This exam consists of five exercises. The available points for each item are written in the margin. You need at least 50 points to pass.

1 Consider the boolean functions $f(x, y)=\bar{x} \oplus y$ and $g(x, y, z)=(x+y)(\bar{x}+z)+y \bar{z}$.

2 (a) Consider the terms $h\left(x_{1}, x_{2}, f(a, b), f\left(y_{1}, y_{1}\right), y_{2}\right)$ and $h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), y_{1}, y_{2}, x_{2}\right)$. Determine whether they are unifiable and compute a most general unifier if possible. Here a and b are constants and $x_{0}, x_{1}, x_{2}, y_{1}$, and y_{2} are variables.
(b) Compute a Skolem normal form of

$$
\phi=\exists y((\forall x P(x) \rightarrow \exists x Q(x)) \rightarrow \exists x \forall y R(x, y) \rightarrow P(y))
$$

(c) Use resolution to determine whether the following set of clauses is satisfiable:

$$
\begin{aligned}
& \{\{P(f(b), z), Q(x, y), \neg R(z, f(u))\}, \\
& \quad\{P(x, x), \neg Q(x, y), R(a, x)\}, \\
& \{P(z, a), Q(x, y), R(f(b), y)\}, \\
& \{\neg R(a, f(x))\}, \\
& \{\neg P(x, y), \neg P(z, z)\}\}
\end{aligned}
$$

Here a and b are constants and x, y, z, and u are variables.

3 For each of the following sequents (the first in propositional logic, the latter two in predicate logic), either give a natural deduction proof or find a model which does not satisfy it.
(a) $\vdash((p \rightarrow \perp) \rightarrow p) \rightarrow p$
(b) $\exists x \forall y(x=y \rightarrow Q(y)) \vdash \exists x Q(x)$
(c) $\forall x(P(x) \rightarrow P(f(f(x)))), P(a) \vdash P(f(f(f(a))))$

4 Consider the following model \mathcal{M} :

(a) Determine in which states of \mathcal{M} the CTL formula $\phi=\mathrm{A}[\mathrm{EX} \neg p \wedge p \mathrm{EG} p]$ is satisfied by applying the CTL model checking algorithm.
(b) Find a CTL formula ψ that is satisfied only in states 2 and 4 of \mathcal{M}.
(c) Find an LTL formula χ such that neither $\mathcal{M}, 4 \vDash \chi$ nor $\mathcal{M}, 4 \vDash \neg \chi$.
[20] 5 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

statement

$\forall x(\mathrm{G} x)$ is an LTL formula.
$\exists x(P(x) \vee Q(x)) \vDash \exists x P(x) \vee \exists x Q(x)$
Unification of two terms is undecidable in general.
The formula $\forall x P(x) \wedge Q(x) \rightarrow \forall x(P(x) \wedge Q(x))$ is valid.
Reflexivity of a binary relation is expressible in predicate logic.
The set of connectives $\{\perp, \neg\}$ is adequate for propositional logic.
A predicate logic formula ϕ is satisfiable if and only if $\neg \phi$ is not valid.
A predicate logic formula can at the same time be satisfiable and valid.
The set $\{R(x), S(x) \rightarrow \neg R(x)\}$ of predicate logic formulas is consistent.
The universe $A=\{0\}$ together with the relations $P^{\mathcal{M}}=Q^{\mathcal{M}}=\{0\}$ constitutes a countermodel of $\forall x(P(x) \vee Q(x)) \models \forall x Q(x) \vee \forall x P(x)$.

