

Logik

EXAM 1

WS 2010/2011

LVA 703019

February 3, 2011

This exam consists of five exercises. The available points for each item are written in the margin. You need at least 50 points to pass. 1 Consider the boolean function $f(x, y, z) = 1 \oplus y \oplus xy \oplus xyz$. [9] (a) Give a binary decision tree for f with the variable ordering [x, y, z] and use the reduce algorithm to construct an equivalent reduced OBDD. [3] (b) Show that \neg can be expressed in terms of f. [8] (c) Is $\{f\}$ adequate? 2 [8] (a) Write a *logic program* which defines the predicate eval/2. It should be used to evaluate Boolean expressions which are built from the symbols and/2, not/1, true/0, and false/0. For example, the query eval(and(true,not(false)),X) should yield the answer X = true. Your program should not evaluate the same expression twice and it should evaluate the second argument of and/2 only on-demand. To be more precise, if the first argument of and/2 evaluates to false, then the second argument should not be evaluated. [4] (b) Write another evaluator for Boolean expressions by defining a *Prolog program* for eval/1. Here, eval(E) should be provable if and only if E evaluates to true. In this exercise you must not use eval/2 from the previous exercise, and you must not define any other predicates besides eval/1. [8] (c) Compute the SLD tree and give all answer substitutions for the following Prolog program and the query count([p(X,0),p(X,X)],N). count([],0). count([Q|Qs],N) :- Q, !, count(Qs,N). $count([_|Qs], s(N)) := count(Qs, N).$ p(s(X), X).

3 For each of the following sequents prove if they are valid or not.

[7] (a)
$$\vdash \forall x ((P(a,x) \land P(b,x)) \to a = b)$$

[6] (b)
$$\vdash \forall x \ (a = b \rightarrow (P(a, x) \rightarrow P(b, x)))$$

[7] (c)
$$\forall x \ P(a, x), a = b \vdash \neg \exists x \neg P(b, x)$$

4 Consider the CTL formula $\phi = \mathsf{A}[\neg q \mathsf{U}(\mathsf{EX} p \to \mathsf{AF} q)]$, and the model \mathcal{M} :

- [10] (a) Apply the CTL model checking algorithm to determine the states of \mathcal{M} which satisfy ϕ .
 - (b) Provide a CTL formula ψ which is equivalent to ϕ such that ψ does not contain the CTL connectives AU, EX and AF.
 - (c) Provide a CTL formula χ that is satisfied only in state s_4 of \mathcal{M} .
- [20] 5 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

statement

The sequent $\forall x \exists y P(x, y), \forall x \forall y (P(x, y) \rightarrow Q(x, y)) \vdash \exists y \forall x Q(x, y)$ is valid.

Every affine binary boolean function is self-dual.

In Prolog xfy is used for specifying a left-associative infix operator.

Every adequate set of temporal CTL connectives contains EF or AU.

The clauses $\{\neg p, q\}$ and $\{\neg p, r, \neg r\}$ clash.

The terms p(X, Y, Z) and p(g(Y), g(Z), X) are unifiable.

The algebraic normal form of the boolean function $f(x, y) = x \cdot \overline{y}$ is $y \oplus xy$.

 $\mathsf{A}[\phi\,\mathsf{U}\,\psi]\equiv\neg(\mathsf{E}[\neg\psi\,\mathsf{U}(\neg\phi\vee\neg\psi)]\wedge\mathsf{E}\mathsf{G}\,\neg\psi)$

The set $[[\mathsf{E}[\phi \mathsf{U} \psi]]]$ is the least fixed point of F_{EU} .

Prolog programs are executed using SLD resolution with rightmost and topdown selection.

[5]

[5]