

Logik

WS 2008/2009

EXAM 1

January 22, 2009

This exam consists of <u>five</u> exercises. The available points for each item are written in the margin. You need at least 50 points to pass.

- 1 Consider the boolean function $f(x, y, z) = x \oplus xy \oplus yz$.
- (a) Give a binary decision tree for f with the variable ordering [x, y, z] and use the reduce algorithm to construct an equivalent reduced OBDD.
- (b) Determine all minimal adequate subsets of $\{\rightarrow, \lor, \bot, f\}$.

2 (a) Transform the formulas

$$\begin{split} &\text{i. }\forall x \neg \forall y \ (\forall z \ P(x,z) \rightarrow Q(f(y),x)) \lor \exists x \ \forall y \ P(x,y) \\ &\text{ii. }\exists x \ ((\forall y \ P(x,y) \rightarrow \forall y \ (P(x,y) \land Q(y,x))) \rightarrow \forall y \ Q(x,y)) \end{split}$$

into equisatisfiable clausal forms.

[12] (b) Use resolution to determine whether the clausal forms

are satisfiable. (Here a, b are constants and u, x, y, z variables.)

3 For each of the following formulas of predicate logic, either give a natural deduction proof or find a model which does not satisfy it:

[7] (a)
$$\phi_1 = \forall x \exists y (P(y) \to Q(x)) \to \forall x (\exists y P(y) \to Q(x))$$

[7] (b)
$$\phi_2 = \forall x \exists y (P(x) \to Q(y)) \to \forall x (P(x) \to \exists y Q(y))$$

[7] (c)
$$\phi_3 = \forall x (\exists y \ P(y) \to Q(x)) \to \exists y \ \forall x \ (P(y) \to Q(x))$$

Turn Over

Turn Over

Turn Over

[8]

[9]

[9]

4 Consider the CTL formulas $\phi = \mathsf{E}[p \lor \neg r \mathsf{U} \mathsf{EX} \mathsf{AG} \neg q]$ and $\psi = \mathsf{AG} \mathsf{AF}(p \lor q)$, the LTL formula $\chi = \mathsf{GF}p \lor \mathsf{GF}q$, and the model \mathcal{M} :

- [7] (a) Apply the CTL model checking algorithm to determine the states of \mathcal{M} which satisfy ϕ .
 - (b) Provide an LTL formula ξ which does not contain the proposition r such that $\mathcal{M}, s \models \xi$ if and only if $s = s_3$.
- [7] (c) Determine whether ψ is equivalent to χ . In the negative case also provide a counterexample.
- [20] 5 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

statement

Every clause with the property that two of its literals unify has a factor.

To represent the transition relation of a CTL model with 16 states we need at most 8 boolean variables.

 $\forall x \ (\exists x \ \phi \to \psi) \dashv \exists x \ \phi \to \forall x \ \psi$

[7]

Executing the Prolog query ?- select(b,[a,b,c,d],X). produces the answer X = [a,c,d].

A set of sentences of predicate logic is satisfiable if and only if all finite subsets are satisfiable.

A boolean function $f: \{0,1\}^n \to \{0,1\}$ is self-dual if $f(x_1,\ldots,x_n) = f(\overline{x_1},\ldots,\overline{x_n})$.

Every CTL^{*} path formula is a CTL^{*} state formula.

If the set S has n elements then $F^n(S)$ is the least fixed point of a monotone function $F: \mathcal{P}(S) \to \mathcal{P}(S)$.

Every Horn formula is satisfiable.

The LTL formulas $\neg(\phi \mathsf{R} \psi)$ and $\neg\psi \mathsf{U} \neg\phi$ are semantically equivalent.