Logik
WS 2011/2012
LVA 703026

EXAM 3
July 11, 2012

This exam consists of five exercises. The available points for each item are written in the margin. You need at least 50 points to pass.

1 Consider the propositional formula $\varphi=\neg(\neg(p \wedge \neg q) \rightarrow(\neg q \wedge \neg r))$.
(a) Compute the DAG representation of $T(\varphi)$.
(b) Test the satisfiability of φ with the linear SAT solver.
(c) Transform φ into an equisatisfiable formula in CNF.

2 (a) Are the terms $s=f(g(x, y), h(a), h(x))$ and $t=f(g(h(a), h(a)), x, h(y))$ unifiable?
(b) Compute a Skolem normal form for

$$
\phi=P(a) \wedge \forall x(P(x) \wedge \neg \forall x(Q(x) \rightarrow \exists x P(x)))
$$

(c) Use resolution to decide if the following set of clauses is satisfiable:

$$
\{\{\neg P(x), Q(x)\},\{\neg Q(f(a))\},\{P(f(f(a)))\},\{P(x), R(f(x))\},\{\neg Q(x), \neg R(x)\}\}
$$

3 For each of the following sequents, either give a natural deduction proof or find a model which does not satisfy it.
(a) $(p \rightarrow q) \wedge(r \rightarrow q) \vdash \neg q \rightarrow \neg(p \vee r)$
(b) $\exists y P(y) \rightarrow \forall x Q(x) \vdash \exists x \forall y(P(x) \rightarrow Q(y))$
(c) $\forall x P(x) \wedge \exists x \neg P(x) \vdash \neg(\forall x P(x) \wedge \exists x \neg P(x))$

4 Consider the model \mathcal{M} :

(a) Determine in which states of \mathcal{M} the CTL formula $\phi=\mathrm{E}[\mathrm{AX} q \vee p \mathrm{UEG} q]$ holds.
(b) Give an LTL formula ψ such that $\mathcal{M}, s \models \psi$ if and only if $s=3$.
(c) Show that the CTL^{*} formulas $\neg \mathrm{E}[\mathrm{GF} \neg p]$ and $\mathrm{A}[\mathrm{F} \mathrm{A}[\mathrm{G} p]]$ are not equivalent.
[20] 5 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.
statement

Every CTL formula can be viewed as a CTL* state formula.
$[[\mathrm{AG} \phi]]=[[\phi]] \cap \operatorname{pre}_{\forall}([$ AG $\left.\phi]]\right)$

The LTL formulas $\phi \mathrm{W} \top$ and $\phi \mathrm{R} \top$ are semantically equivalent.

Peano arithmetic is decidable.

Reachability is not expressible in second-order logic.

Every complete first-order theory is consistent.
Every adequate set of temporal CTL connectives contains EF or EX or EU.
$\exists x \forall y(\phi \rightarrow \neg \phi) \dashv \nexists y \forall x(\neg \psi)$

The boolean function $f(x, y, z)=x \oplus y z$ is affine.
The CTL* formulas $\mathrm{A}[\mathrm{G} \mathrm{A}[\mathrm{F} p]]$ and $\mathrm{A}[\mathrm{GE}[\mathrm{F} p]]$ are semantically equivalent.

