

Logik

WS 2015/2016

LVA 703026

EXAM 2

March 4, 2016

This exam consists of <u>five</u> exercises. The available points for each item are written in the margin. You need at least 50 points to pass.

- $\begin{tabular}{ll} \hline 1 & \mbox{Let S be the clausal form $\{\{\neg p, \neg q\}, \{p, q\}, \{\neg q, \neg r\}, \{q, r\}, \{\neg r, \neg p\}, \{r, p\}$\}. \end{tabular}$
- (a) Give the propositional logic formula that is respresented by S, and explain why or why not it is a Horn formula.
- [7] (b) Use resolution to decide whether S is satisfiable.
 - (c) Describe a procedure to check by means of resolution whether or not $\phi_1, \phi_2 \models \psi$, for arbitrary propositional formulas ϕ_1, ϕ_2 and ψ . Subsequently use the procedure to show that (i) $p, p \rightarrow q \models q$ and (ii) not $p, q \rightarrow p \models q$.

2 Consider the boolean function $f(x, y) = x\overline{y} \oplus \overline{x}y$ and the following two reduced OBDDs:

- [6] (a) Construct a reduced OBDD for f with variable ordering [x, y, z].
- [7] (b) Compute $\operatorname{apply}(+, B_g, B_h)$.
- [7] (c) Starting from B_g , compute a reduced OBDD that is equivalent to $\exists y.g.$

3 For each of the following sequents, either give a natural deduction proof or find a model which does not satisfy it.

[6] (a)
$$\forall x \exists y (\neg (x=y) \land \exists z (x=z \to z=y)) \vdash \exists x \forall y (x=y)$$

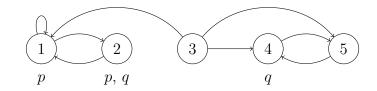
[7] (b)
$$\vdash \forall x \exists y (P(x) \to Q(y)) \to \forall x (P(x) \to \exists y Q(y))$$

[7] (c) $\exists x \neg P(x), \forall x (P(x) \lor Q(x)) \vdash \forall x (R(x) \to \neg Q(x)) \to \exists x \neg R(x)$

[6]

[7]

- Let the strong until operator S in LTL be defined by $\phi S \psi$ if there exists $i \ge 1$ such that 4 $\pi^i \models \psi$ and, for all $j < i, \pi^j \models \phi \land \neg \psi$.
- (a) Give a model M such that $\pi_1 \models p \mathsf{S} q$ but $\pi_2 \nvDash p \mathsf{S} q$ for two paths π_1 and π_2 starting [6] from the same state.
- [6] (b) Show that $\{X, S\}$ (together with the propositional connectives) is adequate for LTL.
 - (c) Use the labelling algorithm to determine in which states of the model



the CTL formula $AFE[\neg p \cup EX q]$ holds.

[20] 5Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

statement

 $\forall x \exists y (\neg P(x, y) \lor Q(y)) \dashv \exists x \forall y (\neg P(x, y) \lor Q(y))$

There is a sorting network of size three for four inputs.

The boolean function $f(x, y, z) = \overline{x} + xy + x\overline{y}$ is affine.

For every LTL formula there is an equivalent CTL^{*} formula.

Every affine boolean function can be written in algebraic normal form.

The term q(f(z)) is free for x in $\exists x \forall z (Q(x) \lor P(z)) \land \forall y (Q(y) \lor P(x)).$

The set {EX, EG, EU} is an adequate set of temporal connectives for CTL.

The formula $((\neg r \rightarrow \neg s) \rightarrow r) \rightarrow p \rightarrow s \rightarrow p$ is a theorem of propositional logic.

For any monotone function $F: \mathcal{P}(S) \to \mathcal{P}(S)$ with |S| = n, $F^n(\emptyset)$ is the greatest fixed point of F.

The terms f(q(x,y), h(a), h(x)) and f(q(h(a), h(h(a))), x, h(y)) are unifiable. Here a is a constant and x and y are variables.

[8]