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This exam consists of five exercises. The available points for each item are
written in the margin. You need at least 50 points to pass.

Consider the boolean functions f(z,y) =z @y and g(x,y,2) = (z + y)(x + 2) + y=.

(6] (a) Construct a reduced OBBD for f with the variable ordering [z, y].
[7] (b) Compute the algebraic normal form of g.
[7] (¢) Determine all minimal complete adequate subsets of {f, g, —, ®}.

[7] (a) Consider the terms h(xy,xa, f(a,b), f(y1,y1),y2) and h(f(zo,x0), f(x1,21), Y1, Y2, T2).
Determine whether they are unifiable and compute a most general unifier if possible.

Here a and b are constants and xg, x1, 2, y1, and y, are variables.

[6] (b) Compute a Skolem normal form of
¢ =3y (Ve P(x) = 3r Q(r)) = o Vy R(z,y) = P(y))
[7] (c) Use resolution to determine whether the following set of clauses is satisfiable:

{P(f(b),2),Qz,y), ~R(z, f(u))},
{P(z,2),~Q(z,y), R(a, z)},
{P(z,a), Q(z,y), R(f(b), )},
{=R(a, f(x))},

{(=P(2,y),~P(z 2)}}

Here a and b are constants and x, y, z, and u are variables.

For each of the following sequents (the first in propositional logic, the latter two in predicate
logic), either give a natural deduction proof or find a model which does not satisfy it.

[6] () F ((p—1L)—=p) —p
[7] (b) FzVy(r=y = Qy) F FzQ(x)
[7] (c) Vo (P(z) — P(f(f(2)))), P(a) = P(f(f(f(a))))



(6]

[7]
[7]

[20]

Consider the following model M:

]
i

(a) Determine in which states of M the CTL formula ¢ = A[EX—p A pUEGp] is satisfied
by applying the CTL model checking algorithm.

(b) Find a CTL formula 1 that is satisfied only in states 2 and 4 of M.
(c¢) Find an LTL formula x such that neither M, 4 E y nor M, 4 F —y.

Determine whether the following statements are true or false. Every correct answer is worth
2 points. For every wrong answer 1 point is subtracted, provided the total number of points
is non-negative.

statement

Vz (Gzx) is an LTL formula.

dz (P(z) V Q(z)) E Jx P(x) V 3z Q(x)

Unification of two terms is undecidable in general.

The formula Yz P(z) A Q(z) — Va (P(z) A Q(x)) is valid.

Reflexivity of a binary relation is expressible in predicate logic.

The set of connectives {_L, =} is adequate for propositional logic.

A predicate logic formula ¢ is satisfiable if and only if —¢ is not valid.
A predicate logic formula can at the same time be satisfiable and valid.
The set {R(x),S(xz) — —R(x)} of predicate logic formulas is consistent.

The universe A = {0} together with the relations PM = Q™ = {0} constitutes a counter-
model of Va (P(x) V Q(x)) &= Vx Q(x) vV Vz P(z).



