Logik
WS 2009/2010
LVA 703019

This exam consists of five exercises. The available points for each item are written in the margin. You need at least 50 points to pass.

1 Consider the propositional formula $\varphi=\neg(p \wedge(q \rightarrow r)) \vee(q \wedge \neg r)$.
(a) Compute the DAG representation of $T(\varphi)$.
(b) Test the satisfiability of φ with the linear SAT solver.
(c) Transform φ into an equisatisfiable formula in CNF.

2 Consider binary trees where empty represents the empty tree and node(L, E,R) represents the binary tree with root element E and left and right subtrees L and R.

For example, the tree

is represented by the term
node(node(node (empty , 2 , empty), 1 , empty) , 3 , node (empty , 4 , empty)).
All of the following exercises can be done independently!
(a) Write a Prolog predicate height/2 to compute the height of a tree. The height of the example tree is 3 .
(b) Write a Prolog predicate inorder/2 to convert a tree in a list by an inorder-traversal, i.e., first the left subtree, then the element, then the right subtree. For example, inorder (..., L) where . . refers to the example tree should result in $L=[2,1,3,4]$.
(c) Write a Prolog predicate avl/1 to check whether a given tree is an AVL-tree, i.e., a tree where for every subtree the difference of the heights of the left and right subtree is at most 1. The example tree is an AVL-tree, but if one would remove the 4, then it would not be an AVL-tree.
(d) Write a Prolog predicate sorted/1 to check whether a given tree is sorted, i.e., where for all nodes with element x, all elements in the left subtree are smaller than x and all elements in the right subtree are larger than x. The example tree is not sorted, but if one would swap the elements 1 and 2 , then it would be sorted.
Hint: the predicate inorder/2 of part (b) might be useful.

3 For each of the following formulas of predicate logic, either give a natural deduction proof or find a model which does not satisfy it:
[6]

4 Consider the CTL formulas $\phi=\mathrm{EG}(\mathrm{E}[\neg p \cup q] \wedge \mathrm{AF} q), \psi=\mathrm{EGEF} p, \chi=\mathrm{EFEG} p$ and the model \mathcal{M} :

(c) Provide a CTL formula ξ that is satisfied only in state s_{1} of \mathcal{M}.
[20] 5 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.
statement
$\forall x \phi \rightarrow \forall x \psi \dashv \forall x(\phi \rightarrow \psi)$
Every unary boolean function is affine.

Every adequate set of temporal CTL connectives contains EG or AU.
The terms $p(X, Y, Z)$ and $p(g(Z), g(Y), g(a))$ are unifiable.
Executing the Prolog query ?- $[\mathrm{A}, \mathrm{B} \mid \mathrm{C}]=[\mathrm{A} \mid \mathrm{C}]$. returns a solution.

The algebraic normal form of the boolean function $f(x, y)=x+\bar{y}$ is $1 \oplus x \oplus x y$.
The term $f(x, y)$ is free for y in $\forall x((\forall y(P(z) \wedge \forall z Q(y))) \rightarrow \neg \forall z P(y) \vee Q(z))$.
If θ is a computed answer substitution of an SLD-refutation of P and $\leftarrow A_{1}, \ldots, A_{k}$ (with $k \geqslant 1)$ then $P \vDash\left(A_{1} \vee \cdots \vee A_{k}\right) \theta$.

The instance $\{(01,1),(011,0),(0,10),(0,00)\}$ of Post correspondence problem has a solution.
$\operatorname{HWB}_{4}(0,1,0,1)=1$

