcal{C}}{(L_1 \vee \mathcal{C})\sigma} \quad \sigma = \mathsf{mgu}(L_1, L_2)$$

- Resolution with factorization are **refutationally complete**:
   If *T* ⊢ □ (in FOL) then □ can be derived by resolution from axioms *T*.
- **Exercise 1**: Prove  $\vdash A \rightarrow A$  by resolution.

### **Resolution Calculus: Inference Rules**

### **Binary resolution**

$$\frac{L_1 \vee \mathcal{C} \quad \neg L_2 \vee \mathcal{D}}{(\mathcal{C} \vee \mathcal{D})\sigma} \quad \sigma = \mathsf{mgu}(L_1, L_2)$$

•  $\mathcal{C}, \mathcal{D}$  are disjunctions of literals, and premises do not share variables.

#### Factorization

$$\frac{L_1 \vee L_2 \vee \mathcal{C}}{(L_1 \vee \mathcal{C})\sigma} \quad \sigma = \mathsf{mgu}(L_1, L_2)$$

- Resolution with factorization are **refutationally complete**:
   If *T* ⊢ □ (in FOL) then □ can be derived by resolution from axioms *T*.
- Exercise 2: Prove  $\vdash \exists x (P(x) \rightarrow \forall y P(y)).$

# Application: ATPs for ITPs

#### **ATPs are used by ITP Hammers**

- Translate ITP problem to FOL.
- Select appropriate definition and lemmas as axioms.
- Call the ATP prover(s).
- Translate ATP proof back to ITP.

