

Logik

WS 2012/2013

LVA 703026

EXAM 3

September 25, 2013

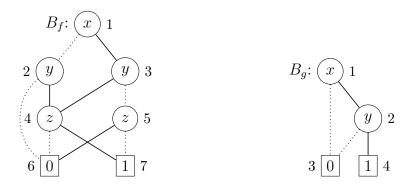
This exam consists of <u>five</u> exercises. The available points for each item are written in the margin. You need at least 50 points to pass.

- [5] (a) Are the terms s = f(g(x, a), h(y, b)) and t = f(g(c, z), z) unifiable? Here a and b are constants and x, y and z are variables.
- [7] (b) Compute a Skolem normal form for the formula $\forall x \exists y P(x, y) \land \forall x Q(x)$.
 - (c) Use resolution to decide if the following set of clauses is satisfiable:

$$\{ P(a, f(b)) \}, \{ \neg R(c, f(b)) \}, \{ P(x, y), R(x, y) \}, \{ \neg P(x, y), \neg R(x, y) \}, \{ P(x, y), \neg P(y, x) \}, \{ \neg P(x, y), \neg P(y, z), P(x, z) \}, \{ R(a, c) \} \}$$

Here a, b and c are constants and x, y and z are variables.

2 Consider the following two OBDDs.



[6] [7]

[8]

- (a) Compute a reduced OBDD for $\forall y.g$, where g is given by B_g .
- (b) Use Shannon's expansion to obtain a boolean expression that is equivalent to B_f . Simplify your answer.
- [7] (c) Compute $\operatorname{apply}(+, B_f, B_g)$.

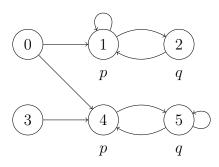
3 For each of the following sequents, either give a natural deduction proof or find a model which does not satisfy it.

[6] (a) $p \vdash ((p \to q) \to p) \to p$

[7] (b)
$$P(a), \exists x (x = a \to \neg P(x)) \vdash \exists x \neg (x = a)$$

[7] (c) $Q(a), \forall x (Q(x) \to Q(f(f(x)))) \vdash \neg Q(f(a)) \lor \forall x Q(x)$

[7] [6]



- [7] (a) Determine in which states of \mathcal{M} the CTL formula $\phi = \mathsf{EXAFA}[p \, \mathsf{U} \, q]$ holds.
 - (b) Give an LTL formula ψ such that $\mathcal{M}, s \models \psi$ if and only if s = 5.
 - (c) Find a model and identify a state in that model such that the CTL* formula

$$\mathsf{A}[\mathsf{G}\,\mathsf{F}\,p\wedge\mathsf{G}\,\mathsf{E}[\mathsf{F}\,q]]\wedge\neg\mathsf{A}[p\to\mathsf{F}\,q]$$

holds in that state.

[20] 5 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

statement

The depth of any sorting network is larger than its size.

Presburger arithmetic is finitely axiomatizable.

For every boolean function f and variable x, $f \equiv \overline{x} \cdot f[0/x] \oplus x \cdot f[1/x]$.

Natural deduction for propositional logic without $\neg \neg e$ is sound.

Basic DPLL contains the pure literal inference rule.

Every binary self-dual boolean function is monotone.

The CTL formulas $\mathsf{EF} \phi \wedge \mathsf{EF} \psi$ and $\mathsf{EF}(\phi \wedge \psi)$ are semantically equivalent.

 $\forall x \ \phi \to \exists x \ \psi \dashv \vdash \exists x \ (\phi \to \psi)$

The boolean function f(x, y, z) = x + xy is affine.

Natural deduction for propositional logic without $\neg\neg$ i is complete.