Manuf.	institut für informatik	9
--------	-------------------------	---

[6]

[6]

[7]

WS 2008/2009

EXAM 2

April 17, 2009

This exam consists of <u>five</u> exercises. The available points for each item are written in the margin. You need at least 50 points to pass.

- [6] (a) Give a natural deduction proof of the sequent $\vdash ((p \to q) \to p) \to p$
 - (b) Test the satisfiability of the formula $\neg(\neg p \land \neg(p \land q)) \land \neg(\neg(p \land q) \land \neg q)$ with the linear SAT solver.
 - (c) Test the satisfiability of the formula in (b) with the cubic SAT solver.

2 Consider the two OBBDs

- [7] (a) Compute $\operatorname{apply}(\oplus, B_g, B_h)$.
- [6] (b) Use Shannon's expansion to obtain boolean expressions that are equivalent to B_g and B_h .
 - (c) Use restrict to compute a reduced OBDD for g[1/x][0/z], where g is the boolean formula represented by B_g . Give all intermediate OBDDs.

3 For each of the following sequents of predicate logic, either give a natural deduction proof or find a model which does not satisfy it:

[7] (a) $\forall x \forall y \forall z (R(x,y) \land R(y,z) \to R(x,z)), \forall x \neg R(x,x) \vdash \forall x \forall y (R(x,y) \land R(y,x) \to x = y)$

[7] (b)
$$\forall x \neg R(x, x), \forall x \exists y \ R(x, y) \vdash \neg \exists x \ \forall y \ x = y$$

[7] (c)
$$\exists x \,\forall y \,(\neg R(x,y) \lor \neg S(x,y)) \vdash \forall x \,\exists y \,(R(x,y) \lor S(x,y))$$

Turn Over

Turn Over

Turn Over

4 Consider the CTL formulas $\phi = \mathsf{EG}(p \to \mathsf{A}[p \, \mathsf{U} \, r] \lor \mathsf{EF} \, q)$ and $\psi = \mathsf{AG}(request \to \mathsf{AF} \, \mathsf{AX} \, response)$, the LTL formula $\chi = \mathsf{G}(request \to \mathsf{FX} \, response)$, and the model \mathcal{M} :

- [7] (a) Apply the CTL model checking algorithm to determine the states of \mathcal{M} which satisfy ϕ .
 - (b) Provide a model and a state which distinguishes ψ from χ . Indicate which of the two formulas is satisfied.
- [7] (c) Provide a CTL formula ξ such that $\xi \equiv \chi$.

[7]

[20] 5 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

statement

Executing the Prolog query ?-1+2 = 3. produces the answer Yes.

 $\forall x \ (\phi \to \exists x \ \psi) \dashv \exists x \ \phi \to \exists x \ \psi$

The CTL formulas $AF \neg \phi$ and $A[\perp U \neg \phi]$ are semantically equivalent.

A propositional formula ϕ is valid if and only if $\neg \phi$ is satisfiable.

The boolean function f(x, y) = x + y is affine.

Every adequate set of LTL connectives contains $\mathsf{U}.$

The rule $\neg \neg e$ is derivable from the basic proof rules of natural deduction.

 $\{\|\}$ is an adequate set of propositional connectives, where $x \| y = \neg(x \lor y)$.

For all CTL formulas ϕ and ψ , $\llbracket \mathsf{E}[\phi \mathsf{U} \psi] \rrbracket$ is a least fixed point of the function $X \mapsto \llbracket \psi \rrbracket \cap (\llbracket \phi \rrbracket \cup \mathsf{pre}_{\exists}(X)).$