1 (a) answer + explanation
The $\mathrm{BDD} B_{g}$ is reduced because the rules $\mathrm{C} 1, \mathrm{C} 2$ and C 3 are not applicable. It is not ordered since on different branches the variables are passed in different order, e.g. $[x, y, z]$ and $[x, z, y]$. Also, there are branches where x is visited twice.
(b)
answer + explanation
From the truth table

x	z	y	$g(x, y, z)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

we obtain the binary decision tree

Applying the reduce algorithm produces the desired reduced OBDD:

(c)
answer + explanation
We have

$$
\begin{aligned}
f(x, y, z) & =(x \oplus y \oplus 1) \cdot(\bar{x} \oplus z \oplus \bar{x} z) \\
& =(x \oplus y \oplus 1) \cdot(x \oplus 1 \oplus z \oplus(x \oplus 1) z) \\
& =(x \oplus y \oplus 1) \cdot(x \oplus 1 \oplus z \oplus x z \oplus z) \\
& =(x \oplus y \oplus 1) \cdot(x \oplus 1 \oplus x z) \\
& =(x \oplus x y \oplus x) \oplus(x \oplus y \oplus 1) \oplus(x z \oplus x y z \oplus x z) \\
& =x \oplus y \oplus x y \oplus x y z \oplus 1
\end{aligned}
$$

From the BDD in the solution of part (b) we obtain

$$
\begin{aligned}
g(x, y, z) & =\bar{x}(\bar{z} \oplus z \bar{y}) \oplus x \bar{z} y \\
& =(x \oplus 1)(z \oplus 1 \oplus z(y \oplus 1)) \oplus x(z \oplus 1) y \\
& =(x \oplus 1)(z \oplus 1 \oplus y z \oplus z) \oplus x y z \oplus x y \\
& =(x \oplus 1)(1 \oplus y z) \oplus x y z \oplus x y \\
& =x \oplus 1 \oplus x y z \oplus y z \oplus x y z \oplus x y \\
& =x \oplus x y \oplus y z \oplus 1
\end{aligned}
$$

(d)

answer + explanation

We have $f(0,0,0)=g(0,0,0)=f(1,1,1)=1$ and $g(1,1,1)=0$. Neither f nor g is monotone: $f(0,0,0)=1>0=f(0,1,0)$ and $g(0,0,0)=1>0=g(1,1,1)$. Moreover, $f(0,0,0)=f(1,1,1)$ and $g(1,0,0)=0=g(0,1,1)$, so f and g are not self-dual. The ANFs computed in part (c) are non-linear, so f and g are not affine. The following table summarizes our findings:

	f	g
$h(0, \cdots, 0) \neq 0$	\checkmark	\checkmark
$h(1, \cdots, 1) \neq 1$		\checkmark
not monotone	\checkmark	\checkmark
not self-dual	\checkmark	\checkmark
not affine	\checkmark	\checkmark

(e)
answer + explanation
We extend the table of part (d) with \oplus and + :

	f	g	\oplus	+
$h(0, \cdots, 0) \neq 0$	\checkmark	\checkmark		
$h(1, \cdots, 1) \neq 1$		\checkmark	\checkmark	
not monotone	\checkmark	\checkmark	\checkmark	
not self-dual	\checkmark	\checkmark	\checkmark	\checkmark
not affine	\checkmark	\checkmark		\checkmark

It follows that a subset $S \subseteq\{f, g, \oplus,+\}$ is adequate if and only if $g \in S$ or both $f \in S$ and $\oplus \in S$.

2 (a)
answer + computation
The following maximal derivation shows that the two terms are not unifiable:

$$
\begin{gathered}
\frac{f(h(z), g(x, x), z) \approx f(h(x), y, h(y))}{\mathrm{d} \Downarrow} \\
\begin{array}{c}
h(z) \approx h(x), g(x, x) \approx y, z \approx h(y) \\
\mathrm{d} \Downarrow \\
\frac{z \approx x, g(x, x) \approx y, z \approx h(y)}{} \\
\vee \Downarrow\{z \mapsto x\} \\
\frac{g(x, x) \approx y, x \approx h(y)}{\vee \Downarrow}\{y \mapsto g(x, x)\} \\
\frac{x \approx h(g(x, x))}{\text { failure } \Downarrow} \\
\perp
\end{array}
\end{gathered}
$$

We first rename the variables x and y in the second argument of the implication and then transform the resulting formula into an equivalent prenex normal form:

$$
\begin{aligned}
& \forall x \exists y(P(x) \rightarrow P(y)) \rightarrow \forall y \exists x Q(x, y) \\
& \quad \equiv \forall x \exists y(P(x) \rightarrow P(y)) \rightarrow \forall u \exists v Q(v, u) \\
& \quad \equiv \exists x \forall y((P(x) \rightarrow P(y)) \rightarrow \forall u \exists v Q(v, u)) \\
& \quad \equiv \exists x \forall y \forall u \exists v((P(x) \rightarrow P(y)) \rightarrow Q(v, u))
\end{aligned}
$$

Next, we transform the quantifier-free part of the prenex normal form into CNF:

$$
\begin{aligned}
& \equiv \exists x \forall y \forall u \exists v(\neg(\neg P(x) \vee P(y)) \vee Q(v, u)) \\
& \equiv \exists x \forall y \forall u \exists v((P(x) \wedge \neg P(y)) \vee Q(v, u)) \\
& \equiv \exists x \forall y \forall u \exists v((P(x) \vee Q(v, u)) \wedge(\neg P(y) \vee Q(v, u)))
\end{aligned}
$$

We obtain an equisatisfiable Skolem normal form by replacing the existentially quantified variables x and v by the fresh Skolem constant c and the fresh Skolem function $g(y, u)$, respectively:

$$
\approx \forall y \forall u((P(c) \vee Q(g(y, u), u)) \wedge(\neg P(y) \vee Q(g(y, u), u)))
$$

(c)
answer + explanation
The clausal form is not satisfiable as seen by the following refutation:

1. $\{Q(x), \neg P(f(x), f(x))\}$
2. $\{R(f(x), y), Q(x)\}$
3. $\{\neg Q(a)\}$
4. $\{R(x, f(y)), R(f(u), v)\}$
5. $\{P(x, y), \neg R(x, y)\}$
6. $\{\neg P(f(a), f(a))\}$
resolve 1, $3 \quad\{x \mapsto a\}$
7. $\{\neg R(f(a), f(a))\} \quad$ resolve 5, $6 \quad\{x \mapsto f(a), y \mapsto f(a)\}$
8. $\{R(f(u), f(y))\} \quad$ factor $4 \quad\{x \mapsto f(u), v \mapsto f(y)\}$
9.

resolve 7, $8 \quad\{u \mapsto a, y \mapsto a\}$

3 (a)

```
The sequent \(\neg(\neg q \wedge p) \vdash q \vee \neg p\) is valid:
```

1	$\neg(\neg q \wedge p)$	assumption
2	$q \vee \neg q$	LEM
3	q	assumption
4	$q \vee \neg p$	$\vee \mathrm{i}_{1} 3$
5	$\neg q$	assumption
6	p	assumption
7	$\neg q \wedge p$	$\wedge \mathrm{i} 5,6$
8	\perp	$\neg \mathrm{e} 1,7$
9	$\neg p$	$\neg \mathrm{i} 6-8$
10	$q \vee \neg p$	$\vee \mathrm{i}_{2} 9$
11	$q \vee \neg p$	$\vee \mathrm{e} 2,3-4,5-10$

(b)
answer
The sequent $\forall x R(x) \vee \forall x \exists y S(x, y) \vdash \forall x \exists y(S(x, y) \vee R(x))$ is valid:

	$\forall x R(x) \vee \forall x \forall y S(x, y)$	premise
x_{0}		
	$\forall x R(x)$	assumption
	$R\left(x_{0}\right)$	$\forall \mathrm{e} 3$
	$S\left(x_{0}, y_{0}\right) \vee R\left(x_{0}\right)$	$\checkmark \mathrm{i}_{2} 4$
	$\exists y\left(S\left(x_{0}, y\right) \vee R\left(x_{0}\right)\right)$	$\exists \mathrm{i} 5$
	$\forall x \exists y S(x, y)$	assumption
	$\exists y S\left(x_{0}, y\right)$	$\forall \mathrm{e} 7$
y_{0}	$S\left(x_{0}, y_{0}\right)$	assumption
	$S\left(x_{0}, y_{0}\right) \vee R\left(x_{0}\right)$	$V \mathrm{i}_{1} 9$
	$\exists y\left(S\left(x_{0}, y\right) \vee R\left(x_{0}\right)\right)$	$\exists \mathrm{i} 10$
	$\exists y\left(S\left(x_{0}, y\right) \vee R\left(x_{0}\right)\right)$	Эe 8, 9-11
	$\exists y S\left(x_{0}, y\right) \vee R\left(x_{0}\right)$	Ve 1,3-6, 7 -11
	$\forall x \exists y S(x, y) \vee R(x)$	$\forall \mathrm{i} 2-13$

(c)

The sequent $\forall x R(x) \wedge \forall x \exists y S(x, y) \vdash \exists y \forall x(S(x, y) \wedge R(x))$ is not valid. Consider the model \mathcal{M} over the universe $A=\{a, b\}$ and the interpretations:

$$
R^{\mathcal{M}}=\{a, b\} \quad S^{\mathcal{M}}=\{(a, a),(b, b)\}
$$

This model satisfies the premise, since both $\mathcal{M} \vDash \forall x R(x)$ and $\mathcal{M} \vDash \forall x \exists y S(x, y)$ hold. However the conclusion is not satisfied since for both choices of $y \in A$, there exists an $x \in A$ such that $(x, y) \notin S^{\mathcal{M}}$. Formally, $\mathcal{M} \nvdash_{\{y \mapsto a, x \mapsto b\}} S(x, y)$, hence $\mathcal{M} \nvdash_{\{y \mapsto a, x \mapsto b\}} S(x, y) \wedge R(x)$, and further $\mathcal{M} \nvdash_{\{y \mapsto a\}} \forall x(S(x, y) \wedge R(x))$. The same reasoning applies to the environment $\{y \mapsto b, x \mapsto a\}$, resulting in $\mathcal{M} \nvdash_{\{y \mapsto b\}} \forall x(S(x, y) \wedge R(x))$. Together these imply $\mathcal{M} \not \models \exists y \forall x(S(x, y) \wedge R(x))$.

4 (a)
answer + explanation
From the table

	p	q	$p \vee q$	$\neg q$	$\mathrm{EX} \neg q$	$q \rightarrow \mathrm{EX} \neg q$	$(p \vee q) \wedge(q \rightarrow \mathrm{EX} \neg q)$	φ
1	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
2		\checkmark	\checkmark					
3		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
4				\checkmark	\checkmark	\checkmark		
5	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

we conclude that the CTL formula $\varphi=\mathrm{EG}((p \vee q) \wedge(q \rightarrow \mathrm{EX} \neg q))$ holds in states 1,3 and 5 of \mathcal{M}.
(b)

answer + explanation

The requirement q restricts the possible initial states to 2 and 3 . Because the next state may not satisfy q, this only leaves state 3 . State 4 satisfies neither p nor q, so $p \cup q$ is not satisfied, and the only possible successor is state 5 . The path may loop in state 5 , but to discharge $p \mathrm{U} q$, eventually the path needs to leave state 5 . The only option to do so is via state 1 , which satisfies p, and all its successors satisfy q, which then discharges $p \cup q$. Thus, all paths satisfying the formula must have the prefix $35^{+} 1$, and all paths which start with this prefix satisfy the formula.
(c)
answer + explanation
For instance,

$$
\begin{aligned}
& \chi_{1}=p \wedge \neg \mathrm{EG} p \\
& \chi_{2}=\mathrm{EG} q \\
& \chi_{3}=q \wedge \mathrm{AF} \neg q \\
& \chi_{4}=\mathrm{EG}(\neg p \wedge \neg q) \\
& \chi_{5}=\mathrm{EG} p
\end{aligned}
$$

One easily checks that $\mathcal{M}, j \vDash \chi_{i}$ if and only if $j=i$:

	p	q	$\neg p$	$\neg q$	$\neg p \wedge \neg q$	$\neg \mathrm{EG} p$	$\mathrm{AF} \neg q$	χ_{1}	χ_{2}	χ_{3}	χ_{4}	χ_{5}
1	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark				
2		\checkmark	\checkmark			\checkmark			\checkmark			
3		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark		
4			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	
5	\checkmark			\checkmark			\checkmark					\checkmark

$$
\text { X } \quad \square \quad \text { The sequent } p \rightarrow q \vdash \neg p \rightarrow \neg q \text { is not valid. }
$$

$\square X$ The function $f(x, y)=x \oplus y \oplus \bar{y}$ is monotone.
\square X Resolution is complete but not sound for predicate logic.
$X \quad$ Satisfaction of CTL formulas in finite models is decidable.
\square X In DPLL any backjump can always be simulated by a backtrack instead.
\square X It is not possible to verify if some comparator network is a sorting network.X The CTL formula $p \wedge \operatorname{EXEF} p$ is semantically equivalent to the LTL formula $\mathrm{F} p$.

For every boolean function there exist at least two different reduced BDD representations. (all answers received 2 points)

The Skolem normal form of a predicate logic formula cannot contain any existential quantifiers.

The substitution $\{x \mapsto h(z), y \mapsto h(z)\}$ is a most general unifier of the terms $f(x, y, g(x))$ and $f(h(z), h(z), g(z))$.

