[10]

[3]
[7]

[5]

[10]

[5]

¢ informatik
instit 0

niversitat
innsbruck

Logik WS 2009/2010 LVA 703019

EXAM 2 April 9, 2010

This exam consists of five exercises. The available points for each item are
written in the margin. You need at least 50 points to pass.

Consider the boolean function f(z,y,2) =1®y ® zy & x=.

(a) Give a binary decision tree for f with the variable ordering [z, y, z] and use the reduce
algorithm to construct an equivalent reduced OBDD.

(b) Show that — can be expressed in terms of f.
(c) Prove that {f} is adequate.

In this exercise we consider polynomials over the variable x which are constructed according
to the following grammar:

P:=x|N|P+P|PxP

N ::= (some number)
All of the following parts can be done independently!

(a) Write a Prolog predicate derive/2 to compute derivatives of polynomials. Your pro-
gram does not have to simplify the resulting polynomial. For example, for the query
derive(3*x,D) a possible answer might be D = 0*x+1*3.

Hints: number/1 checks whether the input is a number; (p * q)' = p' x ¢+ ¢ * p.

(b) Write a Prolog predicate parse/2 to parse polynomials. Here, the input is a list over
the alphabet {z,+,*, (,)} UZ. The grammar is like the one above except that there is
an additional production for parentheses:

P :=(P)

The parser should not make any assumptions about precedence of operators. Hence, the
query parse([15,*,’(’,x,+,3,%,x,’)’],P) has two solutions: P = 15x(x+(3%*x))
and P = 15*%((x+3)*x).

(c) Using parse/2, write a Prolog predicate parse unique/2 which takes the same input
list as for parse/2 and returns one of three possible results: invalid, if the input cannot
be parsed; multiple, if there is more than one possibility to parse the input; and the
unique polynomial, otherwise.

For example, parse unique ([15,*,’ (’ ,x,+,3,*,x,’)’],P) yields P = multiple and
parse_unique([15,%,’ (°,x,+,x,’)’],P) yields P = 15%(x+x).
Hint: use findall/3.

For each of the following sequents of predicate logic, either give a natural deduction proof or
find a model which does not satisfy it:

[6] (a) Vo P(z, f(x)), Vo Yy Vz (P(z,y) A P(y,z) — P(x,2)) - 3z P(z,x)
[7] (b) Va (=Q(z) — Q(y(2))), Q(a) - Iz (Q(z) A Q(g(9(x))))
[7] (¢) VY R(x,h(x)), Ve Vy =(R(z,y) N R(y,x)) - =3z (x = h(x))

Consider the CTL formula ¢ = E[pUEXg¢| and the model M:

o)

In this exercise we use the symbolic model checking algorithm to determine in which states
¢ holds. We adopt the following binary encoding of states:

state | * vy
0 0

1 0 1
2 1 0
3 11

For simplicity, you do not have to construct the BDDs, instead all operations should be
performed on boolean formulas, as in the lecture.

(5] (a) Encode the transition relation — as a boolean formula ¢_..
Hint: Simplifying the resulting formula may be helpful for parts (b) and (c).

(6] (b) Encode the set of states in which the CTL formulas p, ¢ and EX¢q hold as boolean
formulas. For EX ¢, employ the formula ¢_, from part (a).

[9] (c) Complete the following algorithm for constructing the formula representing the set of
states where ¢ holds.

W= [lp]l;

X = J;

Y := [EX¢q];

repeat until X =Y
X :=Y;

=y [@[] preD(Y));

Use this algorithm to determine in which states ¢ holds. Give the formulas representing
the intermediate assignments to Y after each iteration.

[20]

Determine whether the following statements are true or false. Every correct answer is worth

2 points. For every wrong answer 1 point is subtracted, provided the total number of points
is non-negative.

statement

[E[¢U1]] is the least fixed point of the function F': P(S) — P(S) that maps X to
[T ([e]lUpres(X)).

The instance {(01,0), (011, 1), (10,1)} of Post correspondence problem has a solution.
Every adequate set of temporal CTL connectives contains EF.

The term f(y, z) is free for y in Vo ((Vz (P(2) A Q(y))) — —P(x) V Q(2)).

Jx o ATz - Jx (9 AY)

The algebraic normal form of the boolean function f(x,y) =z -7 is © ® zy.

The proof rules LEM, MT and ——e are inter-derivable with respect to the other basic proof
rules of natural deduction.

The terms p(X, X,Y) and p(g(Y), g(Z),a) are unifiable.
A unary boolean function f is self-dual if and only if f(0) # f(1).

Executing the Prolog query ?- [A,B] = [A|C]. produces the answer C = [B].

