
Logik SS 2024 LVA 703026

EXAM 2 September 20, 2024

1 (a) answer + explanation

Let the fresh variables a1, . . . , a6 represent the non-atomic subformulas of φ:

a1 = φ a2 = p ∧ q → r ∨ ¬(q ∧ p) a3 = p ∧ q
a4 = r ∨ ¬(q ∧ p) a5 = ¬(q ∧ p) a6 = q ∧ p

Using Tseitin’s transformation we obtain

φ ≈ a1 ∧ (a1 ↔ ¬a2)
∧ (a2 ↔ (a3 → a4))

∧ (a3 ↔ p ∧ q)
∧ (a4 ↔ r ∨ a5)
∧ (a5 ↔ ¬a6)
∧ (a6 ↔ q ∧ p)

which results in the equisatisfiable CNF

ϕ ≈ a1 ∧ (a1 ∨ a2) ∧ (¬a1 ∨ ¬a2)
∧ (a2 ∨ a3) ∧ (a2 ∨ ¬a4) ∧ (¬a2 ∨ ¬a3 ∨ a4)
∧ (¬a3 ∨ p) ∧ (¬a3 ∨ q) ∧ (a3 ∨ ¬p ∨ ¬q)
∧ (a4 ∨ ¬r) ∧ (a4 ∨ ¬a5) ∧ (¬a4 ∨ r ∨ a5)
∧ (a5 ∨ a6) ∧ (¬a5 ∨ ¬a6)
∧ (¬a6 ∨ q) ∧ (¬a6 ∨ p) ∧ (a6 ∨ ¬q ∨ ¬p)



(b) answer + explanation

The following DPLL derivation shows that ψ is unsatisfiable:

∥ ψ

=⇒ d
p ∥ ψ (decide)

=⇒ d
p t ∥ ψ (unit propagate)

=⇒ d
p t r ∥ ψ (unit propagate)

=⇒ d
p t r q ∥ ψ (unit propagate)

=⇒ ¬p ∥ ψ (backtrack)

=⇒ ¬p r ∥ ψ (unit propagate)

=⇒ ¬p r q ∥ ψ (unit propagate)

=⇒ fail-state (fail)

(c) answer + explanation

Recall the definition of semantic entailment: φ1, . . . , φn ⊨ ψ if v(ψ) = T whenever v(φ1) = · · · =
v(φn) = T. It is easy to see that φ1, . . . , φn ⊨ ψ if and only if χ = φ1∧· · ·∧φn∧¬ψ is unsatisfiable: χ
is unsatisfiable if and only if there is no valuation v under which all φi’s evaluate to T but ψ evaluates
to F. By definition, this is equivalent to the semantic entailment φ1, . . . , φn ⊨ ψ. Furthermore, a
maximal derivation in DPLL starting with χ leads to the fail-state if and only if χ is unsatisfiable.
Therefore, in order to check φ1, . . . , φn ⊨ ψ by means of DPLL, we just have to construct χ and
transform it into an (equisatisfiable) CNF χ′. Then, we can apply DPLL on χ′ and the semantic
entailment φ1, . . . , φn ⊨ ψ holds if and only if we can find a derivation in DPLL which reaches the
fail-state.

For our concrete example, we obtain

χ = (p ∨ q → r) ∧ (t→ p) ∧ t ∧ ¬r

and compute the following equivalent CNF:

χ′ = (¬p ∨ r) ∧ (¬q ∨ r) ∧ (¬t ∨ p) ∧ t ∧ ¬r

The following DPLL derivation shows that χ′ is unsatisfiable:

∥ χ′

=⇒ t ∥ χ′ (unit propagate)

=⇒ t ¬r ∥ χ′ (unit propagate)

=⇒ t ¬r p ∥ χ′ (unit propagate)

=⇒ fail-state (fail)

Therefore, the semantic entailment p ∨ q → r, t→ p, t ⊨ r holds.



2 (a) answer + computation

The formula is not satisfiable. To show this we first transform it into CNF:

φ = (¬p ∨ ¬r) ∧ (p ∨ ¬q ∨ r) ∧ (r ∨ q) ∧ (¬p ∨ ¬q) ∧ (¬r ∨ p)

Applying resolution leads to the following refutation:

1. {¬p, ¬r}
2. {p, ¬q, r}
3. {r, q}
4. {¬p, ¬q}
5. {¬r, p}
6. {¬r} resolve 1, 5, p

7. {p, r} resolve 2, 3, q

8. {¬p, r} resolve 3, 4, q

9. {r} resolve 7, 8, p

10. 2 resolve 6, 9, r



(b) answer + explanation

We start by renaming the variables, and transforming the formula to prenex normal form:

ψ = ∃x (∀y P (g(x), y) → ∀y (∃z R(y, z) → ∃x P (x, g(y))))
= ∃x1 (∀y1 P (g(x1), y1) → ∀y2 (∃z R(y2, z) → ∃x2 P (x2, g(y2))))
= ∃x1 (∀y1 P (g(x1), y1) → ∀y2 ∃x2 (∃z R(y2, z) → P (x2, g(y2))))

= ∃x1 (∀y1 P (g(x1), y1) → ∀y2 ∃x2 ∀z (R(y2, z) → P (x2, g(y2))))

= ∃x1 ∃y1 (P (g(x1), y1) → ∀y2 ∃x2 ∀z (R(y2, z) → P (x2, g(y2))))

= ∃x1 ∃y1 ∀y2 ∃x2 ∀z (P (g(x1), y1) → (R(y2, z) → P (x2, g(y2))))

We then transform the quantifier free part of the formula to CNF:

= ∃x1 ∃y1 ∀y2 ∃x2 ∀z (¬P (g(x1), y1) ∨ ¬R(y2, z) ∨ P (x2, g(y2)))

Finally we remove the existential quantifiers by replacing x1 by a, y1 by b, and x2 by f(y2):

≈ ∀y2 ∀z (¬P (g(a), b) ∨ ¬R(y2, z) ∨ P (f(y2), g(y2)))

(c) answer + explanation

The clausal form is not satisfiable as seen by the refutation:

1. {¬Q(x), ¬P (y, f(x))}
2. {P (f(f(f(a))), f(a))}
3. {P (x, y), ¬P (f(y), f(x))}
4. {Q(f(a))}
5. {P (a, f(f(a)))} resolve 2, 3 {x 7→ a, y 7→ f(f(a))}
6. {¬P (y, f(f(a)))} resolve 1, 4 {x 7→ f(a)}
7. 2 resolve 5, 6 {y 7→ a}



3 (a) answer

The sequent ¬s ∨ ¬t, ⊤ → s ∧ t ⊢ ¬s ∧ ¬t is valid:

1 ¬s ∨ ¬t premise

2 ⊤ → s ∧ t premise

3 ⊤ ⊤ i

4 s ∧ t →e 2, 3

5 s ∧e1 4

6 t ∧e2 4

7 ¬s assumption

8 ⊥ ¬e 5, 7

9 ¬t assumption

10 ⊥ ¬e 6, 9

11 ⊥ ∨e 1, 7 – 8, 9 – 10

12 ¬s ∧ ¬t ⊥e 11

(b) answer

The sequent ∀x ∃y (P (x) → Q(x, y)), ¬ ∃x Q(a, x) ⊢ ¬∀x P (x) is valid:

1 ∀x ∃y (P (x) → Q(x, y)) premise

2 ¬∃x Q(a, x) premise

3 ∀x P (x) assumption

4 P (a) ∀ e 3

5 ∃y (P (a) → Q(a, y)) ∀ e 1

6 y0 P (a) → Q(a, y0) assumption

7 Q(a, y0) →e 6, 4

8 ∃x Q(a, x) ∃ i 7
9 ⊥ ¬e 8, 2

10 ⊥ ∃ e 5, 6 – 9

11 ¬∀x P (x) ¬ i 3 – 10



(c) answer

The sequent ∀x ∃y (P (x) → Q(x, y)), ¬∀x P (x) ⊢ ¬∃x Q(a, x) is not valid. Take the model M
with the universe A = {0} and the following interpretations:

PM = ∅ QM = {(0, 0)} aM = 0

We have M ⊨ ∀x ∃y (P (x) → Q(x, y)) since PM = ∅ makes P (x) false and the implication true
for any x. We also have M ⊨ ¬∀x P (x) since 0 /∈ PM. On the other hand, M ⊭ ¬∃x Q(a, x)
because M ⊨ ∃x Q(a, x) since (0, 0) ∈ QM.



4 (a) answer + explanation

From the table

a AX a b EX b E[AX a U EX b ] φ

1 ✓ ✓ ✓

2 ✓ ✓

3 ✓ ✓ ✓

4 ✓ ✓ ✓ ✓

5 ✓ ✓ ✓

6 ✓ ✓ ✓

we conclude that the CTL formula φ = AX E[AX a UEX b ] holds in states 2, 3, 4 and 6 of M.

(b) answer + explanation

Consider the LTL formula ψ = XX b. As b does not hold in state 5, the path (6 1 5)ω shows that
M, 6 ⊨ ψ does not hold. Since b holds in state 2 we conclude that M, 2 ⊨ ¬ψ does not hold by
considering the path 6 1 2 3 4ω.



(c) answer + explanation

For instance,

χ1 = a ∧ EX a

χ2 = b ∧ ¬EX a

χ3 = ¬(a ∨ b) ∧ EX b

χ4 = b ∧ EX a

χ5 = a ∧ ¬EX a

χ6 = ¬(a ∨ b) ∧ ¬EX b

One easily checks that M, j ⊨ χi if and only if j = i :

a b ¬(a ∨ b) EX a EX b χ1 χ2 χ3 χ4 χ5 χ6

1 ✓ ✓ ✓ ✓

2 ✓ ✓

3 ✓ ✓ ✓ ✓

4 ✓ ✓ ✓ ✓

5 ✓ ✓ ✓

6 ✓ ✓ ✓

There are many other solutions. For instance, AX a also works for χ6.



5 true false statement

X The function p+ q + p is affine.

X If ¬φ is valid then φ is unsatisfiable.

X In LTL, if π ⊨ p then also π ⊨ G pU¬p.

X The sequent ∃x ∀y Q(x, y) ⊢ ∀x ∃y Q(y, x) is valid.

X The formula (∀x P (x)) → P (x) ∨ ∃z Q(z) is a sentence.

X The CTL formula EF p ∨ AF¬p is satisfied in all states of all models.

X Any valid propositional formula can be proven using natural deduction.

X For a given formula in DNF, it is easier to check validity than satisfiability.

X If two terms are unifiable, there is a unique most general unifier which unifies
them.

X If a comparator network with n inputs sorts 2n different bit-strings of length n,
it is a sorting network.


