universität innsbruck

SS 2024 September 20, 2024 $\boxed{1}$ (a) answer + explanation

Let the fresh variables a_1, \ldots, a_6 represent the non-atomic subformulas of φ :

$a_1 = \varphi$	$a_2 = p \land q \to r \lor \neg (q \land p)$	$a_3 = p \wedge q$
$a_4 = r \lor \neg (q \land p)$	$a_5 = \neg (q \land p)$	$a_6 = q \wedge p$

Using Tseitin's transformation we obtain

$$\varphi \approx a_1 \wedge (a_1 \leftrightarrow \neg a_2) \\ \wedge (a_2 \leftrightarrow (a_3 \rightarrow a_4)) \\ \wedge (a_3 \leftrightarrow p \wedge q) \\ \wedge (a_4 \leftrightarrow r \lor a_5) \\ \wedge (a_5 \leftrightarrow \neg a_6) \\ \wedge (a_6 \leftrightarrow q \wedge p)$$

which results in the equisatisfiable CNF

$$\begin{split} \phi &\approx a_1 \wedge (a_1 \vee a_2) \wedge (\neg a_1 \vee \neg a_2) \\ &\wedge (a_2 \vee a_3) \wedge (a_2 \vee \neg a_4) \wedge (\neg a_2 \vee \neg a_3 \vee a_4) \\ &\wedge (\neg a_3 \vee p) \wedge (\neg a_3 \vee q) \wedge (a_3 \vee \neg p \vee \neg q) \\ &\wedge (a_4 \vee \neg r) \wedge (a_4 \vee \neg a_5) \wedge (\neg a_4 \vee r \vee a_5) \\ &\wedge (a_5 \vee a_6) \wedge (\neg a_5 \vee \neg a_6) \\ &\wedge (\neg a_6 \vee q) \wedge (\neg a_6 \vee p) \wedge (a_6 \vee \neg q \vee \neg p) \end{split}$$

LVA 703026

Logik

EXAM 2

(b) answer + explanation

The following DPLL derivation shows that ψ is unsatisfiable:

		$\parallel \psi$	
\Rightarrow	$\overset{d}{p}$	$\parallel \psi$	(decide)
\implies	$\stackrel{d}{p}t$	$\parallel \psi$	(unit propagate)
\Rightarrow	$\stackrel{d}{p}t\;r$	$\parallel \psi$	(unit propagate)
\Rightarrow	$\stackrel{d}{p}t\;r\;q$	$\parallel \psi$	(unit propagate)
\Rightarrow	$\neg p$	$\parallel \psi$	(backtrack)
\Rightarrow	$\neg p r$	$\parallel \psi$	(unit propagate)
\Rightarrow	$\neg p \ r \ q$	$\parallel \psi$	(unit propagate)
\implies	fail-state		(fail)

(c) answer + explanation

Recall the definition of semantic entailment: $\varphi_1, \ldots, \varphi_n \vDash \psi$ if $\overline{v}(\psi) = \mathsf{T}$ whenever $\overline{v}(\varphi_1) = \cdots = \overline{v}(\varphi_n) = \mathsf{T}$. It is easy to see that $\varphi_1, \ldots, \varphi_n \vDash \psi$ if and only if $\chi = \varphi_1 \land \cdots \land \varphi_n \land \neg \psi$ is unsatisfiable: χ is unsatisfiable if and only if there is no valuation v under which all φ_i 's evaluate to T but ψ evaluates to F . By definition, this is equivalent to the semantic entailment $\varphi_1, \ldots, \varphi_n \vDash \psi$. Furthermore, a maximal derivation in DPLL starting with χ leads to the fail-state if and only if χ is unsatisfiable. Therefore, in order to check $\varphi_1, \ldots, \varphi_n \vDash \psi$ by means of DPLL, we just have to construct χ and transform it into an (equisatisfiable) CNF χ' . Then, we can apply DPLL on χ' and the semantic entailment $\varphi_1, \ldots, \varphi_n \vDash \psi$ holds if and only if we can find a derivation in DPLL which reaches the fail-state.

For our concrete example, we obtain

$$\chi = (p \lor q \to r) \land (t \to p) \land t \land \neg r$$

...

and compute the following equivalent CNF:

$$\chi' = (\neg p \lor r) \land (\neg q \lor r) \land (\neg t \lor p) \land t \land \neg r$$

The following DPLL derivation shows that χ' is unsatisfiable:

		$\parallel \chi'$	
\implies	t	$\parallel \chi'$	(unit propagate)
\implies	$t \neg r$	$\parallel \chi'$	(unit propagate)
\implies	$t \neg r \ p$	$\parallel \chi'$	(unit propagate)
\Rightarrow	fail-state		(fail)

Therefore, the semantic entailment $p \lor q \to r, t \to p, t \vDash r$ holds.

 $\boxed{2}$ (a) answer + computation

The formula is not satisfiable. To show this we first transform it into CNF:

 $\varphi \ = \ (\neg p \vee \neg r) \wedge (p \vee \neg q \vee r) \wedge (r \vee q) \wedge (\neg p \vee \neg q) \wedge (\neg r \vee p)$

Applying resolution leads to the following refutation:

 $\{\neg p, \neg r\}$ 1. $\{p, \neg q, r\}$ 2.3. $\{r, q\}$ 4. $\{\neg p, \neg q\}$ 5. $\{\neg r, p\}$ 6. $\{\neg r\}$ resolve 1, 5, p7. $\{p, r\}$ resolve 2, 3, q8. $\{\neg p, r\}$ resolve 3, 4, q9. $\{r\}$ resolve 7, 8, p10. 🗆 resolve 6, 9, r (b) answer + explanation

We start by renaming the variables, and transforming the formula to prenex normal form:

$$\begin{split} \psi &= \exists x \left(\forall y \ P(g(x), y) \rightarrow \forall y \left(\exists z \ R(y, z) \rightarrow \exists x \ P(x, g(y)) \right) \right) \\ &= \exists x_1 \left(\forall y_1 \ P(g(x_1), y_1) \rightarrow \forall y_2 \left(\exists z \ R(y_2, z) \rightarrow \exists x_2 \ P(x_2, g(y_2)) \right) \right) \\ &= \exists x_1 \left(\forall y_1 \ P(g(x_1), y_1) \rightarrow \forall y_2 \ \exists x_2 \left(\exists z \ R(y_2, z) \rightarrow P(x_2, g(y_2)) \right) \right) \\ &= \exists x_1 \left(\forall y_1 \ P(g(x_1), y_1) \rightarrow \forall y_2 \ \exists x_2 \ \forall z \ (R(y_2, z) \rightarrow P(x_2, g(y_2))) \right) \\ &= \exists x_1 \ \exists y_1 \left(P(g(x_1), y_1) \rightarrow \forall y_2 \ \exists x_2 \ \forall z \ (R(y_2, z) \rightarrow P(x_2, g(y_2))) \right) \\ &= \exists x_1 \ \exists y_1 \ \forall y_2 \ \exists x_2 \ \forall z \ (P(g(x_1), y_1) \rightarrow (R(y_2, z) \rightarrow P(x_2, g(y_2)))) \end{split}$$

We then transform the quantifier free part of the formula to CNF:

 $= \exists x_1 \exists y_1 \forall y_2 \exists x_2 \forall z (\neg P(g(x_1), y_1) \lor \neg R(y_2, z) \lor P(x_2, g(y_2)))$

Finally we remove the existential quantifiers by replacing x_1 by a, y_1 by b, and x_2 by $f(y_2)$:

 $\approx \forall y_2 \,\forall z \,(\neg P(g(a), b) \lor \neg R(y_2, z) \lor P(f(y_2), g(y_2)))$

(c) answer + explanation

The clausal form is not satisfiable as seen by the refutation:

1. $\{\neg Q(x), \neg P(y, f(x))\}$ 2. $\{P(f(f(f(a))), f(a))\}$ 3. $\{P(x, y), \neg P(f(y), f(x))\}$ 4. $\{Q(f(a))\}$ 5. $\{P(a, f(f(a)))\}$ resolve 2, 3 $\{x \mapsto a, y \mapsto f(f(a))\}$ 6. $\{\neg P(y, f(f(a)))\}$ resolve 1, 4 $\{x \mapsto f(a)\}$ 7. \Box resolve 5, 6 $\{y \mapsto a\}$ 3 (a) answer

```
The sequent \neg s \lor \neg t, \top \to s \land t \vdash \neg s \land \neg t is valid:
           1
                        \neg s \lor \neg t
                                          premise
           \mathbf{2}
                        \top \to s \wedge t
                                          premise
           3
                        Т
                                          Τi
           4
                        s \wedge t
                                          \rightarrow e 2, 3
           5
                                          \wedge e_1 \; {\color{red} 4}
                        s
           6
                                          \wedge e_2 4
                        t
           7
                                          \operatorname{assumption}
                        \neg s
           8
                        \bot
                                          \neg e 5, 7
           9
                        \neg t
                                          assumption
                        \bot
         10
                                          \neg e 6, 9
                        \bot
                                          \vee e \ 1, 7 - 8, 9 - 10
         11
         12
                                          \perp e \; 11
                        \neg s \wedge \neg t
(b) answer
        The sequent \forall x \exists y \ (P(x) \to Q(x,y)), \neg \exists x \ Q(a,x) \vdash \neg \forall x \ P(x) is valid:
                                \forall x \exists y (P(x) \rightarrow Q(x, y)) premise
           1
           2
                                \neg \exists x Q(a, x)
                                                                         premise
           3
                                \forall x P(x)
                                                                         assumption
           4
                                P(a)
                                                                         \forall e 3
                                \exists y \ (P(a) \to Q(a,y))
                                                                         \forall e \ 1
           5
           6
                         y_0 \quad P(a) \to Q(a, y_0)
                                                                         assumption
           7
                                Q(a, y_0)
                                                                         \rightarrow e 6, 4
                                                                         ∃i 7
           8
                                \exists x \, Q(a,x)
           9
                                 \bot
                                                                         \neg e 8, 2
         10
                                 \bot
                                                                         \exists e 5, 6-9
                                 \neg \forall x P(x)
                                                                         ¬i 3-10
         11
```

(c) answer

The sequent $\forall x \exists y \ (P(x) \to Q(x,y)), \neg \forall x \ P(x) \vdash \neg \exists x \ Q(a,x)$ is not valid. Take the model \mathcal{M} with the universe $A = \{0\}$ and the following interpretations:

$$P^{\mathcal{M}} = \emptyset \qquad \qquad Q^{\mathcal{M}} = \{(0,0)\} \qquad \qquad a^{\mathcal{M}} = 0$$

We have $\mathcal{M} \models \forall x \exists y (P(x) \to Q(x, y))$ since $P^{\mathcal{M}} = \emptyset$ makes P(x) false and the implication true for any x. We also have $\mathcal{M} \models \neg \forall x P(x)$ since $0 \notin P^{\mathcal{M}}$. On the other hand, $\mathcal{M} \nvDash \neg \exists x Q(a, x)$ because $\mathcal{M} \models \exists x Q(a, x)$ since $(0, 0) \in Q^{\mathcal{M}}$.

4 (a) answer + explanation

From the table

	a	AX a	b	EX b	$E[AX\ a\ U\ EX\ b]$	φ
1	\checkmark			\checkmark	\checkmark	
2			\checkmark			\checkmark
3				\checkmark	\checkmark	\checkmark
4			\checkmark	\checkmark	\checkmark	\checkmark
5	\checkmark			\checkmark	\checkmark	
6		\checkmark			\checkmark	\checkmark

we conclude that the CTL formula $\varphi = \mathsf{AX} \mathsf{E}[\mathsf{AX} \ a \ \mathsf{U} \mathsf{EX} \ b]$ holds in states 2, 3, 4 and 6 of \mathcal{M} .

(b) answer + explanation

Consider the LTL formula $\psi = X X b$. As b does not hold in state 5, the path $(6\,1\,5)^{\omega}$ shows that $\mathcal{M}, 6 \vDash \psi$ does not hold. Since b holds in state 2 we conclude that $\mathcal{M}, 2 \vDash \neg \psi$ does not hold by considering the path $6\,1\,2\,3\,4^{\omega}$.

(c) answer + explanation

For instance,

 $\begin{array}{l} \chi_1 \ = \ a \wedge \mathsf{EX} \ a \\ \chi_2 \ = \ b \wedge \neg \mathsf{EX} \ a \\ \chi_3 \ = \ \neg (a \lor b) \wedge \mathsf{EX} \ b \\ \chi_4 \ = \ b \wedge \mathsf{EX} \ a \\ \chi_5 \ = \ a \wedge \neg \mathsf{EX} \ a \\ \chi_6 \ = \ \neg (a \lor b) \wedge \neg \mathsf{EX} \ b \end{array}$

One easily checks that $\mathcal{M}, j \vDash \chi_i$ if and only if j = i:

	$\ a$	b	$\neg(a \lor b)$	EXa	EX b	χ_1	χ_2	χ_3	χ_4	χ_5	χ_6
1	\checkmark			\checkmark	\checkmark	\checkmark					
2		\checkmark					\checkmark				
3			\checkmark	\checkmark	\checkmark			\checkmark			
4		\checkmark		\checkmark	\checkmark				\checkmark		
5	√				\checkmark					\checkmark	
6			\checkmark	\checkmark							\checkmark

There are many other solutions. For instance, AX a also works for χ_6 .

5	true	false	statement
	X		The function $p + \overline{q + \overline{p}}$ is affine.
	X		If $\neg \varphi$ is valid then φ is unsatisfiable.
		X	In LTL, if $\pi \vDash p$ then also $\pi \vDash G p U \neg p$.
	X		The sequent $\exists x \forall y Q(x,y) \vdash \forall x \exists y Q(y,x)$ is valid.
		X	The formula $(\forall x P(x)) \rightarrow P(x) \lor \exists z Q(z)$ is a sentence.
	X		The CTL formula $EFp\lorAF\neg p$ is satisfied in all states of all models.
	X		Any valid propositional formula can be proven using natural deduction.
		X	For a given formula in DNF, it is easier to check validity than satisfiability.
		X	If two terms are unifiable, there is a unique most general unifier which unifies them.
	X		If a comparator network with n inputs sorts 2^n different bit-strings of length n , it is a sorting network.