Logik WS 2007/2008 LVA 703019

This exam consists of <u>five</u> exercises. The available points for each item are written in the margin. You need at least 50 points to pass.

- 1 For each of the following sequents, either give a natural deduction proof or explain why such a proof does not exist.
- [5] (a) $\vdash (p \rightarrow q) \lor (q \rightarrow r)$
- [6] (b) $\neg r \to p \lor q, r \land \neg q \vdash r \to q$
- [6] (c) $p \lor q, \neg q \lor r \vdash p \lor r$
- [7] (a) Write a Prolog program to solve the following cryptarithmetic puzzle:

You don't have to write the *use_module* statement. Moreover, the puzzle need not be solved.

- (b) Write a Prolog program which computes the sum of all prime numbers in a list of numbers. (Hint: X mod Y computes X modulo Y.)
- [7] (c) Consider the following Prolog program:

```
p(X,a) :- p(X,b), !, p(X,X), p(X,c).
p(f(X),b).
p(X,f(X)).
p(f(a),X).
p(X,c).
```

Write down all SLD derivations starting from the query

$$?-p(X,Y)$$
.

and give the list of answers in the same order as they will be returned by a Prolog system. You may represent the SLD derivations as a tree to share those parts that are common to more than one SLD derivation.

- 3 For each of the following formulas of predicate logic, either give a natural deduction proof or find a model which does not satisfy it:
- [7] (a) $\phi_1 = \forall x (P(x) \lor Q(x)) \to \forall x P(x) \lor \forall x Q(x)$
- [7] (b) $\phi_2 = \forall x (P(x) \lor Q(x)) \rightarrow \forall x P(x) \lor \exists x Q(x)$
- [7] (c) $\phi_3 = \forall x (P(x) \lor Q(x)) \to (\exists x \neg Q(x) \to (\forall x (R(x) \to \neg P(x)) \to \exists x \neg R(x)))$

Turn Over Turn Over Turn Over

4 Consider the model \mathcal{M} :

- [7] (a) Determine in which states of \mathcal{M} the CTL formula $\phi = A[p \cup q] \to E[(p \to AXq) \cup EGq]$ holds.
- [7] (b) Give an LTL formula ψ that holds only in states 0 and 3 of \mathcal{M} .
- [7] (c) Give a model which shows that the CTL* formulas $A[(X p \lor X X p)]$ and $AX p \lor AX AX p$ are not equivalent.
- [20] Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

statement

Prolog programs can be executed using natural deduction for propositional logic.

 $\{\oplus, \rightarrow\}$ is an adequate set of propositional connectives.

CTL* is more expressive than LTL.

Every monotone function $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ has a fixed-point.

 $\{\bot, \neg, \land, X, W\}$ is an adequate set of connectives for LTL.

Satisfiability in predicate logic is decidable.

A sentence ψ in predicate logic has a model with infinitely many elements if for all $n \ge 1$ ψ has a model with at most n elements.

The boolean function $f(x,y) = (x \oplus y) + y$ is self-dual.

Every predicate logic formula has an equivalent prenex normal form.

Every boolean function has a unique reduced OBDD.