universităt Innsbruck

Logik

WS 2013/2014

LVA 703026

EXAM 1

February 6, 2014

This exam consists of <u>five</u> exercises. The available points for each item are written in the margin. You need at least 50 points to pass.

- 1 Consider the propositional formula $\phi = (\neg p \lor q) \land ((\neg q \lor (\neg p \lor r)) \land (\neg q \lor \neg r)).$
- [7] (a) Test the satisfiability of ϕ using DPLL.
 - (b) Test the satisfiability of ϕ using the linear SAT solver.
 - (c) Test the satisfiability of ϕ using the cubic SAT solver.

2 Consider the BDD B_f :

- [7] (a) Find a reduced OBDD equivalent to B_f with the ordering [z, y, x].
- [6] (b) Use Shannon's expansion to find a simple Boolean expression that is equivalent to B_f .
- [7] (c) Apply the exists algorithm to B_f and the variable x.

3 For each of the following sequents, either give a natural deduction proof or find a model which does not satisfy it.

- [6] (a) $\neg (p \lor q \to p \to q \to p) \vdash r$
- [7] (b) $\neg \exists x \ R(x, x) \land R(a, b) \vdash R(b, a) \rightarrow a = b$
- [7] (c) $\neg \exists x \ R(x, x), \ R(a, b), \ \forall x \ \forall y \ (R(x, y) \rightarrow x = y \lor R(y, x)) \vdash R(b, a)$

[6]

[7]

[7] (a) Consider the CTL formula $\phi = A[(p \lor AFEG p) \cup \neg E[p \cup (EXAX q)]]$ and the following model \mathcal{M} :

Determine which states of \mathcal{M} satisfy ϕ by applying the CTL model checking algorithm.

- (b) Show that the CTL^{*} formulas $\neg A[GF \neg p]$ and E[FA[Gp]] are not equivalent.
- [7] (c) Suppose we extend LTL with a new temporal operator XU:

 $\pi \models \phi \operatorname{\mathsf{XU}} \psi \iff \exists i > 1 \ \pi^i \models \psi \text{ and } \forall 1 < j < i \ \pi^j \models \phi$

Prove that $\{XU\}$ is an adequate set of temporal connectives for LTL.

[20] 5 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

statement

Natural deduction (including the derived rules) for propositional logic without $\rightarrow e$ is complete.

Resolution for predicate logic without factoring is sound.

To determine whether a network with n wires is a sorting network, it suffices to test n! input sequences.

The LTL formulas $\phi \cup \psi \vee \mathsf{G} \phi$ and $\psi \mathsf{R} (\phi \vee \psi)$ are semantically equivalent

Presburger arithmetic is decidable.

Every unification problem can either be solved or leads to a failure due to the occurs check.

Tseitin's transformation can be performed in linear time.

There exist formulas in CNF that are not in Skolem normal form.

Every complete first-order theory is consistent.

There exist CTL* formulas without equivalent CTL or LTL formulas.

[6]