

- [6] (a) $p \lor q \vdash \neg p \to q$
- [7] (b) $\forall x (P(x) \rightarrow Q(x)), P(b), \neg Q(a), b = a \vdash Q(b)$
- [7] (c) $\exists x (P(x) \to Q(x)), P(b), \neg Q(a), b = a \vdash Q(b)$

4 Consider the model \mathcal{M} :

- (a) Determine in which states of \mathcal{M} the CTL formula $\phi = \mathsf{E}[\mathsf{EX}(a \to b) \mathsf{U} \mathsf{AG} \neg b]$ holds.
- [4] (b) Provide a CTL formula ψ that is satisfied only in state 3 of \mathcal{M} .
 - (c) Give a boolean function that represents the transition relation of \mathcal{M} .

[20] 5Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

statement

Presburger arithmetic is decidable.

Reachability is not expressible in propositional logic.

The backtrack rule of DPLL can simulate the backjump rule of DPLL.

The LTL formulas $\phi \mathsf{R} \psi$ and $\psi \mathsf{W} (\phi \lor \psi)$ are semantically equivalent.

A Horn clause $P_1 \wedge P_2 \to Q$ is valid if and only if $Q \in \{P_1, P_2\}$.

 $\exists x \ (\exists x \ \psi \to \phi) \dashv \exists x \ \psi \to \forall x \ \phi$

The algebraic normal form of the boolean function $f(x,y) = x + \overline{y}$ is $1 \oplus x \oplus y$.

The CTL formulas $\mathsf{EG}\phi$ and $\neg \mathsf{A}[\top \mathsf{U} \neg \phi]$ are semantically equivalent.

Every Skolem normal form is in prenex normal form.

To determine whether a network with 3 wires is a sorting network, it suffices to test 6 input sequences.

[10]

[6]