[7]

[7]

[7] [7]

[7]

Algorithmische Mathematik 7

Logic in Computer Science

This exam consists of four exercises. *Explain your answers*. The available points for each item are written in the margin. You need at least 50 points to pass.

1 Consider the following questions concerning propositional logic.

- [8] (a) Give a natural deduction proof of the sequent $p \lor q, \neg p \lor \neg q \vdash (p \land \neg q) \lor (\neg p \land q)$.
 - (b) Is the formula $\neg((p \land q) \lor (r \land s))$ satisfiable?
- [7] (c) Test the satisfiability of the formula in (b) with the linear SAT solver.
 - (d) Test the satisfiability of the formula in (b) with the cubic SAT solver.

2 Consider the boolean function $f(x, y, z) = (x \cdot y \cdot z) \oplus (x + y + z)$.

- (a) Write down a truth table for f.
 - (b) Construct a reduced OBDD for f with respect to the variable ordering [x, y, z].
 - (c) Construct a reduced OBDD for $\exists y.f$ by using apply and restrict. Give all intermediate OBDDs.
- **3** Determine whether the following formulas of predicate logic are valid and/or satisfiable. Give natural deduction proofs for the valid ones.
- [7] (a) $\phi_1 = \forall x (P(x) \lor Q(x)) \to \exists x Q(x)$
- [7] (b) $\phi_2 = \forall x (P(x) \lor \neg P(x)) \to \exists x (P(x) \land \neg P(x))$
- [7] (c) $\phi_3 = \exists x \exists y (P(x,y) \lor P(y,x)) \to \exists x \exists y P(x,y)$

4 $Consider the model <math>\mathcal{M}$:

- [7] (a) Determine in which states of \mathcal{M} the CTL formula $\mathsf{E}[\mathsf{EF} q \cup \mathsf{AF} p]$ holds.
- [7] (b) Determine in which states of \mathcal{M} the LTL formula $\mathsf{F} q \mathsf{U} \mathsf{F} p$ holds.
- [7] (c) Give a model which shows that AFEF p and AF p are not equivalent.
- [8] (d) Give an LTL formula ϕ that holds in state 0 but not in states 1 and 2 of \mathcal{M} .